1932

Abstract

Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems employ the dual RNA–guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9–DNA interactions, and associated conformational changes. The use of CRISPR–Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual -activating CRISPR RNA (tracrRNA)–CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062215-010822
2017-05-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/46/1/annurev-biophys-062215-010822.html?itemId=/content/journals/10.1146/annurev-biophys-062215-010822&mimeType=html&fmt=ahah

Literature Cited

  1. Amitai G, Sorek R. 1.  2016. CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14:267–76 [Google Scholar]
  2. Anders C, Bargsten K, Jinek M. 2.  2016. Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61:6895–902 [Google Scholar]
  3. Anders C, Niewoehner O, Duerst A, Jinek M. 3.  2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:7519569–73 [Google Scholar]
  4. Barrangou R, Doudna JA. 4.  2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:9933–41 [Google Scholar]
  5. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 5.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:58191709–12 [Google Scholar]
  6. Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA. 6.  2012. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:2177–86 [Google Scholar]
  7. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 7.  2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:82551–61 [Google Scholar]
  8. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH. 8.  et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:5891960–64 [Google Scholar]
  9. Cencic R, Miura H, Malina A, Robert F, Ethier S. 9.  et al. 2014. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLOS ONE 9:10e109213 [Google Scholar]
  10. Chandrasegaran S, Carroll D. 10.  2016. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 428:5963–89 [Google Scholar]
  11. Charpentier E, Doudna JA. 11.  2013. Biotechnology: rewriting a genome. Nature 495:743950–51 [Google Scholar]
  12. Charpentier E, Marraffini LA. 12.  2014. Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr. Opin. Microbiol. 19:114–19 [Google Scholar]
  13. Chen H, Choi J, Bailey S. 13.  2014. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J. Biol. Chem. 289:1913284–94 [Google Scholar]
  14. Chylinski K, Makarova KS, Charpentier E, Koonin EV. 14.  2014. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:106091–105 [Google Scholar]
  15. Cong L, Ran FA, Cox D, Lin S, Barretto R. 15.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:6121819–23 [Google Scholar]
  16. Cox DBT, Platt RJ, Zhang F. 16.  2015. Therapeutic genome editing: prospects and challenges. Nat. Med. 21:2121–31 [Google Scholar]
  17. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y. 17.  et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:7340602–7 [Google Scholar]
  18. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C. 18.  et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:41390–400 [Google Scholar]
  19. Dominguez AA, Lim WA, Qi LS. 19.  2016. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17:15–15 [Google Scholar]
  20. Doudna JA, Charpentier E. 20.  2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:62131258096 [Google Scholar]
  21. Doudna JA, Gersbach CA. 21.  2015. Genome editing: the end of the beginning. Genome Biol 16:1292 [Google Scholar]
  22. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 22.  2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10:111116–21 [Google Scholar]
  23. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain A-L. 23.  et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42:42577–90 [Google Scholar]
  24. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D. 24.  et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:9822–26 [Google Scholar]
  25. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 25.  2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32:3279–84 [Google Scholar]
  26. Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R. 26.  et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:732067–71 [Google Scholar]
  27. Gasiunas G, Barrangou R, Horvath P, Siksnys V. 27.  2012. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:39E2579–86 [Google Scholar]
  28. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR. 28.  et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:5945–56 [Google Scholar]
  29. Hayes RP, Xiao Y, Ding F, van Erp PBG, Rajashankar K. 29.  et al. 2016. Structural basis for promiscuous PAM recognition in type I–E Cascade from E. coli. Nature 530:7591499–503 [Google Scholar]
  30. Heidenreich M, Zhang F. 30.  2016. Applications of CRISPR–Cas systems in neuroscience. Nat. Rev. Neurosci. 17:136–44 [Google Scholar]
  31. Heler R, Marraffini LA, Bikard D. 31.  2014. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol. Microbiol. 93:11–9 [Google Scholar]
  32. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW. 32.  et al. 2015. Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 519:7542199–202 [Google Scholar]
  33. Hinz JM, Laughery MF, Wyrick JJ. 33.  2015. Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry 54:487063–66 [Google Scholar]
  34. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M. 34.  et al. 2016. Structure and engineering of Francisella novicida Cas9. Cell 164:5950–61 [Google Scholar]
  35. Hirano S, Nishimasu H, Ishitani R, Nureki O. 35.  2016. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61:6886–94 [Google Scholar]
  36. Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA. 36.  et al. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5:e12677 [Google Scholar]
  37. Horvath P, Romero DA, Coûté-Monvoisin A-C, Richards M, Deveau H. 37.  et al. 2008. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190:41401–12 [Google Scholar]
  38. Hou Z, Zhang Y, Propson NE, Howden SE, Chu L-F. 38.  et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. . PNAS 110:3915644–49 [Google Scholar]
  39. Hsu PD, Lander ES, Zhang F. 39.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:61262–78 [Google Scholar]
  40. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S. 40.  et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:9827–32 [Google Scholar]
  41. Hu JH, Davis KM, Liu DR. 41.  2016. Chemical Biology approaches to genome editing: understanding, controlling, and delivering programmable nucleases. Cell Chem. Biol. 23:157–73 [Google Scholar]
  42. Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R. 42.  2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife 5:e13450 [Google Scholar]
  43. Jackson RN, Golden SM, van Erp PBG, Carter J, Westra ER. 43.  et al. 2014. Structural biology. Crystal structure of the CRISPR RNA–guided surveillance complex from Escherichia coli. . Science 345:62031473–79 [Google Scholar]
  44. Jiang F, Doudna JA. 44.  2015. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30:100–11 [Google Scholar]
  45. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K. 45.  et al. 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:6275867–71 [Google Scholar]
  46. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 46.  2015. Structural Biology. A Cas9–guide RNA complex preorganized for target DNA recognition. Science 348:62421477–81 [Google Scholar]
  47. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 47.  2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:3233–39 [Google Scholar]
  48. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 48.  2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21 [Google Scholar]
  49. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 49.  2013. RNA-programmed genome editing in human cells. eLife 2:e00471 [Google Scholar]
  50. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E. 50.  et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:61761247997 [Google Scholar]
  51. Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. 51.  2015. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res 43:188924–41 [Google Scholar]
  52. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT. 52.  et al. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:7587490–95 [Google Scholar]
  53. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV. 53.  et al. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33:121293–98 [Google Scholar]
  54. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT. 54.  et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:7561481–85 [Google Scholar]
  55. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB. 55.  et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:6262823–26 [Google Scholar]
  56. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 56.  2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:7677–83 [Google Scholar]
  57. Künne T, Swarts DC, Brouns SJJ. 57.  2014. Planting the seed: target recognition of short guide RNAs. Trends Microbiol 22:274–83 [Google Scholar]
  58. Lee CM, Cradick TJ, Bao G. 58.  2016. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol. Ther. 24:3645–54 [Google Scholar]
  59. Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA. 59.  et al. 2016. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol. Cell 62:1137–47 [Google Scholar]
  60. Lieber MR. 60.  2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181–211 [Google Scholar]
  61. Ma H, Tu L-C, Naseri A, Huisman M, Zhang S. 61.  et al. 2016. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J. Cell Biol. 214:5529–37 [Google Scholar]
  62. Maeder ML, Gersbach CA. 62.  2016. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24:3430–46 [Google Scholar]
  63. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 63.  2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1:7 [Google Scholar]
  64. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA. 64.  et al. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13:11722–36 [Google Scholar]
  65. Mali P, Yang L, Esvelt KM, Aach J, Guell M. 65.  et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:6121823–26 [Google Scholar]
  66. Marraffini LA. 66.  2015. CRISPR-Cas immunity in prokaryotes. Nature 526:757155–61 [Google Scholar]
  67. Marraffini LA, Sontheimer EJ. 67.  2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:59091843–45 [Google Scholar]
  68. Marraffini LA, Sontheimer EJ. 68.  2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:7280568–71 [Google Scholar]
  69. Mekler V, Minakhin L, Semenova E, Kuznedelov K, Severinov K. 69.  2016. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3′-terminal segment of guide RNA. Nucleic Acids Res 44:62837–45 [Google Scholar]
  70. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. 70.  2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:3733–40 [Google Scholar]
  71. Mojica FJM, Rodriguez-Valera F. 71.  2016. The discovery of CRISPR in archaea and bacteria. FEBS J 283:173162–69 [Google Scholar]
  72. Mulepati S, Héroux A, Bailey S. 72.  2014. Structural biology. Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target. Science 345:62031479–84 [Google Scholar]
  73. Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B. 73.  et al. 2015. Crystal structure of Staphylococcus aureus Cas9. Cell 162:51113–26 [Google Scholar]
  74. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI. 74.  et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:5935–49 [Google Scholar]
  75. O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 75.  2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:7530263–66 [Google Scholar]
  76. O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. 76.  2015. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res 43:63389–404 [Google Scholar]
  77. Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. 77.  2016. Striking plasticity of CRISPR-Cas9 and key role of non-target DNA, as revealed by molecular simulations. ACS Cent. Sci. 2:10756–63 [Google Scholar]
  78. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 78.  2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31:9839–43 [Google Scholar]
  79. Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M. 79.  et al. 2015. Architecture of the RNA polymerase II–Mediator core initiation complex. Nature 518:7539376–80 [Google Scholar]
  80. Radzisheuskaya A, Shlyueva D, Müller I, Helin K. 80.  2016. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res 44:18e141 [Google Scholar]
  81. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS. 81.  et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:7546186–91 [Google Scholar]
  82. Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S. 82.  et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:61380–89 [Google Scholar]
  83. Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. 83.  2010. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 79:233–69 [Google Scholar]
  84. Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. 84.  2015. Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep 10:91534–43 [Google Scholar]
  85. Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. 85.  2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:7448254–57 [Google Scholar]
  86. San Filippo J, Sung P, Klein H. 86.  2008. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77:229–57 [Google Scholar]
  87. Sander JD, Joung JK. 87.  2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:4347–55 [Google Scholar]
  88. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER. 88.  et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:2510098–103 [Google Scholar]
  89. Shalem O, Sanjana NE, Zhang F. 89.  2015. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16:5299–311 [Google Scholar]
  90. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS. 90.  et al. 2015. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell 60:3385–97 [Google Scholar]
  91. Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. 91.  2016. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7:12778 [Google Scholar]
  92. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 92.  2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:626884–88 [Google Scholar]
  93. Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 93.  2015. Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527:7576110–13 [Google Scholar]
  94. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 94.  2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:749062–67 [Google Scholar]
  95. Strong A, Musunuru K. 95.  2017. Genome editing in cardiovascular diseases. Nat. Rev. Cardiol. 14:111–20 [Google Scholar]
  96. Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T. 96.  et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111:279798–803 [Google Scholar]
  97. Tsai SQ, Joung JK. 97.  2016. Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat. Rev. Genet. 17:5300–12 [Google Scholar]
  98. Tycko J, Myer VE, Hsu PD. 98.  2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell 63:3355–70 [Google Scholar]
  99. van der Oost J, Westra ER, Jackson RN, Wiedenheft B. 99.  2014. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12:7479–92 [Google Scholar]
  100. Vassylyev DG, Sekine S-i, Laptenko O, Lee J, Vassylyeva MN. 100.  et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417:6890712–19 [Google Scholar]
  101. Wang H, La Russa M, Qi LS. 101.  2016. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85:227–64 [Google Scholar]
  102. Wiedenheft B, Sternberg SH, Doudna JA. 102.  2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:7385331–38 [Google Scholar]
  103. Wiedenheft B, van Duijn E, Bultema JB, Bultema J, Waghmare SP. 103.  et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS 108:2510092–97 [Google Scholar]
  104. Wright AV, Nuñez JK, Doudna JA. 104.  2016. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164:1–229–44 [Google Scholar]
  105. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA. 105.  et al. 2015. Rational design of a split-Cas9 enzyme complex. PNAS 112:102984–89 [Google Scholar]
  106. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD. 106.  et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32:7670–76 [Google Scholar]
  107. Xiong X, Chen M, Lim WA, Zhao D, Qi LS. 107.  2016. CRISPR/Cas9 for human genome engineering and disease research. Annu. Rev. Genom. Hum. Genet. 17:1131–54 [Google Scholar]
  108. Yang W. 108.  2008. An equivalent metal ion in one- and two-metal-ion catalysis. Nat. Struct. Mol. Biol. 15:111228–31 [Google Scholar]
  109. Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS. 109.  et al. 2013. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50:4488–503 [Google Scholar]
  110. Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G. 110.  et al. 2014. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. . Nature 515:7525147–50 [Google Scholar]
/content/journals/10.1146/annurev-biophys-062215-010822
Loading
/content/journals/10.1146/annurev-biophys-062215-010822
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error