1932

Abstract

The first stage in biological signaling is based on changes in the functional state of a receptor protein triggered by interaction of the receptor with its ligand(s). The light-triggered nature of photoreceptors allows studies on the mechanism of such changes in receptor proteins using a wide range of biophysical methods and with superb time resolution. Here, we critically evaluate current understanding of proton and electron transfer in photosensory proteins and their involvement both in primary photochemistry and subsequent processes that lead to the formation of the signaling state. An insight emerging from multiple families of photoreceptors is that ultrafast primary photochemistry is followed by slower proton transfer steps that contribute to triggering large protein conformational changes during signaling state formation. We discuss themes and principles for light sensing shared by the six photoreceptor families: rhodopsins, phytochromes, photoactive yellow proteins, light-oxygen-voltage proteins, blue-light sensors using flavin, and cryptochromes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-033047
2018-05-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-033047.html?itemId=/content/journals/10.1146/annurev-biophys-070317-033047&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Anderson S, Dragnea V, Masuda S, Ybe J, Moffat K, Bauer C 2005. Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry 44:7998–8005
    [Google Scholar]
  2. 2.  Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IET et al. 1985. Protein states and protein quakes. PNAS 82:5000–4
    [Google Scholar]
  3. 3.  Arnis S, Hofmann KP 1993. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. PNAS 90:7849–53
    [Google Scholar]
  4. 4.  Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R et al. 2007. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J. Biol. Chem. 282:14916–22
    [Google Scholar]
  5. 5.  Barends TR, Hartmann E, Griese JJ, Beitlich T, Kirienko NV et al. 2009. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase. Nature 459:1015–18
    [Google Scholar]
  6. 6.  Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S et al. 2007. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J. Biol. Chem. 282:13011–21
    [Google Scholar]
  7. 7.  Biskup T, Hitomi K, Getzoff ED, Krapf S, Koslowski T et al. 2011. Unexpected electron transfer in cryptochrome identified by time-resolved EPR spectroscopy. Angew. Chem. Int. Ed. 50:12647–51
    [Google Scholar]
  8. 8.  Bogomolni RA, Spudich JL 1982. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. PNAS 79:6250–54
    [Google Scholar]
  9. 9.  Borucki B, von Setten D, Seibeck S, Lamparter T, Michael N et al. 2005. Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. J. Biol. Chem. 280:34358–64
    [Google Scholar]
  10. 10.  Bouly J-P, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D et al. 2007. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J. Biol. Chem. 282:9383–91
    [Google Scholar]
  11. 11.  Bousche O, Spudich EN, Spudich JL, Rothschild KJ 1991. Conformational changes in sensory rhodopsin I: similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin. Biochemistry 30:5395–400
    [Google Scholar]
  12. 12.  Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR et al. 2004. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. PNAS 101:12142–47
    [Google Scholar]
  13. 13.  Brazard J, Usman A, Lacombat F, Ley C, Martin MM et al. 2010. Spectro–temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors. J. Am. Chem. Soc. 132:4935–45
    [Google Scholar]
  14. 14.  Bruun S, Stoeppler D, Keidel A, Kuhlmann U, Luck M et al. 2015. Light–dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomers. Biochemistry 54:5389–400
    [Google Scholar]
  15. 15.  Buczylko J, Saari JC, Crouch RK, Palczewski K 1996. Mechanisms of opsin activation. J. Biol. Chem. 271:20621–30
    [Google Scholar]
  16. 16.  Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335–64
    [Google Scholar]
  17. 17.  Creelman M, Kumauchi M, Hoff WD, Mathies RA 2014. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 118:659–67
    [Google Scholar]
  18. 18.  Crosson S, Moffat K 2001. Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. PNAS 98:2995–3000
    [Google Scholar]
  19. 19.  Crosson S, Moffat K 2002. Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14:1067–75
    [Google Scholar]
  20. 20.  Dasgupta J, Frontiera RR, Taylor KC, Lagarias JC, Mathies RA 2009. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. PNAS 106:1784–89
    [Google Scholar]
  21. 21.  Davies H, Bignell GR, Cox C, Stephens P, Edkins S et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54
    [Google Scholar]
  22. 22.  Derix NM, Wechselberger RW, van der Horst MA, Hellingwerf KJ, Boelens R et al. 2003. Lack of negative charge in the E46Q mutant of photoactive yellow protein prevents partial unfolding of the blue-shifted intermediate. Biochemistry 42:14501–6
    [Google Scholar]
  23. 23.  Dickopf S, Mielke T, Heyn MP 1998. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin. Biochemistry 37:16888–97
    [Google Scholar]
  24. 24.  Domratcheva T, Grigorenko BL, Schlichting I, Nemukhin AV 2008. Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors. Biophys. J. 94:3872–79
    [Google Scholar]
  25. 25.  Domratcheva T, Hartmann E, Schlichting I, Kottke T 2016. Evidence for tautomerisation of glutamine in BLUF blue light receptors by vibrational spectroscopy and computational chemistry. Sci. Rep. 6:22669
    [Google Scholar]
  26. 26.  Dragnea V, Arunkumar AI, Lee CW, Giedroc DP, Bauer CE 2010. A Q63E Rhodobacter sphaeroides AppA BLUF domain mutant is locked in a pseudo-light-excited signaling state. Biochemistry 49:10682–90
    [Google Scholar]
  27. 27.  Engelhard C, Wang X, Robles D, Moldt J, Essen LO et al. 2014. Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways. Plant Cell 26:4519–31
    [Google Scholar]
  28. 28.  Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H 2014. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114:126–63
    [Google Scholar]
  29. 29.  Essen LO, Mailliet J, Hughes J 2008. The structure of a complete phytochrome sensory module in the Pr ground state. PNAS 105:14709–14
    [Google Scholar]
  30. 30.  Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA 1997. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13:457–512
    [Google Scholar]
  31. 31.  Furutani Y, Kandori H 2014. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy. Biochim. Biophys. Acta 1837:598–605
    [Google Scholar]
  32. 32.  Gauden M, van Stokkum IHM, Key JM, Lührs DC, van Grondelle R et al. 2006. Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. PNAS 103:10895–900
    [Google Scholar]
  33. 33.  Gauden M, Yeremenko S, Laan W, van Stokkum I, Ihalainen JA et al. 2005. Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry 44:3653–62
    [Google Scholar]
  34. 34.  Genick UK, Soltis SM, Kuhn P, Canestrelli IL, Getzoff ED 1998. Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature 392:206–9
    [Google Scholar]
  35. 35.  Giovani B, Byrdin M, Ahmad M, Brettel K 2003. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10:489–90
    [Google Scholar]
  36. 36.  Gong J, Yuan Y, Ward A, Kang L, Zhang B et al. 2016. The C. elegans taste receptor homolog LITE-1 is a photoreceptor. Cell 167:1252–63
    [Google Scholar]
  37. 37.  Govorunova EG, Sineshchekov OA, Li H, Spudich JL 2017. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu. Rev. Biochem. 86:845–72
    [Google Scholar]
  38. 38.  Groot ML, van Wilderen L, Larsen DS, van der Horst MA, van Stokkum IHM et al. 2003. Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy. Biochemistry 42:10054–59
    [Google Scholar]
  39. 39.  Haraguchi S, Hara M, Shingae T, Kumauchi M, Hoff WD, Unno M 2015. Experimental detection of the intrinsic difference in Raman optical activity of a photoreceptor protein under preresonance and resonance conditions. Angew. Chem. Int. Ed. 54:11555–58
    [Google Scholar]
  40. 40.  Harper SM, Neil LC, Gardner KH 2003. Structural basis of a phototropin light switch. Science 301:1541–44
    [Google Scholar]
  41. 41.  Hellingwerf KJ, Hendriks J, Gensch T 2003. Photoactive Yellow Protein, a new type of photoreceptor protein: Will this “yellow lab” bring us where we want to go?. J. Phys. Chem. A 107:1082–94
    [Google Scholar]
  42. 42.  Hense A, Herman E, Oldemeyer S, Kottke T 2015. Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome. J. Biol. Chem. 290:1743–51
    [Google Scholar]
  43. 43.  Heyne K, Herbst J, Stehlik D, Esteban B, Lamparter T et al. 2002. Ultrafast dynamics of phytochrome from the cyanobacterium Synechocystis, reconstituted with phycocyanobilin and phycoerythrobilin. Biophys. J. 82:1004–16
    [Google Scholar]
  44. 44.  Heyne K, Mohammed OF, Usman A, Dreyer J, Nibbering ETJ, Cusanovich MA 2005. Structural evolution of the chromophore in the primary stages of trans/cis isomerization in photoactive yellow protein. J. Am. Chem. Soc. 127:18100–6
    [Google Scholar]
  45. 45.  Hoff WD, Jung KH, Spudich JL 1997. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 26:223–58
    [Google Scholar]
  46. 46.  Hoff WD, van Stokkum IHM, van Ramesdonk HJ, van Brederode ME, Brouwer AM et al. 1994. Measurement and global analysis of the absorbency changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys. J. 67:1691–705
    [Google Scholar]
  47. 47.  Holzwarth AR, Venuti E, Braslavsky SE, Schaffner K 1992. The phototransformation process in phytochrome. I. Ultrafast fluorescence component and kinetic models for the initial Pr → Pfr transformation steps in native phytochrome. Biochim. Biophys. Acta 1140:59–68
    [Google Scholar]
  48. 48.  Ihee H, Rajagopal S, Srajer V, Pahl R, Anderson S et al. 2005. Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. PNAS 102:7145–50
    [Google Scholar]
  49. 49.  Imamoto Y, Mihara K, Hisatomi O, Kataoka M, Tokunaga F et al. 1997. Evidence for proton transfer from Glu-46 to the chromophore during the photocycle of photoactive yellow protein. J. Biol. Chem. 272:12905–8
    [Google Scholar]
  50. 50.  Immeln D, Weigel A, Kottke T, Pérez Lustres JL 2012. Primary events in the blue light sensor plant cryptochrome: intraprotein electron and proton transfer revealed by femtosecond spectroscopy. J. Am. Chem. Soc. 134:12536–46
    [Google Scholar]
  51. 51.  Iwata T, Nozaki D, Tokutomi S, Kagawa T, Wada M, Kandori H 2003. Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy. Biochemistry 42:8183–91
    [Google Scholar]
  52. 52.  Jäger F, Jäger S, Kräutle O, Friedman N, Sheves M et al. 1994. Interactions of the β-ionone ring with the protein in the visual pigment rhodopsin control the activation mechanism. An FTIR and fluorescence study on artificial vertebrate rhodopsins. Biochemistry 33:7389–97
    [Google Scholar]
  53. 53.  Jiang ZY, Swem LR, Rushing BG, Devanathan S, Tollin G, Bauer CE 1999. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285:406–9
    [Google Scholar]
  54. 54.  Jung A, Domratcheva T, Tarutina M, Wu Q, Ko W-h et al. 2005. Structure of a bacterial BLUF photoreceptor: insights into blue light-mediated signal transduction. PNAS 102:12350–55
    [Google Scholar]
  55. 55.  Jung A, Domratcheva T, Tarutina M, Wu Q, Ko W-h et al. 2005. Structure of a bacterial BLUF photoreceptor: insights into blue light-mediated signal transduction. PNAS 102:12350–55
    [Google Scholar]
  56. 56.  Kandori H, Yamazaki Y, Sasaki J, Needleman R, Lanyi JK, Maeda A 1995. Water-mediated proton-transfer in proteins: an FTIR study of bacteriorhodopsin. J. Am. Chem. Soc. 117:2118–19
    [Google Scholar]
  57. 57.  Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T et al. 2012. Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–74
    [Google Scholar]
  58. 58.  Kelly JM, Lagarias JC 1985. Photochemistry of 124-kilodalton Avena phytochrome under constant illumination in vitro. Biochemistry 24:6003–10
    [Google Scholar]
  59. 59.  Kim PW, Rockwell NC, Martin SS, Lagarias JC, Larsen DS 2014. Dynamic inhomogeneity in the photodynamics of cyanobacterial phytochrome Cph1. Biochemistry 53:2818–26
    [Google Scholar]
  60. 60.  Kimata N, Pope A, Eilers M, Opefi CA, Ziliox M et al. 2016. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat. Commun. 7:10
    [Google Scholar]
  61. 61.  Kita A, Okajima K, Morimoto Y, Ikeuchi M, Miki K 2005. Structure of a cyanobacterial BLUF protein, Tll0078, containing a novel FAD-binding blue light sensor domain. J. Mol. Biol. 349:1–9
    [Google Scholar]
  62. 62.  Kneip C, Hildebrandt P, Schlamann W, Braslavsky SE, Mark F, Schaffner K 1999. Protonation state and structural changes of the tetrapyrrole chromophore during the Pr → Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. Biochemistry 38:15185–92
    [Google Scholar]
  63. 63.  Kondoh M, Shiraishi C, Müller P, Ahmad M, Hitomi K et al. 2011. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J. Mol. Biol. 413:128–37
    [Google Scholar]
  64. 64.  Konold PE, Mathes T, Weibetaenborn J, Groot ML, Hegemann P, Kennis JT 2016. Unfolding of the C-terminal Jα helix in the LOV2 photoreceptor domain observed by time-resolved vibrational spectroscopy. J. Phys. Chem. Lett. 7:3472–76
    [Google Scholar]
  65. 65.  Kort R, Vonk H, Xu X, Hoff WD, Crielaard W, Hellingwerf KJ 1996. Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein. FEBS Lett 382:73–78
    [Google Scholar]
  66. 66.  Kubota K, Shingae T, Foster ND, Kumauchi M, Hoff WD, Unno M 2013. Active site structure of photoactive yellow protein with a locked chromophore analogue revealed by near-infrared Raman optical activity. J. Phys. Chem. Lett. 4:3031–38
    [Google Scholar]
  67. 67.  Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F 2015. Early formation of the ion-conducting pore in channelrhodopsin-2. Angew. Chem. Int. Ed. 54:4953–57
    [Google Scholar]
  68. 68.  Kuramochi H, Takeuchi S, Yonezawa K, Kamikubo H, Kataoka M, Tahara T 2017. Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat. Chem. 9:660–66
    [Google Scholar]
  69. 69.  Lamparter T, Mittmann F, Gärtner W, Börner T, Hartmann E, Hughes J 1997. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. PNAS 94:11792–97
    [Google Scholar]
  70. 70.  Langenbacher T, Immeln D, Dick B, Kottke T 2009. Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome. J. Am. Chem. Soc. 131:14274–80
    [Google Scholar]
  71. 71.  Larsen DS, van Grondelle R 2005. Initial photoinduced dynamics of the photoactive yellow protein. Chem. Phys. Chem. 6:828–37
    [Google Scholar]
  72. 72.  Li J, Edwards PC, Burghammer M, Villa C, Schertler GFX 2004. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343:1409–38
    [Google Scholar]
  73. 73.  Li X, Wang Q, Yu X, Liu H, Yang H et al. 2011. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. PNAS 108:20844–49
    [Google Scholar]
  74. 74.  Lórenz-Fonfría VA, Resler T, Krause N, Nack M, Gossing M et al. 2013. Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. PNAS 110:E1273–81
    [Google Scholar]
  75. 75.  Losi A, Gärtner W 2012. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. Annu. Rev. Plant Biol. 63:49–72
    [Google Scholar]
  76. 76.  Losi A, Quest B, Gärtner W 2003. Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem. Photobiol. Sci. 2:759–66
    [Google Scholar]
  77. 77.  Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL 2001. Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science 293:1499–503
    [Google Scholar]
  78. 78.  Luecke H, Schobert B, Richter H-T, Cartailler J-P, Lanyi JK 1999. Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291:899–911
    [Google Scholar]
  79. 79.  Lukacs A, Brust R, Haigney A, Laptenok SP, Addison K et al. 2014. BLUF domain function does not require a metastable radical intermediate state. J. Am. Chem. Soc. 136:4605–15
    [Google Scholar]
  80. 80.  Magerl K, Stambolic I, Dick B 2017. Switching from adduct formation to electron transfer in a light-oxygen-voltage domain containing the reactive cysteine. Phys. Chem. Chem. Phys. 19:10808–19
    [Google Scholar]
  81. 81.  Masuda S, Bauer CE 2002. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–23
    [Google Scholar]
  82. 82.  Masuda S, Hasegawa K, Ishii A, Ono TA 2004. Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of Synechocystis sp. PCC6803. Biochemistry 43:5304–13
    [Google Scholar]
  83. 83.  Mehlhorn J, Lindtner T, Richter F, Glass K, Steinocher H et al. 2015. Light-induced rearrangement of the β5 strand in the BLUF photoreceptor SyPixD (Slr1694). J. Phys. Chem. Lett. 6:4749–53
    [Google Scholar]
  84. 84.  Meyer CK, Böhme M, Ockenfels A, Gärtner W, Hofmann KP, Ernst OP 2000. Signaling states of rhodopsin: retinal provides a scaffold for activating proton transfer switches. J. Biol. Chem. 275:19713–18
    [Google Scholar]
  85. 85.  Meyer TE, Yakali E, Cusanovich MA, Tollin G 1987. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bactrerium that has photochemical activity analogous to sensory rhodopsin. Biochemistry 26:418–23
    [Google Scholar]
  86. 86.  Michler I, Braslavsky SE 2001. Time-resolved thermodynamic analysis of the oat phytochrome A phototransformation. A photothermal beam deflection study. Photochem. Photobiol. 74:624–35
    [Google Scholar]
  87. 87.  Mix LT, Hara M, Rathod R, Kumauchi M, Hoff WD, Larsen DS 2016. Noncanonical photocycle initiation dynamics of the photoactive yellow protein (PYP) domain of the PYP-phytochrome-related (Ppr) photoreceptor. J. Phys. Chem. Lett. 7:5212–18
    [Google Scholar]
  88. 88.  Mizutani Y, Tokutomi S, Kitagawa T 1994. Resonance Raman spectra of the intermediates in phototransformation of large phytochrome: deprotonation of the chromophore in the bleached intermediate. Biochemistry 33:153–58
    [Google Scholar]
  89. 89.  Möglich A, Moffat K 2007. Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. J. Mol. Biol. 373:112–26
    [Google Scholar]
  90. 90.  Möglich A, Yang X, Ayers RA, Moffat K 2010. Structure and function of plant photoreceptors. Annu. Rev. Plant Biol. 61:21–47
    [Google Scholar]
  91. 91.  Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED et al. 2014. ATP binding turns plant cryptochrome into an efficient natural photoswitch. Sci. Rep. 4:5175
    [Google Scholar]
  92. 92.  Nakamichi H, Okada T 2006. Crystallographic analysis of primary visual photochemistry. Angew. Chem. Int. Ed. 45:4270–73
    [Google Scholar]
  93. 93.  Nakasone Y, Eitoku T, Matsuoka D, Tokutomi S, Terazima M 2007. Dynamics of conformational changes of Arabidopsis phototropin 1 LOV2 with the linker domain. J. Mol. Biol. 367:432–42
    [Google Scholar]
  94. 94.  Nakasone Y, Ono TA, Ishii A, Masuda S, Terazima M 2007. Transient dimerization and conformational change of a BLUF protein: YcgF. J. Am. Chem. Soc. 129:7028–35
    [Google Scholar]
  95. 95.  Nash AI, Ko W-H, Harper SM, Gardner KH 2008. A conserved glutamine plays a central role in LOV domain signal transmission and its duration. Biochemistry 47:13842–49
    [Google Scholar]
  96. 96.  Neumann-Verhoefen MK, Neumann K, Bamann C, Radu I, Heberle J et al. 2013. Ultrafast infrared spectroscopy on channelrhodopsin-2 reveals efficient energy transfer from the retinal chromophore to the protein. J. Am. Chem. Soc. 135:6968–76
    [Google Scholar]
  97. 97.  Nozaki D, Iwata T, Ishikawa T, Todo T, Tokutomi S, Kandori H 2004. Role of Gln1029 in the photoactivation processes of the LOV2 domain in Adiantum phytochrome3. Biochemistry 43:8373–79
    [Google Scholar]
  98. 98.  Okada T, Ernst OP, Palczewski K, Hofmann KP 2001. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem. Sci. 26:318–24
    [Google Scholar]
  99. 99.  Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elías-Arnanz M 2011. Light-dependent gene regulation by a coenzyme B12-based photoreceptor. PNAS 108:7565–70
    [Google Scholar]
  100. 100.  Öztürk N, Song S-H, Selby CP, Sancar A 2008. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283:3256–63
    [Google Scholar]
  101. 101.  Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H et al. 2000. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–45
    [Google Scholar]
  102. 102.  Pan D, Ganim Z, Kim JE, Verhoeven MA, Lugtenburg J, Mathies RA 2002. Time-resolved resonance Raman analysis of chromophore structural changes in the formation and decay of rhodopsin's BSI intermediate. J. Am. Chem. Soc. 124:4857–64
    [Google Scholar]
  103. 103.  Pande K, Hutchison CDM, Groenhof G, Aquila A, Robinson JS et al. 2016. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–29
    [Google Scholar]
  104. 104.  Pellequer JL, Wager-Smith KA, Kay SA, Getzoff ED 1998. Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. PNAS 95:5884–90
    [Google Scholar]
  105. 105.  Peter E, Dick B, Baeurle SA 2010. Mechanism of signal transduction of the LOV2-Jα photosensor from Avena sativa. Nat. Commun. 1:122
    [Google Scholar]
  106. 106.  Pfeifer A, Majerus T, Zikihara K, Matsuoka D, Tokutomi S et al. 2009. Time-resolved Fourier transform infrared study on photoadduct formation and secondary structural changes within the phototropin LOV domain. Biophys. J. 96:1462–70
    [Google Scholar]
  107. 107.  Pollock PM, Meltzer PS 2002. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2:5–7
    [Google Scholar]
  108. 108.  Rao VR, Oprian DD 1996. Activating mutations of rhodopsin and other G protein–coupled receptors. Annu. Rev. Biophys. Biomolec. Struct. 25:287–314
    [Google Scholar]
  109. 109.  Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ 2008. Monitoring light-induced structural changes of channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J. Biol. Chem. 283:35033–41
    [Google Scholar]
  110. 110.  Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–6
    [Google Scholar]
  111. 111.  Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD 1992. Constitutively active mutants of rhodopsin. Neuron 9:719–25
    [Google Scholar]
  112. 112.  Rockwell NC, Lagarias JC 2010. A brief history of phytochromes. Chem. Phys. Chem. 11:1172–80
    [Google Scholar]
  113. 113.  Rockwell NC, Martin SS, Feoktistova K, Lagarias JC 2011. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. PNAS 108:11854–59
    [Google Scholar]
  114. 114.  Rockwell NC, Shang L, Martin SS, Lagarias JC 2009. Distinct classes of red/far-red photochemistry within the phytochrome superfamily. PNAS 106:6123–27
    [Google Scholar]
  115. 115.  Sadeghian K, Bocola M, Schütz M 2008. A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors.. J. Am. Chem. Soc. 130:12501–13
    [Google Scholar]
  116. 116.  Salgado GFJ, Struts AV, Tanaka K, Krane S, Nakanishi K, Brown MF 2006. Solid-state 2H NMR structure of retinal in metarhodopsin I. J. Am. Chem. Soc. 128:11067–71
    [Google Scholar]
  117. 117.  Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR 2000. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor phototropin. Biochemistry 39:9401–10
    [Google Scholar]
  118. 118.  Schleicher E, Kowalczyk RM, Kay CW, Hegemann P, Bacher A et al. 2004. On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J. Am. Chem. Soc. 126:11067–76
    [Google Scholar]
  119. 119.  Schneider F, Grimm C, Hegemann P 2015. Biophysics of channelrhodopsin. Annu. Rev. Biophys. 44:167–86
    [Google Scholar]
  120. 120.  Schotte F, Cho HS, Kaila VRI, Kamikubo H, Dashdorj N et al. 2012. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. PNAS 109:19256–61
    [Google Scholar]
  121. 121.  Schwinte P, Foerstendorf H, Hussain Z, Gartner W, Mroginski MA et al. 2008. FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations. Biophys. J. 95:1256–67
    [Google Scholar]
  122. 122.  Shieh T, Han M, Sakmar TP, Smith SO 1997. The steric trigger in rhodopsin activation. J. Mol. Biol. 269:373–84
    [Google Scholar]
  123. 123.  Solov'yov IA, Domratcheva T, Schulten K 2014. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance. Sci. Rep. 4:3845
    [Google Scholar]
  124. 124.  Song C, Psakis G, Lang C, Mailliet J, Gartner W et al. 2011. Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. PNAS 108:3842–47
    [Google Scholar]
  125. 125.  Spudich EN, Zhang W, Alam M, Spudich JL 1997. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base Asp-73 interhelical salt bridge. PNAS 94:4960–65
    [Google Scholar]
  126. 126.  Stelling AL, Ronayne KL, Nappa J, Tonge PJ, Meech SR 2007. Ultrafast structural dynamics in BLUF domains: transient infrared spectroscopy of AppA and its mutants. J. Am. Chem. Soc. 129:15556–64
    [Google Scholar]
  127. 127.  Surette MG, Stock JB 1996. Role of alpha-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J. Biol. Chem. 271:17966–73
    [Google Scholar]
  128. 128.  Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I et al. 2001. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem. 276:36493–500
    [Google Scholar]
  129. 129.  Takala H, Bjorling A, Berntsson O, Lehtivuori H, Niebling S et al. 2014. Signal amplification and transduction in phytochrome photosensors. Nature 509:245–49
    [Google Scholar]
  130. 130.  Thöing C, Oldemeyer S, Kottke T 2015. Microsecond deprotonation of aspartic acid and response of the α/β subdomain precede C-terminal signaling in the blue light sensor plant cryptochrome. J. Am. Chem. Soc. 137:5990–99
    [Google Scholar]
  131. 131.  Unno M, Kumauchi M, Sasaki J, Tokunaga F, Yamauchi S 2000. Evidence for a protonated and cis configuration chromophore in the photobleached intermediate of photoactive yellow protein. J. Am. Chem. Soc. 122:4233–34
    [Google Scholar]
  132. 132.  Unno M, Kumauchi M, Sasaki J, Tokunaga F, Yamauchi S 2002. Resonance Raman spectroscopy and quantum chemical calculations reveal structural changes in the active site of photoactive yellow protein. Biochemistry 41:5668–74
    [Google Scholar]
  133. 133.  Vaidya AT, Top D, Manahan CC, Tokuda JM, Zhang S et al. 2013. Flavin reduction activates Drosophila cryptochrome. PNAS 110:20455–60
    [Google Scholar]
  134. 134.  van der Horst MA, Hellingwerf KJ 2004. Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc. Chem. Res. 37:13–20
    [Google Scholar]
  135. 135.  van Thor JJ, Borucki B, Crielaard W, Otto H, Lamparter T et al. 2001. Light-induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1. Biochemistry 40:11460–71
    [Google Scholar]
  136. 136.  Vogel R, Fan GB, Sheves M, Siebert F 2000. The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study. Biochemistry 39:8895–908
    [Google Scholar]
  137. 137.  Wagner JR, Zhang J, von Stetten D, Guenther M, Murgida DH et al. 2008. Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. J. Biol. Chem. 283:12212–26
    [Google Scholar]
  138. 138.  Warshel A. 1976. Bicycle-pedal model for 1st step in vision process. Nature 260:679–83
    [Google Scholar]
  139. 139.  Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M et al. 2008. A photoactive carotenoid protein acting as light intensity sensor. PNAS 105:12075–80
    [Google Scholar]
  140. 140.  Xie A, Hoff WD, Kroon AR, Hellingwerf KJ 1996. Glu46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein. Biochemistry 35:14671–78
    [Google Scholar]
  141. 141.  Xie A, Kelemen L, Hendriks J, White BJ, Hellingwerf KJ, Hoff WD 2001. Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation. Biochemistry 40:1510–17
    [Google Scholar]
  142. 142.  Yan B, Nakanishi K, Spudich JL 1991. Mechanism of activation of sensory rhodopsin I: evidence for a steric trigger. PNAS 88:9412–16
    [Google Scholar]
  143. 143.  Yang X, Ren Z, Kuk J, Moffat K 2011. Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome. Nature 479:428–32
    [Google Scholar]
  144. 144.  Yee EF, Diensthuber RP, Vaidya AT, Borbat PP, Engelhard C et al. 2015. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue. Nat. Commun. 6:10079
    [Google Scholar]
  145. 145.  Yoshizawa T, Wald G 1963. Pre-lumirhodopsin and bleaching of visual pigments. Nature 197:1279–86
    [Google Scholar]
  146. 146.  Zaitseva E, Brown MF, Vogel R 2010. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta IIa conformational substate. J. Am. Chem. Soc. 132:4815–21
    [Google Scholar]
  147. 147.  Zayner JP, Antoniou C, Sosnick TR 2012. The amino-terminal helix modulates light-activated conformational changes in AsLOV2. J. Mol. Biol. 419:61–74
    [Google Scholar]
  148. 148.  Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR 2011. Structure of full-length Drosophila cryptochrome. Nature 480:396–99
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-033047
Loading
/content/journals/10.1146/annurev-biophys-070317-033047
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error