1932

Abstract

Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115451
2019-05-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115451.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115451&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR 1979. Electric breakdown of bilayer membranes: I. The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenerg. 6:37–52
    [Google Scholar]
  2. 2.
    Ayala A, Muñoz MF, Argüelles S 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014:360438
    [Google Scholar]
  3. 3.
    Azan A, Untereiner V, Descamps L, Merla C, Gobinet C et al. 2017. Comprehensive characterization of the interaction between pulsed electric fields and live cells by confocal Raman microspectroscopy. Anal. Chem. 89:10790–97
    [Google Scholar]
  4. 4.
    Azan A, Untereiner V, Gobinet C, Sockalingum GD, Breton M et al. 2017. Demonstration of the protein involvement in cell electropermeabilization using confocal Raman microspectroscopy. Sci. Rep. 7:40448
    [Google Scholar]
  5. 5.
    Barnett A 1990. The current-voltage relation of an aqueous pore in a lipid bilayer membrane. Biochim. Biophys. Acta 1025:10–14
    [Google Scholar]
  6. 6.
    Barnett A, Weaver JC 1991. Electroporation: a unified, quantitative theory of reversible electrical breakdown and rupture. Bioelectrochem. Bioenerg. 25:163–82
    [Google Scholar]
  7. 7.
    Batista Napotnik T, Reberšek M, Kotnik T, Lebrasseur E, Cabodevila G, Miklavčič D 2010. Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med. Biol. Eng. Comput. 48:407–13
    [Google Scholar]
  8. 8.
    Batista Napotnik T, Reberšek M, Vernier PT, Mali B, Miklavčič D 2016. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): a systematic review. Bioelectrochemistry 110:1–12
    [Google Scholar]
  9. 9.
    Batista Napotnik T, Wu YH, Gundersen AM, Miklavčič D, Vernier PT 2012. Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–64
    [Google Scholar]
  10. 10.
    Bennett WFD, Sapay N, Tieleman DP 2014. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys. J. 106:210–19
    [Google Scholar]
  11. 11.
    Benov LC, Antonov PA, Ribarov SR 1994. Oxidative damage of the membrane lipids after electroporation. Gen. Physiol. Biophys. 13:85–97
    [Google Scholar]
  12. 12.
    Benz R, Beckers F, Zimmermann U 1979. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J. Membrane Biol. 48:181–204
    [Google Scholar]
  13. 13.
    Benz R, Zimmermann U 1981. The resealing process of lipid bilayers after reversible electrical breakdown. Biochim. Biophys. Acta 640:169–78
    [Google Scholar]
  14. 14.
    Berghofer T, Eing C, Flickinger B, Hohenberger P, Wegner LH et al. 2009. Nanosecond electric pulses trigger actin responses in plant cells. Biochem. Biophys. Res. Commun. 387:590–95
    [Google Scholar]
  15. 15.
    Biedinger U, Youngman RJ, Schnabl H 1990. Differential effects of electrofusion and electropermeabilization parameters on the membrane integrity of plant protoplasts. Planta 180:598–602
    [Google Scholar]
  16. 16.
    Bodner E, Afri M, Frimer AA 2010. Determining radical penetration into membranes using ESR splitting constants. Free Radic. Biol. Med. 49:427–36
    [Google Scholar]
  17. 17.
    Boonnoy P, Jarerattanachat V, Karttunen M, Wong-Ekkabut J 2015. Bilayer deformation, pores, and micellation induced by oxidized lipids. J. Phys. Chem. Lett. 6:4884–88
    [Google Scholar]
  18. 18.
    Breton M, Delemotte L, Silve A, Mir LM, Tarek M 2012. Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J. Am. Chem. Soc. 134:13938–41
    [Google Scholar]
  19. 19.
    Breton M, Mir LM 2018. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level. Bioelectrochemistry 119:76–83
    [Google Scholar]
  20. 20.
    Burke RC, Bardet SM, Carr L, Romanenko S, Arnaud-Cormos D et al. 2017. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells. Biochim. Biophys. Acta 1859:2040–50
    [Google Scholar]
  21. 21.
    Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M 2014. A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100:11–17
    [Google Scholar]
  22. 22.
    Casciola M, Kasimova MA, Rems L, Zullino S, Apollonio F, Tarek M 2016. Properties of lipid electropores I: molecular dynamics simulations of stabilized pores by constant charge imbalance. Bioelectrochemistry 109:108–16
    [Google Scholar]
  23. 23.
    Casciola M, Tarek M 2016. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta 1858:2278–89
    [Google Scholar]
  24. 24.
    Čemažar M, Jarm T, Miklavčič D, Maček-Lebar A, Ihan A et al. 1998. Effect of electric-field intensity on electropermeabilization and electrosensitmty of various tumor-cell lines in vitro. Electro- Magnetobiol 17:263–72
    [Google Scholar]
  25. 25.
    Čemažar M, Serša G, Frey W, Miklavčič D, Teissié J 2018. Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 122:69–76
    [Google Scholar]
  26. 26.
    Chang DC, Reese TS 1990. Changes of membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58:1–12
    [Google Scholar]
  27. 27.
    Chen N, Schoenbach KH, Kolb JF, Swanson RJ, Garner AL et al. 2004. Leukemic cell intracellular responses to nanosecond electric pulses. Biochem. Biophys. Res. Commun. 317:421–42
    [Google Scholar]
  28. 28.
    Chen W, Han Y, Chen Y, Astumian D 1998. Electric field-induced functional reductions in the K+ channels mainly resulted from supramembrane potential-mediated electroconformational changes. Biophys. J. 75:196–206
    [Google Scholar]
  29. 29.
    Chen W, Zhongsheng Z, Lee RC 2006. Supramembrane potential-induced electroconformational changes in sodium channel proteins: a potential mechanism involved in electric injury. Burns 32:52–59
    [Google Scholar]
  30. 30.
    Chopinet L, Dague E, Rols MP 2014. AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization. Cytoskeleton 71:587–94
    [Google Scholar]
  31. 31.
    Chopinet L, Roduit C, Rols MP, Dague E 2013. Destabilization induced by electropermeabilization analyzed by atomic force microscopy. Biochim. Biophys. Acta 1828:2223–29
    [Google Scholar]
  32. 32.
    Ciobanu F, Golzio M, Kovacs E, Teissié J 2018. Control by low levels of calcium of mammalian cell membrane electropermeabilization. J. Membrane Biol. 251:221–28
    [Google Scholar]
  33. 33.
    Cordeiro RM 2014. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim. Biophys. Acta 1838:438–44
    [Google Scholar]
  34. 34.
    Craviso GL, Choe S, Chatterjee P, Chatterjee I, Vernier PT 2010. Nanosecond electric pulses: a novel stimulus for triggering Ca2+ influx into chromaffin cells via voltage-gated Ca2+ channels. Cell. Mol. Neurobiol. 30:1259–65
    [Google Scholar]
  35. 35.
    Crowley JM 1973. Electrical breakdown of bimolecular lipid membranes as an electro-mechanical instability. Biophys. J. 13:711–24
    [Google Scholar]
  36. 36.
    Cruzeiro-Hansson L, Mouritsen OG 1988. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim. Biophys. Acta 944:63–72
    [Google Scholar]
  37. 37.
    Cwiklik L, Jungwirth P 2010. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chem. Phys. Lett. 486:99–103
    [Google Scholar]
  38. 38.
    DeBruin K, Krassowska W 1999. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys. J. 77:1213–24
    [Google Scholar]
  39. 39.
    Dehez F, Delemotte L, Kramar P, Miklavčič D, Tarek M 2014. Evidence of conducting hydrophobic nanopores across membranes in response to an electric field. J. Phys. Chem. C 118:6752–57
    [Google Scholar]
  40. 40.
    Delemotte L, Dehez F, Treptow W, Tarek M 2008. Modeling membranes under a transmembrane potential. J. Phys. Chem. B 112:5547–50
    [Google Scholar]
  41. 41.
    Delemotte L, Tarek M 2012. Molecular dynamics simulations of lipid membrane electroporation. J. Membrane Biol. 245:531–43
    [Google Scholar]
  42. 42.
    Deng P, Lee YK, Lin R, Zhang TY 2012. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation. Appl. Phys. Lett. 101:053702
    [Google Scholar]
  43. 43.
    de Jesus AJ, Allen TW 2013. The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. Biochim. Biophys. Acta 1828:864–76
    [Google Scholar]
  44. 44.
    Dimitrov DS 1984. Electric field-induced breakdown of lipid bilayer and cell membranes: a thin viscoelastic film model. J. Membr. Biol. 78:53–60
    [Google Scholar]
  45. 45.
    Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R 2007. Giant vesicles in electric fields. Soft Matter 3:817–27
    [Google Scholar]
  46. 46.
    Ehrenberg B, Farkas DL, Fluhler EN, Lojewska Z, Loew LM 1987. Membrane potential induced by external electric field pulses can be followed with a potentiometric dye. Biophys. J. 51:833–37
    [Google Scholar]
  47. 47.
    Fernández ML, Marshall G, Sagués F, Reigada R 2010. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J. Phys. Chem. B 114:6855–65
    [Google Scholar]
  48. 48.
    Fernández ML, Reigada R 2014. Effects of dimethyl sulfoxide on lipid membrane electroporation. J. Phys. Chem. B 118:9306–12
    [Google Scholar]
  49. 49.
    Fernández ML, Risk M, Reigada R, Vernier PT 2012. Size-controlled nanopores in lipid membranes with stabilizing electric fields. Biochem. Biophys. Res. Commun. 423:325–30
    [Google Scholar]
  50. 50.
    Fortier CA, Guan B, Cole RB, Tarr MA 2009. Covalently bound fluorescent probes as reporters for hydroxyl radical penetration into liposomal membranes. Free Radic. Biol. Med. 46:1376–85
    [Google Scholar]
  51. 51.
    Freeman SA, Wang MA, Weaver JC 1994. Theory of electroporation for a planar bilayer membrane: predictions of the fractional aqueous area, change in capacitance and pore-pore separation. Biophys. J. 67:42–56
    [Google Scholar]
  52. 52.
    Frey W, White JA, Price RO, Blackmore PF, Joshi RP et al. 2006. Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys. J. 90:3608–15
    [Google Scholar]
  53. 53.
    Gabriel B, Teissié J 1994. Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur. J. Biochem. 223:25–33
    [Google Scholar]
  54. 54.
    Gabriel B, Teissié J 1995. Control by electrical parameters of short- and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells. Biochim. Biophys. Acta 1266:171–78
    [Google Scholar]
  55. 55.
    Gabriel B, Teissié J 1995. Spatial compartmentation and time resolution of photooxidation of a cell membrane probe in electropermeabilized Chinese hamster ovary cells. Eur. J. Biochem. 228:710–18
    [Google Scholar]
  56. 56.
    Gabriel B, Teissié J 1997. Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys. J. 73:2630–37
    [Google Scholar]
  57. 57.
    Gabriel B, Teissié J 1998. Mammalian cell electropermeabilization as revealed by millisecond imaging of fluorescence changes of ethidium bromide in interaction with the membrane. Bioelectrochem. Bioenerg. 47:113–18
    [Google Scholar]
  58. 58.
    Gabriel B, Teissié J 1999. Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys. J. 76:2158–65
    [Google Scholar]
  59. 59.
    Gamliel A, Afri M, Frimer AA 2008. Determining radical penetration of lipid bilayers with new lipophilic spin traps. Free Radic. Biol. Med. 44:1394–405
    [Google Scholar]
  60. 60.
    Garcia PA, Kos B, Rossmeisl JH Jr., Pavliha D, Miklavčič D 2017. Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Med. Phys. 44:4968–80
    [Google Scholar]
  61. 61.
    Gasbarrini A, Campos WK, Campanacci L, Boriani S 2015. Electrochemotherapy to metastatic spinal melanoma: a novel treatment of spinal metastasis. ? Spine 40:E1340–46
    [Google Scholar]
  62. 62.
    Gascoyne PRC, Pethig R, Burt JPH, Becker FF 1993. Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis. Biochim. Biophys. Acta 1146:119–26
    [Google Scholar]
  63. 63.
    Gennis RB 1989. Biomembranes: Molecular Structure and Function New York: Springer
  64. 64.
    Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI 1988. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim. Biophys. Acta 940:275–87
    [Google Scholar]
  65. 65.
    Golberg A, Sack M, Teissie J, Pataro G, Pliquett U et al. 2016. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnol. Biofuels 9:94
    [Google Scholar]
  66. 66.
    Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP 1998. Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys. J. 74:3015–22
    [Google Scholar]
  67. 67.
    Golzio M, Teissié J, Rols MP 2002. Direct visualization at the single-cell level of electrically mediated gene delivery. PNAS 99:1292–97
    [Google Scholar]
  68. 68.
    Gumbart J, Khalili-Araghi F, Sotomayor M, Roux B 2012. Constant electric field simulations of the membrane potential illustrated with simple systems. Biochim. Biophys. Acta 1818:294–302
    [Google Scholar]
  69. 69.
    Gurtovenko AA, Lyulina AS 2014. Electroporation of asymmetric phospholipid membranes. J. Phys. Chem. B 118:9909–18
    [Google Scholar]
  70. 70.
    Gurtovenko AA, Vattulainen I 2007. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys. J. 92:1878–90
    [Google Scholar]
  71. 71.
    Henslee BE, Morss A, Hu X, Lafyatis GP, Lee LJ 2011. Electroporation dependence on cell size: optical tweezers study. Anal. Chem. 83:3998–4003
    [Google Scholar]
  72. 72.
    Henson JH 1999. Relationships between the actin cytoskeleton and cell volume regulation. Microsc. Res. Tech. 47:155–62
    [Google Scholar]
  73. 73.
    Hibino M, Itoh H, Kinosita K Jr 1993. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–1800
    [Google Scholar]
  74. 74.
    Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K Jr 1991. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59:209–20
    [Google Scholar]
  75. 75.
    Ho MC, Casciola M, Levine ZA, Vernier PT 2013. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J. Phys. Chem. B 117:11633–40
    [Google Scholar]
  76. 76.
    Hohenberger P, Eing C, Straessner R, Durst S, Frey W, Nick P 2011. Plant actin controls membrane permeability. Biochim. Biophys. Acta 1808:2304–12
    [Google Scholar]
  77. 77.
    Huynh C, Roth D, Ward DM, Kaplan J, Andrews NW 2004. Defective lysosomal exocytosis and plasma membrane repair in Chediak-Higashi/beige cells. PNAS 101:16795–800
    [Google Scholar]
  78. 78.
    Israelachvili JN, Pashley RM 1984. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J. Coll. Interface Sci. 98:500–14
    [Google Scholar]
  79. 79.
    Jarerattanachat V, Karttunen M, Wong-Ekkabut J 2013. Molecular dynamics study of oxidized lipid bilayers in NaCl solution. J. Phys. Chem. B 117:8490–501
    [Google Scholar]
  80. 80.
    Jurkiewicz P, Olżyńska A, Cwiklik L, Conte E, Jungwirth P et al. 2012. Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations. Biochim. Biophys. Acta 1818:2388–402
    [Google Scholar]
  81. 81.
    Kakorin S, Brinkmann U, Neumann E 2005. Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles. Biophys. Chem. 117:155–71
    [Google Scholar]
  82. 82.
    Kakorin S, Liese T, Neumann E 2003. Membrane curvature and high-field electroporation of lipid bilayer vesicles. J. Phys. Chem. B 107:10243–51
    [Google Scholar]
  83. 83.
    Kakorin S, Neumann E 2002. Ionic conductivity of electroporated lipid bilayer membranes. Bioelectrochemistry 56:163–66
    [Google Scholar]
  84. 84.
    Kakorin S, Stoylov SP, Neumann E 1996. Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles. Biophys. Chem. 58:109–16
    [Google Scholar]
  85. 85.
    Kalinowski S, Ibron G, Bryl K, Figaszewski Z 1998. Chronopotentiometric studies of electroporation of bilayer lipid membranes. Biochim. Biophys. Acta 1369:204–12
    [Google Scholar]
  86. 86.
    Kandušer M, Šentjurc M, Miklavčič D 2008. The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry 74:52–57
    [Google Scholar]
  87. 87.
    Kanthou C, Kranjc S, Serša G, Tozer G, Zupanič A, Čemažar M 2006. The endothelial cytoskeleton as a target of electroporation-based therapies. Mol. Cancer Ther. 5:3145–52
    [Google Scholar]
  88. 88.
    Kapla J, Wohlert J, Stevensson B, Engström O, Widmalm G, Maliniak A 2013. Molecular dynamics simulations of membrane–sugar interactions. J. Phys. Chem. B 117:6667–73
    [Google Scholar]
  89. 89.
    Kennedy SM, Ji Z, Hedstrom JC, Booske JH, Hagness SC 2008. Quantification of electroporative uptake kinetics and electric field heterogeneity effects in cells. Biophys. J. 94:5018–27
    [Google Scholar]
  90. 90.
    Kirsch SA, Böckmann RA 2016. Membrane pore formation in atomistic and coarse-grained simulations. Biochim. Biophys. Acta 1858:2266–77
    [Google Scholar]
  91. 91.
    Korn ED, Carlier MF, Pantaloni D 1987. Actin polymerization and ATP hydrolysis. Science 238:638–44
    [Google Scholar]
  92. 92.
    Koronkiewicz S, Kalinowski S 2004. Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies. Biochim. Biophys. Acta 1661:196–203
    [Google Scholar]
  93. 93.
    Koronkiewicz S, Kalinowski S, Bryl K 2002. Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. Biochim. Biophys Acta 1561:222–29
    [Google Scholar]
  94. 94.
    Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, Miklavčič D 2015. Electroporation-based applications in biotechnology. Trends Biotechnol 33:480–88
    [Google Scholar]
  95. 95.
    Kotnik T, Maček Lebar A, Miklavčič D, Mir LM 2000. Evaluation of cell membrane electropermeabilization by means of nonpermeant cytotoxic agent. Biotechniques 28:921–26
    [Google Scholar]
  96. 96.
    Kotnik T, Miklavčič D 2000. Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans. Biomed. Eng. 47:1074–81
    [Google Scholar]
  97. 97.
    Kotnik T, Miklavčič D 2006. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 90:480–91
    [Google Scholar]
  98. 98.
    Kotnik T, Miklavčič D, Slivnik T 1998. Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application. Bioelectrochem. Bioenerg. 45:3–16
    [Google Scholar]
  99. 99.
    Kotnik T, Pucihar G, Miklavčič D 2010. Induced transmembrane transport and its correlation with electroporation-mediated molecular transport. J. Membrane Biol. 236:3–13
    [Google Scholar]
  100. 100.
    Kotulska M, Basalyga J, Derylo MB, Sadowski P 2010. Meta-stable pores at the onset of constant-current electroporation. J. Membr. Biol. 236:37–41
    [Google Scholar]
  101. 101.
    Kramar P, Delemotte L, Maček Lebar A, Kotulska M, Tarek M, Miklavčič D 2012. Molecular-level characterization of lipid membrane electroporation using linearly rising current. J. Membrane Biol. 245:651–59
    [Google Scholar]
  102. 102.
    Kramar P, Miklavčič D, Maček Lebar A 2009. A system for the determination of planar lipid bilayer breakdown voltage and its applications. IEEE Trans. Nanobiosci. 8:132–38
    [Google Scholar]
  103. 103.
    Krassen H, Pliquett U, Neumann E 2007. Nonlinear current-voltage relationship of the plasma membrane of single CHO cells. Bioelectrochemistry 70:71–77
    [Google Scholar]
  104. 104.
    Krassowska W, Filev PD 2007. Modeling electroporation in a single cell. Biophys. J. 92:404–17
    [Google Scholar]
  105. 105.
    Lambricht L, Lopes A, Kos S, Serša G, Préat V, Vandermeulen G 2016. Clinical potential of electroporation for gene therapy and DNA vaccine delivery. Expert Opin. Drug Deliv. 13:295–310
    [Google Scholar]
  106. 106.
    Leguèbe M, Silve A, Mir LM, Poignard C 2014. Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments. J. Theor. Biol. 360:83–94
    [Google Scholar]
  107. 107.
    Leontiadou H, Mark AE, Marrink SJ 2007. Ion transport across transmembrane pores. Biophys. J. 92:4209–15
    [Google Scholar]
  108. 108.
    Levine ZA, Vernier PT 2010. Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J. Membrane Biol. 236:27–36
    [Google Scholar]
  109. 109.
    Levine ZA, Vernier PT 2012. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime. J. Membrane Biol. 245:599–610
    [Google Scholar]
  110. 110.
    Li J, Lin H 2010. The current-voltage relation for electropores with conductivity gradients. Biomicrofluidics 4:013206
    [Google Scholar]
  111. 111.
    Li J, Lin H 2011. Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry 82:10–21
    [Google Scholar]
  112. 112.
    Lira RB, Dimova R, Riske KA 2014. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties. Biophys. J. 107:1609–19
    [Google Scholar]
  113. 113.
    Lis M, Wizert A, Przybylo M, Langner M, Swiatek J et al. 2011. The effect of lipid oxidation on the water permeability of phospholipids bilayers. Phys. Chem. Chem. Phys. 13:17555–63
    [Google Scholar]
  114. 114.
    Litster JD 1975. Stability of lipid bilayers and red blood cell membranes. Phys. Lett. 53A:193–94
    [Google Scholar]
  115. 115.
    Lopez A, Rols MP, Teissie J 1988. 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry 27:1222–28
    [Google Scholar]
  116. 116.
    Lyon DY, Pivetal J, Blanchard L, Vogel TM 2010. Bioremediation via in situ electrotransformation. Bioremediat. J. 14:109–19
    [Google Scholar]
  117. 117.
    Maccarrone M, Bladergroen MR, Rosato N, Agro AF 1995. Role of lipid peroxidation in electroporation-induced cell permeability. Biochem. Biophys. Res. Commun. 209:417–25
    [Google Scholar]
  118. 118.
    Maccarrone M, Rosato N, Agro AF 1995. Electroporation enhances cell membrane peroxidation and luminescence. Biochem. Biophys. Res. Commun. 206:238–45
    [Google Scholar]
  119. 119.
    Mali B, Jarm T, Snoj M, Serša G, Miklavčič D 2013. Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur. J. Surg. Oncol. 39:4–16
    [Google Scholar]
  120. 120.
    Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV 2001. Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J. 80:1829–36
    [Google Scholar]
  121. 121.
    Meulenberg CJW, Todorović V, Čemažar M 2012. Differential cellular effects of electroporation and electrochemotherapy in monolayers of human microvascular endothelial cells. PLOS ONE 7:12e52713
    [Google Scholar]
  122. 122.
    Michael DH, O'Neill ME 1970. Electrohydrodynamic instability in plane layers of fluid. J. Fluid Mech. 41:571–80
    [Google Scholar]
  123. 123.
    Min B, Ahn D 2005. Mechanism of lipid peroxidation in meat and meat products—a review. Food Sci. Biotechnol. 14:152–63
    [Google Scholar]
  124. 124.
    Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D et al. 1999. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. PNAS 96:4262–67
    [Google Scholar]
  125. 125.
    Moldovan L, Moldovan NI 2004. Oxygen free radicals and redox biology of organelles. Histochem. Cell Biol. 122:395–412
    [Google Scholar]
  126. 126.
    Morrison PR, Ryser FA 1952. Weight and body temperature in mammals. Science 116:231–32
    [Google Scholar]
  127. 127.
    Mussauer H, Sukhorukov AL, Haase A, Zimmermann U 1999. Resistivity of red blood cells against high-intensity, short-duration electric field pulses induced by chelating agents. J. Membrane Biol. 170:121–33
    [Google Scholar]
  128. 128.
    Neamtu S, Morariu VV, Turcu I, Popescu AH, Copaescu LI 1999. Pore resealing inactivation in electroporated erythrocyte membrane irradiated with electrons. Bioelectrochem. Bioenerg. 48:441–45
    [Google Scholar]
  129. 129.
    Needham D, Hochmuth RM 1989. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys. J. 55:1001–9
    [Google Scholar]
  130. 130.
    Nesin V, Bowman AM, Xiao S, Pakhomov AG 2012. Cell permeabilization and inhibition of voltage-gated Ca2+ and Na+ channel currents by nanosecond pulsed electric field. Bioelectromagnetics 33:394–404
    [Google Scholar]
  131. 131.
    Nesin V, Pakhomov AG 2012. Inhibition of voltage-gated Na+ current by nanosecond electric field (nsPEF) is not mediated by Na+ influx or Ca2+ signaling. Bioelectromagnetics 33:443–51
    [Google Scholar]
  132. 132.
    Neu JC, Krassowska W 1999. Asymptotic model of electroporation. Phys. Rev. E 59:3471–82
    [Google Scholar]
  133. 133.
    Neumann E, Kakorin S, Tönsing K 1999. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg. 48:3–16
    [Google Scholar]
  134. 134.
    Neumann E, Toensing K, Kakorin S, Budde P, Frey J 1998. Mechanism of electroporative dye uptake by mouse B cells. Biophys. J. 74:98–108
    [Google Scholar]
  135. 135.
    Nörtemann K, Hilland J, Kaatze U 1997. Dielectric properties of aqueous NaCl solutions at microwave frequencies. J. Phys. Chem. A 101:6864–69
    [Google Scholar]
  136. 136.
    Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissié J, Golzio M 2011. Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. PNAS 108:10443–47
    [Google Scholar]
  137. 137.
    Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON 2015. Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. Biochim. Biophys. Acta 1848:958–66
    [Google Scholar]
  138. 138.
    Pakhomov AG, Semenov I, Casciola M, Xiao S 2017. Neuronal excitation and permeabilization by 200-ns pulsed electric field: an optical membrane potential study with FluoVolt dye. Biochim. Biophys. Acta 1859:1273–81
    [Google Scholar]
  139. 139.
    Pakhomov AG, Xiao S, Pakhomova ON, Semenov I, Kuipers AM, Ibey BL 2014. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling. Bioelectrochemistry 100:88–95
    [Google Scholar]
  140. 140.
    Pakhomova ON, Khorokhorina VA, Bowman AM, Rodaitė-Riševičienė R, Saulis G et al. 2012. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch. Biochem. Biophys. 527:55–64
    [Google Scholar]
  141. 141.
    Pavlin M, Leben V, Miklavčič D 2007. Electroporation in dense cell suspension—theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochim. Biophys. Acta 1770:12–23
    [Google Scholar]
  142. 142.
    Pedersen SF, Hoffmann EK, Mills JW 2001. The cytoskeleton and cell volume regulation. Comp. Biochem. Physiol. A 130:385–99
    [Google Scholar]
  143. 143.
    Perrier DL, Rems L, Boukany PE 2017. Lipid vesicles in pulsed electric fields: fundamental principles of the membrane response and its biomedical applications. Adv. Colloid Interface Sci. 249:248–71
    [Google Scholar]
  144. 144.
    Piggot TJ, Holdbrook DA, Khalid S 2011. Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J. Phys. Chem. B 115:13381–88
    [Google Scholar]
  145. 145.
    Polak A, Bonhenry D, Dehez F, Kramar P, Miklavčič D, Tarek M 2013. On the electroporation thresholds of lipid bilayers: molecular dynamics simulation investigations. J. Membr. Biol. 246:843–50
    [Google Scholar]
  146. 146.
    Polak A, Tarek M, Tomšič M, Valant J, Poklar Ulrih N et al. 2014. Electroporation of archaeal lipid membranes using MD simulations. Bioelectrochemistry 100:18–26
    [Google Scholar]
  147. 147.
    Polak A, Velikonja A, Kramar P, Tarek M, Miklavčič D 2015. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8). J. Phys. Chem. B 119:192–200
    [Google Scholar]
  148. 148.
    Portet T, Febrer FC, Escoffre JM, Favard C, Rols MP, Dean DS 2009. Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation. Biophys. J. 96:4109–21
    [Google Scholar]
  149. 149.
    Portet T, Mauroy C, Démery V, Houles T, Escoffre JM, Dean DS, Rols MP 2012. Destabilizing giant vesicles with electric fields: an overview of current applications. J. Membrane Biol. 245:555–64
    [Google Scholar]
  150. 150.
    Prausnitz MR, Corbett JD, Gimm JA, Golan DE, Langer R, Weaver JC 1995. Millisecond measurement of transport during and after an electroporation pulse. Biophys. J. 68:1864–70
    [Google Scholar]
  151. 151.
    Puc M, Kotnik T, Mir LM, Miklavčič D 2003. Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 60:1–10
    [Google Scholar]
  152. 152.
    Pucihar G, Kotnik T, Miklavčič D, Teissié J 2008. Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys. J. 95:2837–48
    [Google Scholar]
  153. 153.
    Pucihar G, Kotnik T, Valič B, Miklavčič D 2006. Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann. Biomed. Eng. 34:642–52
    [Google Scholar]
  154. 154.
    Raso J, Frey W, Ferrari G, Pataro G, Knorr D et al. 2016. Recommendations guidelines on the key information to be reported in studies of application of PEF technology in food and biotechnological processes. Innov. Food Sci. Emerg. Technol. 37:312–21
    [Google Scholar]
  155. 155.
    Reale R, English NJ, Garate JA, Marracino P, Liberti M, Apollonio F 2013. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: a molecular dynamics study of field effects and relaxation. J. Chem. Phys. 139:205101
    [Google Scholar]
  156. 156.
    Reigada R 2014. Electroporation of heterogeneous lipid membranes. Biochim. Biophys. Acta 1838:814–21
    [Google Scholar]
  157. 157.
    Rems L, Miklavčič D 2016. Tutorial: electroporation of cells in complex materials and tissue. J. Appl. Phys. 119:201101
    [Google Scholar]
  158. 158.
    Rems L, Tarek M, Casciola M, Miklavčič D 2016. Properties of lipid electropores II: comparison of continuum-level modeling of pore conductance to molecular dynamics simulations. Bioelectrochemistry 112:112–24
    [Google Scholar]
  159. 159.
    Rems L, Viano M, Kasimova MA, Miklavčič D, Tarek M 2019. The contribution of lipid peroxidation to membrane permeability in electropermeabilization: a molecular dynamics study. Bioelectrochemistry 125:46–57
    [Google Scholar]
  160. 160.
    Ren W, Sain NM, Beebe SJ 2012. Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells. Biochem. Biophys. Res. Commun. 421:808–12
    [Google Scholar]
  161. 161.
    Riske KA, Dimova R 2005. Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys. J. 88:1143–55
    [Google Scholar]
  162. 162.
    Rols MP, Femenia P, Teissié J 1995. Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochem. Biophys. Res. Commun. 208:26–35
    [Google Scholar]
  163. 163.
    Rols MP, Teissié J 1990. Electropermeabilization of mammalian cells: quantitative analysis of the phenomenon. Biophys. J. 58:1089–98
    [Google Scholar]
  164. 164.
    Rols MP, Teissié J 1992. Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim. Biophys. Acta 1111:45–50
    [Google Scholar]
  165. 165.
    Rols MP, Teissié J 1998. Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys. J. 75:1415–23
    [Google Scholar]
  166. 166.
    Rosazza C, Deschout H, Buntz A, Braeckmans K, Rols MP, Zumbusch A 2016. Endocytosis and endosomal trafficking of DNA after gene electrotransfer in vitro. Mol. Ther. Nucl. Acids 5:e286
    [Google Scholar]
  167. 167.
    Rosazza C, Haberl Meglić S, Zumbusch A, Rols MP, Miklavčič D 2016. Gene electrotransfer: a mechanistic perspective. Curr. Gene Ther. 16:98–129
    [Google Scholar]
  168. 168.
    Roux B 2008. The membrane potential and its representation by a constant electric field in computer simulations. Biophys. J. 95:4205–16
    [Google Scholar]
  169. 169.
    Saitta AM, Saija F, Giaquinta PV 2012. Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 108:207801
    [Google Scholar]
  170. 170.
    Salomone F, Breton M, Leray I, Cardarelli F, Boccardi C et al. 2014. High-yield nontoxic gene transfer through conjugation of the CM 18-Tat11 chimeric peptide with nanosecond electric pulses. Mol. Pharm. 11:2466–74
    [Google Scholar]
  171. 171.
    Scheffer HJ, Nielsen K, de Jong MC, van Tilborg AAJM, Viveen JM et al. 2014. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J. Vasc. Intervent. Radiol. 25:997–1011
    [Google Scholar]
  172. 172.
    Schoenbach KH, Beebe SJ, Buescher ES 2001. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–48
    [Google Scholar]
  173. 173.
    Schutt EG, Klein DH, Mattrey RM, Riess JG 2003. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew. Chem. Int. Ed. 42:3218–35
    [Google Scholar]
  174. 174.
    Sengel JT, Wallace MI 2016. Imaging the dynamics of individual electropores. PNAS 113:5281–86
    [Google Scholar]
  175. 175.
    Shirakashi R, Sukhorukov VL, Tanasawa I, Zimmermann U 2004. Measurement of the permeability and resealing time constant of the electroporated mammalian cell membranes. Int. J. Heat Mass Transf. 47:4517–4524
    [Google Scholar]
  176. 176.
    Smith KC, Neu JC, Krassowska W 2004. Model of creation and evolution of stable electropores for DNA delivery. Biophys. J. 86:2813–26
    [Google Scholar]
  177. 177.
    Soh N, Makihara K, Ariyoshi T, Seto D, Maki T et al. 2008. Phospholipid-linked coumarin: a fluorescent probe for sensing hydroxyl radicals in lipid membranes. Anal. Sci. 24:293–96
    [Google Scholar]
  178. 178.
    Son RS, Smith KC, Gowrishankar TR, Vernier PT, Weaver JC 2014. Basic features of a cell electroporation model: illustrative behavior for two very different pulses. J. Membrane Biol. 247:1209–28
    [Google Scholar]
  179. 179.
    Sözer EB, Levine ZA, Vernier PT 2017. Quantitative limits on small molecule transport via the electropermeome measuring and modeling single nanosecond perturbations. Sci. Rep. 7:57
    [Google Scholar]
  180. 180.
    Sözer EB, Pocetti CF, Vernier PT 2018. Asymmetric patterns of small molecule transport after nanosecond and microsecond electropermeabilization. J. Membr. Biol. 251:197–210
    [Google Scholar]
  181. 181.
    Sözer EB, Pocetti CF, Vernier PT 2018. Transport of charged small molecules after electropermeabilization—drift and diffusion. BMC Biophys 11:4
    [Google Scholar]
  182. 182.
    Spugnini EP, Arancia G, Porrello A, Colone M, Formisano G et al. 2007. Ultrastructural modifications of cell membranes induced by electroporation on melanoma xenografts. Microsc. Res. Tech. 70:1041–50
    [Google Scholar]
  183. 183.
    Stacey M, Fox P, Buescher S, Kolb J 2011. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82:131–34
    [Google Scholar]
  184. 184.
    Sugár IP 1979. A theory of the electric field-induced phase transition of phospholipid bilayers. Biochim. Biophys. Acta 556:72–85
    [Google Scholar]
  185. 185.
    Sugrue A, Maor E, Ivorra A, Vaidya V, Witt C et al. 2018. Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev. Cardiovasc. Ther. 16:349–360
    [Google Scholar]
  186. 186.
    Sunderman FW 1945. Measurement of serum total base. Am. J. Clin. Pathol. 15:219–22
    [Google Scholar]
  187. 187.
    Szabo M, Wallace MI 2016. Imaging potassium-flux through individual electropores in droplet interface bilayers. Biochim. Biophys. Acta 1858:613–617
    [Google Scholar]
  188. 188.
    Tarek M 2005. Membrane electroporation: a molecular dynamics simulation. Biophys. J. 88:4045–53
    [Google Scholar]
  189. 189.
    Teissié J, Golzio M, Rols MP 2005. Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim. Biophys. Acta 1724:270–80
    [Google Scholar]
  190. 190.
    Teissié J, Rols MP 1993. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65:409–13
    [Google Scholar]
  191. 191.
    Teissié J, Tsong TY 1980. Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane. J. Membrane Biol. 55:133–40
    [Google Scholar]
  192. 192.
    Teissié J, Tsong TY 1981. Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry 20:1548–54
    [Google Scholar]
  193. 193.
    Tekle E, Astumian RD, Chock PB 1994. Selective and asymmetric molecular transport across electroporated cell membranes. PNAS 91:11512–16
    [Google Scholar]
  194. 194.
    Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB 2005. Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys. J. 89:274–84
    [Google Scholar]
  195. 195.
    Tieleman DP, Leontiadou H, Mark AE, Marrink SJ 2003. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125:6382–83
    [Google Scholar]
  196. 196.
    Tieleman DP 2004. The molecular basis of electroporation. BMC Biochem 5:10
    [Google Scholar]
  197. 197.
    Titushkin I, Cho M 2009. Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins. Biophys. J. 96:717–28
    [Google Scholar]
  198. 198.
    Tokman M, Lee JH, Levine ZA, Ho MC, Colvin ME, Vernier PT 2013. Electric field-driven water dipoles: nanoscale architecture of electroporation. PLOS ONE 8:4e61111
    [Google Scholar]
  199. 199.
    Towhidi L, Kotnik T, Pucihar G, Firoozabadi SMP, Mozdarani H, Miklavčič D 2008. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn. Biol. Med. 27:372–85
    [Google Scholar]
  200. 200.
    Tsong TY 1990. On electroporation of cell membranes and some related phenomena. Bioelectrochem. Bioenerg. 24:271–95
    [Google Scholar]
  201. 201.
    Tsong TY 1991. Electroporation of cell membranes. Biophys. J. 60:297–306
    [Google Scholar]
  202. 202.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160:1–40
    [Google Scholar]
  203. 203.
    Van der Paal J, Neyts EC, Verlackt CCW, Bogaerts A 2016. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7:489–98
    [Google Scholar]
  204. 204.
    van Uitert I, Le Gac S, van den Berg A 2010. The influence of different membrane components on the electrical stability of bilayer lipid membranes. Biochim. Biophys. Acta 1798:21–31
    [Google Scholar]
  205. 205.
    Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC 2006. Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys. Rev. E 74:021904
    [Google Scholar]
  206. 206.
    Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ et al. 2009. Electroporating fields target oxidatively damaged areas in the cell membrane. PLOS ONE 4:e7966
    [Google Scholar]
  207. 207.
    Weaver JC, Chizmadzhev YA 1996. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41:135–60
    [Google Scholar]
  208. 208.
    Weaver JC, Vernier PT 2017. Pore lifetimes in cell electroporation: complex dark pores? arXiv 1708.07478 [physics.bio-ph].
  209. 209.
    Wegner LH, Frey W, Silve A 2015. Electroporation of DC-3F cells is a dual process. Biophys. J. 108:1660–71
    [Google Scholar]
  210. 210.
    Wojtaszczyk A, Caluori G, Pešl M, Melajova K, Stárek Z 2018. Irreversible electroporation ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 29:643–51
    [Google Scholar]
  211. 211.
    Wolf H, Rols MP, Boldt E, Neumann E, Teissié J 1994. Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys. J. 66:524–31
    [Google Scholar]
  212. 212.
    Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L 2007. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys. J. 93:4225–36
    [Google Scholar]
  213. 213.
    Xiao D, Tang L, Yeng C, Wang J, Luo X et al. 2011. Effect of actin cytoskeleton disruption on electric pulse‐induced apoptosis and electroporation in tumour cells. Cell Biol. Int. 35:99–104
    [Google Scholar]
  214. 214.
    Yang L, Craviso GL, Vernier PT, Chatterjee I, Leblanc N 2017. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells. PLOS ONE 12:e181002
    [Google Scholar]
  215. 215.
    Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D 2014. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320
    [Google Scholar]
  216. 216.
    Yeo SK, Liong MT 2013. Effect of electroporation on viability and bioconversion of isoflavones in mannitol-soymilk fermented by lactobacilli and bifidobacteria. J. Sci. Food Agric. 93:396–409
    [Google Scholar]
  217. 217.
    Yoon J, Leblanc N, Zaklit J, Vernier PT, Chatterjee I, Craviso GL 2016. Enhanced monitoring of nanosecond electric pulse-evoked membrane conductance changes in whole-cell patch clamp experiments. J. Membrane Biol. 249:633–44
    [Google Scholar]
  218. 218.
    Yun O, Zeng XA, Brennan CS, Han Z 2016. Effect of pulsed electric field on membrane lipids and oxidative injury of Salmonella typhimurium. Int. J. Mol. Sci 17:E1374
    [Google Scholar]
  219. 219.
    Zhao W, Yang R, Liang Q, Zhang W, Hua X, Tang Y 2012. Electrochemical reaction and oxidation of lecithin under pulsed electric fields (PEF) processing. J. Agric. Food Chem. 60:12204–9
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115451
Loading
/content/journals/10.1146/annurev-biophys-052118-115451
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error