1932

Abstract

Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115352
2019-05-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115352.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115352&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adachi S, Murakawa Y, Hiraga S 2015. Dynamic nature of SecA and its associated proteins in Escherichia coli. Front. Microbiol 6:75
    [Google Scholar]
  2. 2.
    Allen WJ, Corey RA, Oatley P, Sessions RB, Radford SE et al. 2016. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife 5:e15598
    [Google Scholar]
  3. 3.
    Angelini S, Deitermann S, Koch HG 2005. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep 6:5476–81
    [Google Scholar]
  4. 4.
    Arkowitz RA, Wickner W 1994. SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. Eur. Mol. Biol. Organ. J. 13:954–63
    [Google Scholar]
  5. 5.
    Ataide SF, Schmitz N, Shen K, Ke A, Shan S-o et al. 2011. The crystal structure of the signal recognition particle in complex with its receptor. Science 331:6019881–86
    [Google Scholar]
  6. 6.
    Baker LA, Sinnige T, Schellenberger P, de Keyzer J, Siebert CA et al. 2017. Combined 1H-detected solid-state NMR spectroscopy and electron cryotomography to study membrane proteins across resolutions in native environments. Structure 26:1161–70.e3
    [Google Scholar]
  7. 7.
    Batey RT 2000. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:54561232–39
    [Google Scholar]
  8. 8.
    Bauer BW, Shemesh T, Chen Y, Rapoport TA 2014. A “push and slide” mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. Cell 157:61416–29
    [Google Scholar]
  9. 9.
    Bechtluft P, van Leeuwen RGH, Tyreman M, Tomkiewicz D, Nouwen N et al. 2007. Direct observation of chaperone-induced changes in a protein folding pathway. Science 318:58551458–61
    [Google Scholar]
  10. 10.
    Beck K, Wu LF, Brunner J, Müller M 2000. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. Eur. Mol. Biol. Organ. J. 19:134–43
    [Google Scholar]
  11. 11.
    Benach J, Chou Y-T, Fak JJ, Itkin A, Nicolae DD et al. 2003. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem. 278:63628–38
    [Google Scholar]
  12. 12.
    Brandon LD, Goehring N, Janakiraman A, Yan AW, Wu T et al. 2003. IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed. Mol. Microbiol. 50:145–60
    [Google Scholar]
  13. 13.
    Breukink E, Nouwen N, van Raalte A, Mizushima S, Tommassen J, de Kruijff B 1995. The C terminus of SecA is involved in both lipid binding and SecB binding. J. Biol. Chem. 270:147902–7
    [Google Scholar]
  14. 14.
    Brundage L, Hendrick JP, Schiebel E, Driessen AJM, Wickner W 1990. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:4649–57
    [Google Scholar]
  15. 15.
    Cabelli RJ, Dolan KM, Qian L, Oliver DB 1991. Characterization of membrane-associated and soluble states of SecA protein from wild-type and secA51(Ts) mutant strains of Escherichia coli. J. Biol. Chem 266:3624420–27
    [Google Scholar]
  16. 16.
    Campo N, Tjalsma H, Buist G, Stepniak D, Meijer M et al. 2004. Subcellular sites for bacterial protein export. Mol. Microbiol. 53:61583–99
    [Google Scholar]
  17. 17.
    Chen X, Xu H, Tai PC 1996. A significant fraction of functional SecA is permanently embedded in the membrane: SecA cycling on and off the membrane is not essential during protein translocation. J. Biol. Chem. 271:4729698–706
    [Google Scholar]
  18. 18.
    Chen Y, Bauer BW, Rapoport TA, Gumbart JC 2015. Conformational changes of the clamp of the protein translocation ATPase SecA. J. Mol. Biol. 427:142348–59
    [Google Scholar]
  19. 19.
    Dalbey RE, Wang P, Kuhn A 2011. Assembly of bacterial inner membrane proteins. Annu. Rev. Biochem. 80:161–87
    [Google Scholar]
  20. 20.
    Das S, Oliver DB 2011. Mapping of the SecA⋅SecY and SecA⋅SecG interfaces by site-directed in vivo photocross-linking. J. Biol. Chem. 286:1412371–80
    [Google Scholar]
  21. 21.
    de Keyzer J, van der Does C, Kloosterman TG, Driessen AJM 2003. Direct demonstration of ATP-dependent release of SecA from a translocating preprotein by surface plasmon resonance. J. Biol. Chem. 278:3229581–86
    [Google Scholar]
  22. 22.
    de Keyzer J, van der Sluis EO, Spelbrink REJ, Nijstad N, de Kruijff B et al. 2005. Covalently dimerized SecA is functional in protein translocation. J. Biol. Chem. 280:4235255–60
    [Google Scholar]
  23. 23.
    Dekker C, De Kruijff B, Gros P 2003. Crystal structure of SecB from Escherichia coli. J. Struct. Biol 144:3313–19
    [Google Scholar]
  24. 24.
    Driessen AJM 1993. SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer. Biochemistry 32:4813190–97
    [Google Scholar]
  25. 25.
    Driessen AJM, Nouwen N 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77:643–67
    [Google Scholar]
  26. 26.
    du Plessis DJF, Nouwen N, Driessen AJM 2011. The Sec translocase. Biochim. Biophys. Acta 1808:3851–65
    [Google Scholar]
  27. 27.
    Duong F, Wickner W 1997. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 16:164871–79
    [Google Scholar]
  28. 28.
    Economou A, Pogliano J, Beckwith J 1995. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83:1171–81
    [Google Scholar]
  29. 29.
    Economou A, Wickner W 1994. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:5835–43
    [Google Scholar]
  30. 30.
    Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM 2004. Substrate twinning activates the signal recognition particle and its receptor. Nature 427:6971215–21
    [Google Scholar]
  31. 31.
    Erlandson KJ, Miller SBM, Nam Y, Osborne AR, Zimmer J, Rapoport TA 2008. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455:7215984–87
    [Google Scholar]
  32. 32.
    Espeli O, Nurse P, Levine C, Lee C, Marians KJ 2003. SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol. Microbiol 50:2495–509
    [Google Scholar]
  33. 33.
    Facey SJ, Neugebauer SA, Krauss S, Kuhn A 2007. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J. Mol. Biol 365:4995–1004
    [Google Scholar]
  34. 34.
    Fekkes P, van der Does C, Driessen AJM 1997. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16:206105–13
    [Google Scholar]
  35. 35.
    Fessl D, Watkins P, Oatley P, William JA, Corey RA et al. 2018. Dynamic action of the Sec machinery during initiation, protein translocation and termination revealed by single molecule fluorescence. eLife 7:e35112
    [Google Scholar]
  36. 36.
    Fischer G, Schmid F 1990. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry 29:92205–12
    [Google Scholar]
  37. 37.
    Focia PJ 2004. Heterodimeric GTPase core of the SRP targeting complex. Science 303:5656373–77
    [Google Scholar]
  38. 38.
    Frauenfeld J, Gumbart J 2011. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. 18:5614–21
    [Google Scholar]
  39. 39.
    Funes S, Hasona A, Bauerschmitt H, Grubbauer C, Kauff F et al. 2009. Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. PNAS 106:166656–61
    [Google Scholar]
  40. 40.
    Funes S, Kauff F, van der Sluis EO, Ott M, Herrmann JM 2011. Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biol. Chem. 392:1–213–19
    [Google Scholar]
  41. 41.
    Ge Y, Draycheva A, Bornemann T, Rodnina MV, Wintermeyer W 2014. Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion. Nat. Commun. 5:5263
    [Google Scholar]
  42. 42.
    Gelis I, Bonvin AMJJ, Keramisanou D, Koukaki M, Gouridis G et al. 2007. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:4756–69
    [Google Scholar]
  43. 43.
    Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson I 2010. The action of cardiolipin on the bacterial translocon. PNAS 107:2210044–49
    [Google Scholar]
  44. 44.
    Gumbart J, Schulten K 2008. The roles of pore ring and plug in the SecY protein-conducting channel. J. Gen. Physiol. 132:709–19
    [Google Scholar]
  45. 45.
    Hanada M, Nishiyama KI, Mizushima S, Tokuda H 1994. Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12). J. Biol. Chem. 269:3823625–31
    [Google Scholar]
  46. 46.
    Hanada M, Nishiyama K, Tokuda H 1996. SecG plays a critical role in protein translocation in the absence of the proton motive force as well as at low temperature. FEBS Lett 381:1–225–28
    [Google Scholar]
  47. 47.
    Huber D, Jamshad M, Hanmer R, Schibich D, Döring K et al. 2016. SecA cotranslationally interacts with nascent substrate proteins in vivo. J. Bacteriol. 199:2e00622–16
    [Google Scholar]
  48. 48.
    Hunt JF 2002. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297:55892018–26
    [Google Scholar]
  49. 49.
    Janda CY, Li J, Oubridge C, Hernández H, Robinson CV, Nagai K 2010. Recognition of a signal peptide by the signal recognition particle. Nature 465:7297507–10
    [Google Scholar]
  50. 50.
    Jilaveanu LB, Zito CR, Oliver D 2005. Dimeric SecA is essential for protein translocation. PNAS 102:217511–16
    [Google Scholar]
  51. 51.
    Jomaa A, Fu Y-HH, Boehringer D, Leibundgut M, Shan S, Ban N 2017. Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nat. Commun. 8:15470
    [Google Scholar]
  52. 52.
    Karamanou S, Gouridis G, Papanikou E, Sianidis G, Gelis I et al. 2007. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J 26:122904–14
    [Google Scholar]
  53. 53.
    Kawasaki S, Mizushima S, Tokuda H 1993. Membrane vesicles containing overproduced SecY and SecE exhibit high translocation ATPase activity and countermovement of protons in a SecA- and presecretory protein-dependent manner. J. Biol. Chem. 268:118193–98
    [Google Scholar]
  54. 54.
    Kedrov A, Kusters I, Krasnikov VV, Driessen AJM 2011. A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 30:214387–97
    [Google Scholar]
  55. 55.
    Kedrov A, Sustarsic M, De Keyzer J, Caumanns JJ, Wu ZC, Driessen AJM 2013. Elucidating the native architecture of the YidC: ribosome complex. J. Mol. Biol. 425:4112–24
    [Google Scholar]
  56. 56.
    Knyazev DG, Lents A, Krause E, Ollinger N, Siligan C et al. 2013. The bacterial translocon secYEG opens upon ribosome binding. J. Biol. Chem. 288:2517941–46
    [Google Scholar]
  57. 57.
    Knyazev DG, Winter L, Bauer BW, Siligan C, Pohl P 2014. Ion conductivity of the bacterial translocation channel SecYEG engaged in translocation. J. Biol. Chem. 289:24611–16
    [Google Scholar]
  58. 58.
    Koch HG, Hengelage T, Neumann-Haefelin C, MacFarlane J, Hoffschulte HK et al. 1999. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol. Biol. Cell 10:72163–73
    [Google Scholar]
  59. 59.
    Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K et al. 2014. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:516–20
    [Google Scholar]
  60. 60.
    Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y et al. 2014. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci. Rep. 4:7299
    [Google Scholar]
  61. 61.
    Kusters I, Driessen AJM 2011. SecA, a remarkable nanomachine. Cell. Mol. Life Sci. 68:122053–66
    [Google Scholar]
  62. 62.
    Lecker S, Lill R, Ziegelhoffer T, Georgopoulos C, Bassford PJ et al. 1989. Three pure chaperone proteins of Escherichia coli—SecB, trigger factor and GroEL—form soluble complexes with precursor proteins in vitro. EMBO J 8:92703–9
    [Google Scholar]
  63. 63.
    Lill R, Dowhan W, Wickner W 1990. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60:2271–80
    [Google Scholar]
  64. 64.
    Lotz M, Haase W, Kühlbrandt W, Collinson I 2008. Projection structure of yidC: a conserved mediator of membrane protein assembly. J. Mol. Biol. 375:4901–7
    [Google Scholar]
  65. 65.
    Lycklama A, Nijeholt JA, Driessen AJM 2012. The bacterial Sec-translocase: structure and mechanism. Philos. Trans. R. Soc. B 367:15921016–28
    [Google Scholar]
  66. 66.
    Matsuyama S, Fujita Y, Mizushima S 1993. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. Eur. Mol. Biol. Organ. J. 12:265–70
    [Google Scholar]
  67. 67.
    Matsuyama S, Fujita Y, Sagara K, Mizushima S 1992. Overproduction, purification and characterization of SecD and SecF, integral membrane components of the protein translocation machinery of Escherichia coli. Biochim. Biophys. Acta 1122:177–84
    [Google Scholar]
  68. 68.
    Ménétret J-F, Schaletzky J, Clemons WM, Osborne AR, Skånland SS et al. 2007. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol. Cell 28:61083–92
    [Google Scholar]
  69. 69.
    Mori H, Ito K 2006. Different modes of SecY–SecA interactions revealed by site-directed in vivo photo-cross-linking. PNAS 103:4416159–64
    [Google Scholar]
  70. 70.
    Murphy CK, Beckwith J 1994. Residues essential for the function of SecE, a membrane component of the Escherichia coli secretion apparatus, are located in a conserved cytoplasmic region. PNAS 91:72557–61
    [Google Scholar]
  71. 71.
    Nagamori S, Smirnova IN, Kaback HR 2004. Role of YidC in folding of polytopic membrane proteins. J. Cell Biol. 165:153–62
    [Google Scholar]
  72. 72.
    Nishiyama K, Hanada M, Tokuda H 1994. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 13:143272–77
    [Google Scholar]
  73. 73.
    Nouwen N, Driessen AJM 2002. SecDFyajC forms a heterotetrameric complex with YidC. Mol. Microbiol. 44:51397–405
    [Google Scholar]
  74. 74.
    Or E, Navon A, Rapoport T 2002. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J 21:174470–79
    [Google Scholar]
  75. 75.
    Osborne AR, Clemons WM, Rapoport TA 2004. A large conformational change of the translocation ATPase SecA. PNAS 101:3010937–42
    [Google Scholar]
  76. 76.
    Papanikolau Y, Papadovasilaki M, Ravelli RBG, McCarthy AA, Cusack S et al. 2007. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J. Mol. Biol. 366:51545–57
    [Google Scholar]
  77. 77.
    Park E, Ménétret J-F, Gumbart JC, Ludtke SJ, Li W et al. 2013. Structure of the SecY channel during initiation of protein translocation. Nature 506:7486102–6
    [Google Scholar]
  78. 78.
    Park E, Rapoport TAT 2011. Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473:7346239–42
    [Google Scholar]
  79. 79.
    Pogliano KJ, Beckwith J 1994. Genetic and molecular characterization of the Escherichia coli secD operon and its products. J. Bacteriol. 176:3804–14
    [Google Scholar]
  80. 80.
    Pohlschröder M, Murphy C 1996. In vivo analyses of interactions between SecE and SecY, core components of the Escherichia coli protein translocation machinery. J. Biol. Chem. 271:3319908–14
    [Google Scholar]
  81. 81.
    Randall LL, Crane JM, Lilly AA, Liu G, Mao C et al. 2005. Asymmetric binding between SecA and SecB two symmetric proteins: implications for function in export. J. Mol. Biol. 348:2479–89
    [Google Scholar]
  82. 82.
    Randall LL, Topping TB, Hardy SJ, Pavlov MY, Freistroffer DV, Ehrenberg M 1997. Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins. PNAS 94:3802–7
    [Google Scholar]
  83. 83.
    Sääf A, Monné M, de Gier J-W, von Heijne G 1998. Membrane topology of the 60-kDa Oxa1p homologue from Escherichia coli. J. Biol. Chem 273:4630415–18
    [Google Scholar]
  84. 84.
    Sachelaru I, Petriman NA, Kudva R, Kuhn P, Welte T et al. 2013. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J. Biol. Chem. 288:2316295–307
    [Google Scholar]
  85. 85.
    Sachelaru I, Winter L, Knyazev DG, Zimmermann M, Vogt A et al. 2017. YidC and SecYEG form a heterotetrameric protein translocation channel. Sci. Rep. 7:1101
    [Google Scholar]
  86. 86.
    Sagara K, Matsuyama S, Mizushima S 1994. SecF stabilizes SecD and SecY, components of the protein translocation machinery of the Escherichia coli cytoplasmic membrane. J. Bacteriol. 176:4111–16
    [Google Scholar]
  87. 87.
    Saparov SM, Erlandson K, Cannon K, Schaletzky J, Schulman S et al. 2007. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26:4501–9
    [Google Scholar]
  88. 88.
    Sardis MF, Economou A 2010. SecA: A tale of two protomers. Mol. Microbiol. 76:1070–81
    [Google Scholar]
  89. 89.
    Schatz PJ, Bieker KL, Ottemann KM, Silhavy TJ, Beckwith J 1991. One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J 10:71749–57
    [Google Scholar]
  90. 90.
    Schiebel E, Driessen AJM, Hartl F-U, Wickner W 1991. ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64:5927–39
    [Google Scholar]
  91. 91.
    Schiebel E, Wickner W 1992. Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. J. Biol. Chem. 267:117505–10
    [Google Scholar]
  92. 92.
    Schulze RJ, Komar J, Botte M, Allen WJ, Whitehouse S et al. 2014. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG–SecDF–YajC–YidC. PNAS 111:134844–49
    [Google Scholar]
  93. 93.
    Shen K, Arslan S, Akopian D, Ha T, Shan S-o 2012. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492:7428271–75
    [Google Scholar]
  94. 94.
    Shiomi D, Yoshimoto M, Homma M, Kawagishi I 2006. Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol. Microbiol. 60:4894–906
    [Google Scholar]
  95. 95.
    Sianidis G, Karamanou S, Vrontou E, Boulias K, Repanas K et al. 2001. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J 20:5961–70
    [Google Scholar]
  96. 96.
    Simon SM, Blobel G 1991. A protein-conducting channel in the endoplasmic reticulum. Cell 65:3371–80
    [Google Scholar]
  97. 97.
    Simon SM, Blobel G, Zimmerberg J 1989. Large aqueous channels in membrane vesicles derived from the rough endoplasmic reticulum of canine pancreas or the plasma membrane of Escherichia coli. . PNAS 86:166176–80
    [Google Scholar]
  98. 98.
    Simon SM, Peskin CS, Oster GF 1992. What drives the translocation of proteins?. PNAS 89:93770–74
    [Google Scholar]
  99. 99.
    Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A et al. 2015. Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep 13:81561–68
    [Google Scholar]
  100. 100.
    Taufik I, Kedrov A, Exterkate M, Driessen AJM 2013. Monitoring the activity of single translocons. J. Mol. Biol. 425:224145–53
    [Google Scholar]
  101. 101.
    Tomkiewicz D, Nouwen N, Driessen AJM 2007. Pushing, pulling and trapping—modes of motor protein supported protein translocation. FEBS Lett 581:152820–28
    [Google Scholar]
  102. 102.
    Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S et al. 2011. Structure and function of a membrane component SecDF that enhances protein export. Nature 474:7350235–38
    [Google Scholar]
  103. 103.
    Uchida K, Mori H, Mizushima S 1995. Stepwise movement of preproteins in the process of translocation across the cytoplasmic membrane of Escherichia coli. J. Biol. Chem 270:5230862–68
    [Google Scholar]
  104. 104.
    van Bloois E, Dekker HL, Fröderberg L, Houben ENG, Urbanus ML et al. 2008. Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Lett 582:101419–24
    [Google Scholar]
  105. 105.
    van den Berg B, Clemons WM Jr., Collinson I, Modis Y, Hartmann E et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:696936–44
    [Google Scholar]
  106. 106.
    van den Bogaart G, Kusters I, Velásquez J, Mika JT, Krasnikov V et al. 2008. Dual-color fluorescence-burst analysis to study pore formation and protein-protein interactions. Methods 46:2123–30
    [Google Scholar]
  107. 107.
    van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJM 2004. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165:2213–22
    [Google Scholar]
  108. 108.
    Vassylyev DG, Mori H, Vassylyeva MN, Tsukazaki T, Kimura Y et al. 2006. Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J. Mol. Biol. 364:3248–58
    [Google Scholar]
  109. 109.
    Vrontou E, Economou A 2004. Structure and function of SecA, the preprotein translocase nanomotor. Biochim. Biophys. Acta 1694:1–367–80
    [Google Scholar]
  110. 110.
    Weiche B, Bürk J, Angelini S, Schiltz E, Thumfart JO, Koch HG 2008. A cleavable N-terminal membrane anchor is involved in membrane binding of the Escherichia coli SRP receptor. J. Mol. Biol. 377:3761–73
    [Google Scholar]
  111. 111.
    Wickles S, Singharoy A, Andreani J, Seemayer S, Bischoff L et al. 2014. A structural model of the active ribosome-bound membrane protein insertase YidC. eLife 3:e03035
    [Google Scholar]
  112. 112.
    Xie K, Kiefer D, Nagler G, Dalbey RE, Kuhn A 2006. Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry 45:4413401–8
    [Google Scholar]
  113. 113.
    Zimmer J, Li W, Rapoport TA 2006. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364:3259–65
    [Google Scholar]
  114. 114.
    Zimmer J, Nam Y, Rapoport TA 2008. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:7215936–43
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115352
Loading
/content/journals/10.1146/annurev-biophys-052118-115352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error