1932

Abstract

Most microorganisms regulate their cell size. In this article, we review some of the mathematical formulations of the problem of cell size regulation. We focus on coarse-grained stochastic models and the statistics that they generate. We review the biologically relevant insights obtained from these models. We then describe cell cycle regulation and its molecular implementations, protein number regulation, and population growth, all in relation to size regulation. Finally, we discuss several future directions for developing understanding beyond phenomenological models of cell size regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-032955
2018-05-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-032955.html?itemId=/content/journals/10.1146/annurev-biophys-070317-032955&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adiciptaningrum A, Osella M, Moolman M, Lagomarsino M, Tans S 2015. Stochasticity and homeostasis in the E. coli replication and division cycle. Sci. Rep. 5:18261
    [Google Scholar]
  2. 2.  Aldridge B, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D et al. 2012. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335:100–4
    [Google Scholar]
  3. 3.  Amir A. 2014. Cell size regulation in bacteria. Phys. Rev. Lett. 112:208102
    [Google Scholar]
  4. 4.  Amir A. 2017. Is cell size a spandrel. eLife 6:e22186
    [Google Scholar]
  5. 5.  Banerjee S, Lo K, Daddysman M, Selewa A, Kuntz T et al. 2017. Biphasic growth dynamics control cell division in Caulobacter crescentus. Nat. Microbiol. 2:17116
    [Google Scholar]
  6. 6.  Barber F, Ho P, Murray A, Amir A 2017. Details matter: noise and model structure set the relationship between cell size and cell cycle timing. Front. Cell Dev. Biol. 5:92
    [Google Scholar]
  7. 6a.  Bowler C, De Martino A, Falciatore A 2010. Diatom cell division in an environmental context. Curr. Opin. Plant Biol. 13:623–30
    [Google Scholar]
  8. 7.  Box G, Hunter J, Hunter W 2005. Statistics for Experimenters Hoboken, NJ: Wiley
  9. 8.  Box G, Jenkins G, Reinsel G 1994. Time Series Analysis: Forecasting and Control Upper Saddle River, NJ: Prentice Hall
  10. 9.  Brenner N, Braun E, Yoney A, Susman L, Rotella J, Salman H 2015. Single-cell protein dynamics reproduce universal fluctuations in cell populations. Eur. Phys. J. E 38:102
    [Google Scholar]
  11. 10.  Brenner N, Newman C, Osmanovic D, Rabin Y, Salman H, Stein D 2015. Universal protein distributions in a model of cell growth and division. Phys. Rev. E 92:042713
    [Google Scholar]
  12. 11.  Campos M, Surotsev I, Kato S, Paintdakhi A, Beltran B et al. 2014. A constant size extension drives bacterial cell size homeostasis. Cell 159:1433–46
    [Google Scholar]
  13. 12.  Cooper S, Helmstetter C 1968. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 31:519–40
    [Google Scholar]
  14. 12a.  Deforet M, van Ditmarsch D, Xavier JB 2015. Cell-size homeostasis and the incremental rule in a bacterial pathogen. Biophys. J. 109:521–28
    [Google Scholar]
  15. 13.  Donachie W. 1968. Relationship between cell size and time of initiation of DNA replication. Nature 219:1077–79
    [Google Scholar]
  16. 14.  Eun Y, Ho P, Kim M, Renner L, LaRussa S et al. 2018. Archaeal cells share common size control with bacteria despite noisier growth and division. Nat. Microbiol. 3:148–54
    [Google Scholar]
  17. 15.  Fantes P. 1977. Control of cell size and cycle time in Schizosaccharomyces pombe. J. Cell Sci. 24:51–67
    [Google Scholar]
  18. 16.  Gardiner C. 2009. Stochastic Methods: A Handbook for the Natural and Social Sciences Berlin: Springer
  19. 17.  Ghusinga K, Vargas-Garcia C, Singh A 2016. A mechanistic stochastic framework for regulating bacterial cell division. Sci. Rep. 6:30229
    [Google Scholar]
  20. 18.  Giometto A, Altermatt F, Carrara F, Maritan A, Rinaldo A 2012. Scaling body size fluctuations. PNAS 110:4646–50
    [Google Scholar]
  21. 19.  Godin M, Delgado F, Son S, Grover W, Bryan A et al. 2010. Using buoyant mass to measure the growth of single cells. Nat. Methods 7:387–90
    [Google Scholar]
  22. 20.  Grilli J, Osella M, Kennard A, Lagomarsino M 2017. Relevant parameters in models of cell division control. Phys. Rev. E 95:032411
    [Google Scholar]
  23. 21.  Harris L, Theriot J 2016. Relative rates of surface and volume synthesis set bacterial cell size. Cell 165:1479–92
    [Google Scholar]
  24. 22.  Hashimoto M, Nozoe T, Nakaoka H, Okura R, Akiyoshi S et al. 2016. Noise-driven growth rate gain in clonal cellular populations. PNAS 113:3251–56
    [Google Scholar]
  25. 23.  Hill N, Kadoya R, Chattoraj D, Levin P 2012. Cell size and the initiation of DNA replication in bacteria. PLOS Genet 8:e1002549
    [Google Scholar]
  26. 24.  Ho P, Amir A 2015. Simultaneous regulation of cell size and chromosome replication in bacteria. Front. Microbiol. 6:662
    [Google Scholar]
  27. 25.  Iyer-Biswas S, Crooks G, Scherer N, Dinner A 2014. Universality in stochastic exponential growth. Phys. Rev. Lett. 113:028101
    [Google Scholar]
  28. 26.  Iyer-Biswas S, Gudjonson H, Wright C, Riebling J, Dawson E et al. 2016. Bridging the time scales of single-cell and population dynamics. arXiv1611.05149 [q-bio.QM]
  29. 27.  Kennard A, Osella M, Javer A, Grilli J, Nghe P et al. 2016. Individuality and universality in the growth-division laws of single E. coli cells. Phys. Rev. E 93:012408
    [Google Scholar]
  30. 28.  Kessler D, Burov S 2017. Effective potential for cellular size control. arXiv 1701.01725 [cond-mat.soft]
  31. 29.  Koch A. 2001. Bacterial Growth and Form Berlin: Springer
  32. 30.  Koppes L, Meyer M, Oonk H, de Jong M, Nanninga N 1980. Correlation between size and age at different events in the cell division cycle of Escherichia coli. J. Bacteriol. 143:1241–52
    [Google Scholar]
  33. 31.  Levins R. 1966. The strategy of model building in population biology. Am. Sci. 54:421–31
    [Google Scholar]
  34. 32.  Lin J, Amir A 2017. The effects of stochasticity at the single-cell level and cell size control on the population growth. Cell Syst 5:358–67.e4
    [Google Scholar]
  35. 32a.  Lin J, Amir A 2018. Homeostasis of protein and mRNA concentrations in growing cells. bioRxiv:255950
    [Google Scholar]
  36. 33.  Logsdon M, Ho P, Papavinasasundaram K, Cokol M, Richardson K et al. 2018. A parallel adder coordinates mycobacterial cell-cycle progression and cell-size homeostasis in the context of asymmetric growth and organization. Curr. Biol. 27:213367–74
    [Google Scholar]
  37. 34.  Marantan A, Amir A 2016. Stochastic modeling of cell growth with symmetric or asymmetric division. Phys. Rev. E 94:012405
    [Google Scholar]
  38. 35.  Martins B, Tooke A, Thomas P, Locke J 2017. Cell size control driven by the circadian clock and environment in cyanobacteria. bioRxiv183558
  39. 36.  Metzl-Raz E, Kafri M, Yaakov G, Soifer I, Gurvich Y, Barkai N 2017. Principles of cellular resource allocation revealed by condition-dependent proteome profiling. eLife 6:e28034
    [Google Scholar]
  40. 37.  Mosheiff N, Martins B, Pearl-Mizrahi S, Gruenberger A, Helfrich S et al. 2017. Correlations of single-cell division times with and without periodic forcing. arXiv 1710.00349 [q-bio.CB]
  41. 38.  Osella M, Nugent E, Lagomarsino M 2014. Concerted control of Escherichia coli cell division. PNAS 111:3431–35
    [Google Scholar]
  42. 39.  Osella M, Tans S, Lagomarsino M 2017. Step by step, cell by cell: quantification of the bacterial cell cycle. Trends. Microbiol. 25:250–56
    [Google Scholar]
  43. 40.  Paulsson J. 2005. Models of stochastic gene expression. Phys. Life Rev. 2:157–75
    [Google Scholar]
  44. 41.  Powell E. 1956. Growth rate and generation time of bacteria, with special reference to continuous culture. J. Gen. Microbiol. 15:492–511
    [Google Scholar]
  45. 42.  Priestley M. 1981. Spectral Analysis and Time Series Cambridge, MA: Academic
  46. 42a.  Robert L, Hoffmann M, Krell N, Aymerich S, Robert J, Doumic M 2014. Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism. BMC Biol. 1217
    [Google Scholar]
  47. 43.  Sandler O, Pearl-Mizrahi S, Weiss N, Agam O, Simon I, Balaban N 2015. Lineage correlations of single cell division time as a probe of cell-cycle dynamics. Nature 519:468–71
    [Google Scholar]
  48. 44.  Deleted in proof
  49. 45.  Schaechter M, Maaloe O, Kjeldgaard N 1958. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19:592–606
    [Google Scholar]
  50. 46.  Scott M, Gunderson C, Mateescu E, Zhang Z, Hwa T 2010. Interdependence of cell growth and gene expression: origins and consequences. Science 330:1099–102
    [Google Scholar]
  51. 47.  Soifer I, Robert L, Amir A 2016. Single-cell analysis of growth in budding yeast and bacteria reveals a common size regulation strategy. Curr. Biol. 26:356–61
    [Google Scholar]
  52. 48.  Sompayrac L, Maaloe O 1973. Autorepressor model for control of DNA replication. Nat. New Biol. 241:133–35
    [Google Scholar]
  53. 49.  Stewart E, Madden R, Paul G, Taddei F 2005. Aging and death in an organism that reproduces by morphologically symmetric division. PLOS Biol 3:e45
    [Google Scholar]
  54. 50.  Susman L, Kohram M, Vashistha H, Nechleba J, Salman H, Brenner N 2017. Statistical properties and dynamics of phenotype components in individual bacteria. arXiv 1609.05513 [q-bio.CB]
  55. 51.  Taheri-Araghi S, Bradde S, Sauls J, Hill N, Levin P et al. 2015. Cell-size control and homeostasis in bacteria. Curr. Biol. 25:385–91
    [Google Scholar]
  56. 52.  Taheri-Araghi S, Brown S, Sauls J, McIntosh D, Jun S 2015. Single-cell physiology. Annu. Rev. Biophys. 44:123–42
    [Google Scholar]
  57. 53.  Tanouchi Y, Pai A, Park H, Huang S, Buchler N, You L 2017. Long-term growth data of Escherichia coli at a single-cell level. Sci. Data 4:170036
    [Google Scholar]
  58. 54.  Tanouchi Y, Pai A, Park H, Huang S, Stamatov R et al. 2015. A noisy linear map underlies oscillations in cell size and gene expression in bacteria. Nature 523:357–60
    [Google Scholar]
  59. 55.  Trueba F, Neijssel O, Woldringh C 1982. Generality of the growth kinetics of the average individual cell in different bacterial populations. J. Bacteriol. 150:1048–55
    [Google Scholar]
  60. 56.  Voorn W, Koppes L 1997. Skew or third moment of bacterial generation times. Arch. Microbiol. 169:43–51
    [Google Scholar]
  61. 57.  Voorn W, Koppes L, Grover N 1993. Mathematics of cell division in Escherichia coli: comparison between sloppy-size and incremental-size kinetics. Curr. Top. Mol. Gen. 1:187–94
    [Google Scholar]
  62. 58.  Wallden M, Fange D, Lundius E, Baltekin O, Elf J 2016. The synchronization of replication and division cycles in individual E. coli cells. Cell 166:729–39
    [Google Scholar]
  63. 59.  Wang P, Robert L, Pelletier J, Dang W, Taddei F et al. 2010. Robust growth of Escherichia coli. Curr. Biol. 20:1099–103
    [Google Scholar]
  64. 60.  Willis L, Huang K 2017. Sizing up the bacterial cell cycle. Nat. Rev. Microbiol. 15:606–20
    [Google Scholar]
  65. 61.  Yu F, Willis L, Chau R, Zambon A, Horowitz M et al. 2017. Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing. BMC Biol 15:11
    [Google Scholar]
  66. 62.  Zheng H, Ho P, Jiang M, Tang B, Liu W et al. 2016. Interrogating the Escherichia coli cell cycle by cell dimension perturbations. PNAS 113:15000–5
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-032955
Loading
/content/journals/10.1146/annurev-biophys-070317-032955
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error