1932

Abstract

Liquid–liquid phase separation is emerging as the universal mechanism by which membraneless cellular granules form. Despite many previous studies on condensation of intrinsically disordered proteins and low complexity domains, we lack understanding about the role of RNA, which is the essential component of all ribonucleoprotein (RNP) granules. RNA, as an anionic polymer, is inherently an excellent platform for achieving multivalency and can accommodate many RNA binding proteins. Recent findings have highlighted the diverse function of RNA in tuning phase-separation propensity up or down, altering viscoelastic properties and thereby driving immiscibility between different condensates. In addition to contributing to the biophysical properties of droplets, RNA is a functionally critical constituent that defines the identity of cellular condensates and controls the temporal and spatial distribution of specific RNP granules. In this review, we summarize what we have learned so far about such roles of RNA in the context of in vitro and in vivo studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115508
2020-05-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biophys/49/1/annurev-biophys-052118-115508.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115508&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alberti S, Gladfelter A, Mittag T 2019. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–34
    [Google Scholar]
  2. 2. 
    Al-Husini N, Tomares DT, Bitar O, Childers WS, Schrader JM 2018. α-Proteobacterial RNA degradosomes assemble liquid-liquid phase-separated RNP bodies. Mol. Cell 71:1027–39.e14
    [Google Scholar]
  3. 3. 
    Aumiller WM Jr, Keating CD. 2016. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8:129–37
    [Google Scholar]
  4. 4. 
    Aumiller WM Jr., Pir Cakmak F, Davis BW, Keating CD. 2016. RNA-based coacervates as a model for membraneless organelles: formation, properties, and interfacial liposome assembly. Langmuir 32:10042–53
    [Google Scholar]
  5. 5. 
    Banani SF, Rice AM, Peeples WB, Lin Y, Jain S et al. 2016. Compositional control of phase-separated cellular bodies. Cell 166:651–63
    [Google Scholar]
  6. 6. 
    Banerjee PR, Milin AN, Moosa MM, Onuchic PL, Deniz AA 2017. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. Engl. 56:11354–59
    [Google Scholar]
  7. 7. 
    Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP 2015. RNA transcription modulates phase transition-driven nuclear body assembly. PNAS 112:E5237–45
    [Google Scholar]
  8. 8. 
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM 1998. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2:437–45
    [Google Scholar]
  9. 9. 
    Bloomfield VA. 1997. DNA condensation by multivalent cations. Biopolymers 44:269–82
    [Google Scholar]
  10. 10. 
    Boeynaems S, Holehouse AS, Weinhardt V, Kovacs D, Van Lindt J et al. 2019. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties. PNAS 116:7889–98
    [Google Scholar]
  11. 11. 
    Bond CS, Fox AH. 2009. Paraspeckles: nuclear bodies built on long noncoding RNA. J. Cell Biol. 186:637–44
    [Google Scholar]
  12. 12. 
    Bounedjah O, Desforges B, Wu TD, Pioche-Durieu C, Marco S et al. 2014. Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules. Nucleic Acids Res 42:8678–91
    [Google Scholar]
  13. 13. 
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32
    [Google Scholar]
  14. 14. 
    Buchan JR, Muhlrad D, Parker R 2008. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol 183:441–55
    [Google Scholar]
  15. 15. 
    Bungenberg de Jong HG, Kruyt HR 1929. Coacervation (partial miscibility in colloid systems). Proc. R. Acad. Amsterdam 33:849–56
    [Google Scholar]
  16. 16. 
    Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM et al. 2012. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–406
    [Google Scholar]
  17. 17. 
    Cho WK, Spille JH, Hecht M, Lee C, Li C et al. 2018. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361:412–15
    [Google Scholar]
  18. 18. 
    Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM et al. 2018. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361:eaar2555
    [Google Scholar]
  19. 19. 
    Chujo T, Hirose T. 2017. Nuclear bodies built on architectural long noncoding RNAs: unifying principles of their construction and function. Mol. Cells 40:889–96
    [Google Scholar]
  20. 20. 
    Cid-Samper F, Gelabert-Baldrich M, Lang B, Lorenzo-Gotor N, Ponti RD et al. 2018. An integrative study of protein-RNA condensates identifies scaffolding RNAs and reveals players in fragile X-associated tremor/ataxia syndrome. Cell Rep 25:3422–34.e7
    [Google Scholar]
  21. 21. 
    Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH et al. 2009. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33:717–26
    [Google Scholar]
  22. 22. 
    Cougot N, Babajko S, Séraphin B 2004. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165:31–40
    [Google Scholar]
  23. 23. 
    Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:7189–94
    [Google Scholar]
  24. 24. 
    Falahati H, Pelham-Webb B, Blythe S, Wieschaus E 2016. Nucleation by rRNA dictates the precision of nucleolus assembly. Curr. Biol. 26:277–85
    [Google Scholar]
  25. 25. 
    Fay MM, Anderson PJ, Ivanov P 2017. ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Rep 21:3573–84
    [Google Scholar]
  26. 26. 
    Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L et al. 2016. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–97
    [Google Scholar]
  27. 27. 
    Fox AH, Bond CS, Lamond AI 2005. P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol. Biol. Cell 16:5304–15
    [Google Scholar]
  28. 28. 
    Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EM et al. 2012. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci. Rep. 2:1016
    [Google Scholar]
  29. 29. 
    French RL, Grese ZR, Aligireddy H, Dhavale DD, Reeb AN et al. 2019. Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J. Biol. Chem. 294:6696–709
    [Google Scholar]
  30. 30. 
    Fromm SA, Kamenz J, Nöldeke ER, Neu A, Zocher G, Sprangers R 2014. In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery. Angew. Chem. Int. Ed. Engl. 53:7354–59
    [Google Scholar]
  31. 31. 
    Gasior K, Zhao J, McLaughlin G, Forest MG, Gladfelter AS, Newby J 2019. Partial demixing of RNA-protein complexes leads to intradroplet patterning in phase-separated biological condensates. Phys. Rev. E 99:012411
    [Google Scholar]
  32. 32. 
    Guo L, Kim HJ, Wang H, Monaghan J, Freyermuth F et al. 2018. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173:677–92.e20
    [Google Scholar]
  33. 33. 
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J et al. 2010. PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J. Vis. Exp. 2:2034
    [Google Scholar]
  34. 34. 
    Han TW, Kato M, Xie S, Wu LC, Mirzaei H et al. 2012. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–79
    [Google Scholar]
  35. 35. 
    Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A et al. 2018. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173:706–19.e13
    [Google Scholar]
  36. 36. 
    Hondele M, Sachdev R, Heinrich S, Wang J, Vallotton P et al. 2019. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573:144–48
    [Google Scholar]
  37. 37. 
    Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C et al. 2017. Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron 94:108–24.e7
    [Google Scholar]
  38. 38. 
    Jain A, Vale RD. 2017. RNA phase transitions in repeat expansion disorders. Nature 546:243–47
    [Google Scholar]
  39. 39. 
    Jin L, Zhang K, Xu Y, Sternglanz R, Neiman AM 2015. Sequestration of mRNAs modulates the timing of translation during meiosis in budding yeast. Mol. Cell Biol. 35:3448–58
    [Google Scholar]
  40. 40. 
    Jin M, Fuller GG, Han T, Yao Y, Alessi AF et al. 2017. Glycolytic enzymes coalesce in G bodies under hypoxic stress. Cell Rep 20:895–908
    [Google Scholar]
  41. 41. 
    Kedersha N, Cho MR, Li W, Yacono PW, Chen S et al. 2000. Dynamic of shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151:1257–68
    [Google Scholar]
  42. 42. 
    Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R 2017. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68:808–20.e5
    [Google Scholar]
  43. 43. 
    Khong A, Parker R. 2018. mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction. J. Cell Biol. 217:4124–40
    [Google Scholar]
  44. 44. 
    Kim Y, Myong S. 2016. RNA remodeling activity of DEAD-box proteins tuned by protein concentration, RNA length and ATP. Mol. Cell 63:865–76
    [Google Scholar]
  45. 45. 
    Kistler KE, Trcek T, Hurd TR, Chen R, Liang FX et al. 2018. Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells. eLife 7:e37949
    [Google Scholar]
  46. 46. 
    Laing LG, Gluick TC, Draper DE 1994. Stabilization of RNA structure by Mg ions: specific and non-specific effects. J. Mol. Biol. 237:577–87
    [Google Scholar]
  47. 47. 
    Langdon EM, Qiu Y, Ghanbari Niaki A, McLaughlin GA, Weidmann CA et al. 2018. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:922–27This paper finds that RNA secondary structure controls entry into and exclusion from droplets.
    [Google Scholar]
  48. 48. 
    Lee C, Occhipinti P, Gladfelter AS 2015. PolyQ-dependent RNA-protein assemblies control symmetry breaking. J. Cell Biol. 208:533–44
    [Google Scholar]
  49. 49. 
    Lee Y-B, Chen H-J, Peres JN, Gomez-Deza J, Attig J et al. 2013. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5:1178–86
    [Google Scholar]
  50. 50. 
    Leung AK. 2014. Poly(ADP-ribose): an organizer of cellular architecture. J. Cell Biol. 205:613–19
    [Google Scholar]
  51. 51. 
    Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P 2011. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42:489–99
    [Google Scholar]
  52. 52. 
    Lin Y, Protter DS, Rosen MK, Parker R 2015. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60:208–19
    [Google Scholar]
  53. 53. 
    Lin Y, Schmidt BF, Bruchez MP, McManus CJ 2018. Structural analyses of NEAT1 lncRNAs suggest long-range RNA interactions that may contribute to paraspeckle architecture. Nucleic Acids Res 46:3742–52
    [Google Scholar]
  54. 54. 
    Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R 2005. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7:719–23
    [Google Scholar]
  55. 55. 
    Liu K, Shuai M, Chen D, Tuchband M, Gerasimov JY et al. 2015. Solvent-free liquid crystals and liquids from DNA. Chemistry 21:4898–903
    [Google Scholar]
  56. 56. 
    Lohman TM, DeHaseth PL, Record MT Jr 1978. Analysis of ion concentration effects on the kinetics of protein–nucleic acid interactions: application to Lac repressor–operator interactions. Biophys. Chem. 8:281–94
    [Google Scholar]
  57. 57. 
    Lunde BM, Moore C, Varani G 2007. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8:479–90
    [Google Scholar]
  58. 58. 
    Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A et al. 2018. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360:918–21This paper highlights how concentrated RNA in the nucleus can buffer LLPS.
    [Google Scholar]
  59. 59. 
    Mankodi A, Urbinati CR, Yuan Q-P, Moxley RT, Sansone V et al. 2001. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum. Mol. Genet. 10:2165–70
    [Google Scholar]
  60. 60. 
    Mann JR, Gleixner AM, Mauna JC, Gomes E, DeChellis-Marks MR et al. 2019. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102:321–38.e8
    [Google Scholar]
  61. 61. 
    Mao Y, Liu H, Liu Y, Tao S 2014. Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae. . Nucleic Acids Res 42:4813–22
    [Google Scholar]
  62. 62. 
    Mao YS, Sunwoo H, Zhang B, Spector DL 2011. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13:95–101
    [Google Scholar]
  63. 63. 
    Marianelli AM, Miller BM, Keating CD 2018. Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization. Soft Matter 14:368–78
    [Google Scholar]
  64. 64. 
    Markmiller S, Soltanieh S, Server KL, Mak R, Jin W et al. 2018. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172:590–604.e13
    [Google Scholar]
  65. 65. 
    Mattick JS. 2001. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–91
    [Google Scholar]
  66. 66. 
    Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR et al. 2016. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5:e13571
    [Google Scholar]
  67. 67. 
    Montange RK, Batey RT. 2006. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441:1172–75
    [Google Scholar]
  68. 68. 
    Moon SL, Morisaki T, Khong A, Lyon K, Parker R, Stasevich TJ 2019. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat. Cell Biol. 21:162–68
    [Google Scholar]
  69. 69. 
    Niewidok B, Igaev M, Pereira da Graca A, Strassner A, Lenzen C et al. 2018. Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules. J. Cell Biol. 217:1303–18
    [Google Scholar]
  70. 70. 
    Nissen P, Hansen J, Ban N, Moore PB, Steitz TA 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–30
    [Google Scholar]
  71. 71. 
    Oldfield CJ, Dunker AK. 2014. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 83:553–84
    [Google Scholar]
  72. 72. 
    Panja S, Hua B, Zegarra D, Ha T, Woodson SA 2017. Metals induce transient folding and activation of the Twister ribozyme. Nat. Chem. Biol. 13:1109–14
    [Google Scholar]
  73. 73. 
    Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M et al. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–77
    [Google Scholar]
  74. 74. 
    Pitchiaya S, Mourao MDA, Jalihal AP, Xiao L, Jiang X et al. 2019. Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. Mol. Cell 74:521–33.e6
    [Google Scholar]
  75. 75. 
    Printz MP, von Hippel PH 1968. On the kinetics of hydrogen exchange in deoxyribonucleic acid: pH and salt effects. Biochemistry 7:3194–206
    [Google Scholar]
  76. 76. 
    Protter DSW, Rao BS, Van Treeck B, Lin Y, Mizoue L et al. 2018. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep 22:1401–12
    [Google Scholar]
  77. 77. 
    Qamar S, Wang G, Randle SJ, Ruggeri FS, Varela JA et al. 2018. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173:720–34.e15
    [Google Scholar]
  78. 78. 
    Rao BS, Parker R. 2017. Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae. . PNAS 114:E9569–78
    [Google Scholar]
  79. 79. 
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958
    [Google Scholar]
  80. 80. 
    Sachdev R, Hondele M, Linsenmeier M, Vallotton P, Mugler CF et al. 2019. Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. eLife 8:e41415
    [Google Scholar]
  81. 81. 
    Saha S, Weber CA, Nousch M, Adame-Arana O, Hoege C et al. 2016. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166:1572–84.e16
    [Google Scholar]
  82. 82. 
    Schwartz JC, Wang X, Podell ER, Cech TR 2013. RNA seeds higher-order assembly of FUS protein. Cell Rep 5:918–25
    [Google Scholar]
  83. 83. 
    Sheth U, Parker R. 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–8
    [Google Scholar]
  84. 84. 
    Shiina N. 2019. Liquid- and solid-like RNA granules form through specific scaffold proteins and combine into biphasic granules. J. Biol. Chem. 294:3532–48
    [Google Scholar]
  85. 85. 
    Singatulina AS, Hamon L, Sukhanova MV, Desforges B, Joshi V et al. 2019. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep 27:1809–21.e5
    [Google Scholar]
  86. 86. 
    Smith J, Calidas D, Schmidt H, Lu T, Rasoloson D, Seydoux G 2016. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3. eLife 5:e21337
    [Google Scholar]
  87. 87. 
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH 2017. Phase separation drives heterochromatin domain formation. Nature 547:241–45
    [Google Scholar]
  88. 88. 
    Strulson CA, Molden RC, Keating CD, Bevilacqua PC 2012. RNA catalysis through compartmentalization. Nat. Chem. 4:941–46
    [Google Scholar]
  89. 89. 
    Sweeny EA, Jackrel ME, Go MS, Sochor MA, Razzo BM et al. 2015. The Hsp104 N-terminal domain enables disaggregase plasticity and potentiation. Mol. Cell 57:836–49
    [Google Scholar]
  90. 90. 
    Tabor H. 1962. The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry 1:496–501
    [Google Scholar]
  91. 91. 
    Taylor N, Elbaum-Garfinkle S, Vaidya N, Zhang H, Stone HA, Brangwynne CP 2016. Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics. Soft Matter 12:9142–50
    [Google Scholar]
  92. 92. 
    Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R 2005. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–82
    [Google Scholar]
  93. 93. 
    Tinoco I Jr., Bustamante C. 1999. How RNA folds. J. Mol. Biol. 293:271–81
    [Google Scholar]
  94. 94. 
    Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmann R 2015. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Commun. 6:7962
    [Google Scholar]
  95. 95. 
    Van Treeck B, Parker R 2018. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174:791–802
    [Google Scholar]
  96. 96. 
    Van Treeck B, Protter DSW, Matheny T, Khong A, Link CD, Parker R 2018. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. PNAS 115:2734–39The authors report that RNA–RNA contacts may help condense stress granules in yeast.
    [Google Scholar]
  97. 97. 
    Vogler TO, Wheeler JR, Nguyen ED, Hughes MP, Britson KA et al. 2018. TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle. Nature 563:508–13
    [Google Scholar]
  98. 98. 
    Vourekas A, Alexiou P, Vrettos N, Maragkakis M, Mourelatos Z 2016. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 531:390–94
    [Google Scholar]
  99. 99. 
    Wang A, Conicella AE, Schmidt HB, Martin EW, Rhoads SN et al. 2018. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J 37:e97452
    [Google Scholar]
  100. 100. 
    Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X et al. 2018. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174:688–99.e16The authors’ mapping of FUS's LLPS grammar may serve as a roadmap for a similar effort with RNA.
    [Google Scholar]
  101. 101. 
    Wang Y, Lomakin A, Kanai S, Alex R, Benedek GB 2017. Liquid-liquid phase separation in oligomeric peptide solutions. Langmuir 33:7715–21
    [Google Scholar]
  102. 102. 
    Wilbertz JH, Voigt F, Horvathova I, Roth G, Zhan Y, Chao JA 2019. Single-molecule imaging of mRNA localization and regulation during the integrated stress response. Mol. Cell 73:946–58.e7
    [Google Scholar]
  103. 103. 
    Wojciechowska M, Krzyzosiak WJ. 2011. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum. Mol. Genet. 20:3811–21
    [Google Scholar]
  104. 104. 
    Yang L, Gal J, Chen J, Zhu H 2014. Self-assembled FUS binds active chromatin and regulates gene transcription. PNAS 111:17809–14
    [Google Scholar]
  105. 105. 
    Yoshizawa T, Ali R, Jiou J, Fung HYJ, Burke KA et al. 2018. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173:693–705.e22
    [Google Scholar]
  106. 106. 
    Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P et al. 2015. RNA controls polyQ protein phase transitions. Mol. Cell 60:220–30
    [Google Scholar]
  107. 107. 
    Zhang X, Lin Y, Eschmann NA, Zhou H, Rauch JN et al. 2017. RNA stores tau reversibly in complex coacervates. PLOS Biol 15:e2002183
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115508
Loading
/content/journals/10.1146/annurev-biophys-052118-115508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error