1932

Abstract

In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-033259
2018-05-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-033259.html?itemId=/content/journals/10.1146/annurev-biophys-070317-033259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adolf F, Herrmann A, Hellwig A, Beck R, Brugger B, Wieland FT 2013. Scission of COPI and COPII vesicles is independent of GTP hydrolysis. Traffic 14:922–32
    [Google Scholar]
  2. 2.  Adolf F, Rhiel M, Reckmann I, Wieland FT 2016. Sec24C/D-isoform-specific sorting of the preassembled ER-Golgi Q-SNARE complex. Mol. Biol. Cell 27:2697–707
    [Google Scholar]
  3. 3.  Andag U, Schmitt HD 2003. Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat. J. Biol. Chem. 278:51722–34
    [Google Scholar]
  4. 4.  Antonny B, Gounon P, Schekman R, Orci L 2003. Self-assembly of minimal COPII cages. EMBO Rep 4:419–24
    [Google Scholar]
  5. 5.  Antonny B, Madden D, Hamamoto S, Orci L, Schekman R 2001. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3:531–37
    [Google Scholar]
  6. 6.  Appenzeller C, Andersson H, Kappeler F, Hauri HP 1999. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat. Cell Biol. 1:330–34
    [Google Scholar]
  7. 7.  Arakel EC, Richter KP, Clancy A, Schwappach B 2016. δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function. PNAS 113:6916–21
    [Google Scholar]
  8. 8.  Aridor M, Bannykh SI, Rowe T, Balch WE 1995. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131:875–93
    [Google Scholar]
  9. 9.  Austin C, Hinners I, Tooze SA 2000. Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J. Biol. Chem. 275:21862–69
    [Google Scholar]
  10. 10.  Baker D, Hicke L, Rexach M, Schleyer M, Schekman R 1988. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 54:335–44
    [Google Scholar]
  11. 11.  Bannykh SI, Rowe T, Balch WE 1996. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135:19–35
    [Google Scholar]
  12. 12.  Barlowe C, Helenius A 2016. Cargo capture and bulk flow in the early secretory pathway. Annu. Rev. Cell Dev. Biol. 32:197–222
    [Google Scholar]
  13. 13.  Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S et al. 1994. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895–907
    [Google Scholar]
  14. 14.  Barlowe C, Schekman R 1993. SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER. Nature 365:347–49
    [Google Scholar]
  15. 15.  Beck R, Prinz S, Diestelkötter-Bachert P, Röhling S, Adolf F et al. 2011. Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission. J. Cell Biol. 194:765–77
    [Google Scholar]
  16. 16.  Berger J, Hauber J, Hauber R, Geiger R, Cullen BR 1988. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66:1–10
    [Google Scholar]
  17. 17.  Béthune J, Kol M, Hoffmann J, Reckmann I, Brugger B, Wieland F 2006. Coatomer, the coat protein of COPI transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins. Mol. Cell Biol. 26:8011–21
    [Google Scholar]
  18. 18.  Bhandari D, Zhang J, Menon S, Lord C, Chen S et al. 2013. Sit4p/PP6 regulates ER-to-Golgi traffic by controlling the dephosphorylation of COPII coat subunits. Mol. Biol. Cell 24:2727–38
    [Google Scholar]
  19. 19.  Bhattacharya N, O'Donnell J, Stagg SM 2012. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol. 420:324–34
    [Google Scholar]
  20. 20.  Bi X, Corpina RA, Goldberg J 2002. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419:271–77
    [Google Scholar]
  21. 21.  Bi X, Mancias JD, Goldberg J 2007. Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31. Dev. Cell 13:635–45
    [Google Scholar]
  22. 22.  Bielli A, Haney CJ, Gabreski G, Watkins SC, Bannykh SI, Aridor M 2005. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 171:919–24
    [Google Scholar]
  23. 23.  Bigay J, Gounon P, Robineau S, Antonny B 2003. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426:563–66
    [Google Scholar]
  24. 24.  Boyadjiev SA, Fromme JC, Ben J, Chong SS, Nauta C et al. 2006. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 38:1192–97
    [Google Scholar]
  25. 25.  Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M et al. 1999. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96:495–506
    [Google Scholar]
  26. 26.  Bykov YS, Schaffer M, Dodonova SO, Albert S, Plitzko JM et al. 2017. The structure of the COPI coat determined within the cell. eLife 6:e32493
    [Google Scholar]
  27. 27.  Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ 2002. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109:523–35
    [Google Scholar]
  28. 28.  Cosson P, Lefkir Y, Demolliere C, Letourneur F 1998. New COP1-binding motifs involved in ER retrieval. EMBO J 17:6863–70
    [Google Scholar]
  29. 29.  Cukierman E, Huber I, Rotman M, Cassel D 1995. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270:1999–2002
    [Google Scholar]
  30. 30.  d'Enfert C, Barlowe C, Nishikawa S, Nakano A, Schekman R 1991. Structural and functional dissection of a membrane glycoprotein required for vesicle budding from the endoplasmic reticulum. Mol. Cell Biol. 11:5727–34
    [Google Scholar]
  31. 31.  d'Enfert C, Wuestehube LJ, Lila T, Schekman R 1991. Sec12p-dependent membrane binding of the small GTP-binding protein Sar1p promotes formation of transport vesicles from the ER. J. Cell Biol. 114:663–70
    [Google Scholar]
  32. 32.  Dacks JB, Robinson MS 2017. Outerwear through the ages: evolutionary cell biology of vesicle coats. Curr. Opin. Cell Biol. 47:108–16
    [Google Scholar]
  33. 33.  Dancourt J, Barlowe C 2010. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79:777–802
    [Google Scholar]
  34. 34.  Dancourt J, Zheng H, Bottanelli F, Allgeyer ES, Bewersdorf J et al. 2016. Small cargoes pass through synthetically glued Golgi stacks. FEBS Lett 590:1675–86
    [Google Scholar]
  35. 35.  Dodonova SO, Aderhold P, Kopp J, Ganeva I, Röhling S et al. 2017. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. eLife 6:e26691
    [Google Scholar]
  36. 36.  Dodonova SO, Diestelkoetter-Bachert P, von Appen A, Hagen WJ, Beck R et al. 2015. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349:195–98
    [Google Scholar]
  37. 37.  Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A et al. 1998. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J. Cell Biol. 140:751–65
    [Google Scholar]
  38. 38.  Duden R, Griffiths G, Frank R, Argos P, Kreis TE 1991. Beta-COP, a 110 kd protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64:649–65
    [Google Scholar]
  39. 39.  Eugster A, Frigerio G, Dale M, Duden R 2000. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19:3905–17
    [Google Scholar]
  40. 40.  Eugster A, Frigerio G, Dale M, Duden R 2004. The α- and β′-COP WD40 domains mediate cargo-selective interactions with distinct di-lysine motifs. Mol. Biol. Cell 15:1011–23
    [Google Scholar]
  41. 41.  Faini M, Beck R, Wieland FT, Briggs JA 2013. Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol 23:279–88
    [Google Scholar]
  42. 42.  Faini M, Prinz S, Beck R, Schorb M, Riches JD et al. 2012. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 336:1451–54
    [Google Scholar]
  43. 43.  Fath S, Mancias JD, Bi X, Goldberg J 2007. Structure and organization of coat proteins in the COPII cage. Cell 129:1325–36
    [Google Scholar]
  44. 44.  Fiedler K, Veit M, Stamnes MA, Rothman JE 1996. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 273:1396–99
    [Google Scholar]
  45. 45.  Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC et al. 2004. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432:573–79
    [Google Scholar]
  46. 46.  Fotin A, Kirchhausen T, Grigorieff N, Harrison SC, Walz T, Cheng Y 2006. Structure determination of clathrin coats to subnanometer resolution by single particle cryo-electron microscopy. J. Struct. Biol. 156:453–60
    [Google Scholar]
  47. 47.  Frigerio G, Grimsey N, Dale M, Majoul I, Duden R 2007. Two human ARFGAPs associated with COP-I-coated vesicles. Traffic 8:1644–55
    [Google Scholar]
  48. 48.  Fromme JC, Schekman R 2005. COPII-coated vesicles: flexible enough for large cargo?. Curr. Opin. Cell Biol. 17:345–52
    [Google Scholar]
  49. 49.  Gallon M, Cullen PJ 2015. Retromer and sorting nexins in endosomal sorting. Biochem. Soc. Trans. 43:33–47
    [Google Scholar]
  50. 50.  Garbes L, Kim K, Riess A, Hoyer-Kuhn H, Beleggia F et al. 2015. Mutations in SEC24D, encoding a component of the COPII machinery, cause a syndromic form of osteogenesis imperfecta. Am. J. Hum. Genet. 96:432–39
    [Google Scholar]
  51. 51.  Garcia-Mata R, Szul T, Alvarez C, Sztul E 2003. ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum–Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol. Biol. Cell 14:2250–61
    [Google Scholar]
  52. 52.  Geva Y, Schuldiner M 2014. The back and forth of cargo exit from the endoplasmic reticulum. Curr. Biol. 24:R130–36
    [Google Scholar]
  53. 53.  Glick BS, Luini A 2011. Models for Golgi traffic: a critical assessment. Cold Spring Harb. Perspect. Biol. 3:a005215
    [Google Scholar]
  54. 54.  Goldberg J. 1999. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96:893–902
    [Google Scholar]
  55. 55.  Gomez-Navarro N, Miller E 2016. Protein sorting at the ER-Golgi interface. J. Cell Biol. 215:769–78
    [Google Scholar]
  56. 56.  Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R 2017. COPII-coated membranes function as transport carriers of intracellular procollagen I. J. Cell Biol. 216:1745–59
    [Google Scholar]
  57. 57.  Guo Y, Sirkis DW, Schekman R 2014. Protein sorting at the trans-Golgi network. Annu. Rev. Cell Dev. Biol. 30:169–206
    [Google Scholar]
  58. 58.  Hara-Kuge S, Kuge O, Orci L, Amherdt M, Ravazzola M et al. 1994. En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J. Cell Biol. 124:883–92
    [Google Scholar]
  59. 59.  Hariri H, Bhattacharya N, Johnson K, Noble AJ, Stagg SM 2014. Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway. J. Mol. Biol. 426:3811–26
    [Google Scholar]
  60. 60.  Hobman TC, Zhao B, Chan H, Farquhar MG 1998. Immunoisolation and characterization of a subdomain of the endoplasmic reticulum that concentrates proteins involved in COPII vesicle biogenesis. Mol. Biol. Cell 9:1265–78
    [Google Scholar]
  61. 61.  Hong W, Tang BL 1993. Protein trafficking along the exocytotic pathway. BioEssays 15:231–38
    [Google Scholar]
  62. 62.  Huang M, Weissman JT, Béraud-Dufour S, Luan P, Wang C et al. 2001. Crystal structure of Sar1-GDP at 1.7 Å resolution and the role of the NH2 terminus in ER export. J. Cell Biol. 155:937–48
    [Google Scholar]
  63. 63.  Inouye S, Tsuji FI 1992. Monitoring gene expression in Chinese hamster ovary cells using secreted apoaequorin. Anal. Biochem. 201:114–18
    [Google Scholar]
  64. 64.  Ishikawa Y, Ito S, Nagata K, Sakai LY, Bachinger HP 2016. Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. PNAS 113:E6036–44
    [Google Scholar]
  65. 65.  Ismail SA, Vetter IR, Sot B, Wittinghofer A 2010. The structure of an Arf-ArfGAP complex reveals a Ca2+ regulatory mechanism. Cell 141:812–21
    [Google Scholar]
  66. 66.  Iwasaki H, Yorimitsu T, Sato K 2017. Microscopic analysis of reconstituted COPII coat polymerization and Sec16 dynamics. J. Cell Sci. 130:2893–902
    [Google Scholar]
  67. 67.  Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC et al. 2010. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141:1220–29
    [Google Scholar]
  68. 68.  Jackson LP, Lewis M, Kent HM, Edeling MA, Evans PR et al. 2012. Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev. Cell 23:1255–62
    [Google Scholar]
  69. 69.  Jamieson JD, Palade GE 1967. Intracellular transport of secretory proteins in the pancreatic exocrine cell. I. Role of the peripheral elements of the Golgi complex. J. Cell Biol. 34:577–96
    [Google Scholar]
  70. 70.  Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgartel C et al. 2012. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:495–500
    [Google Scholar]
  71. 71.  Johnson N, Powis K, High S 2013. Post-translational translocation into the endoplasmic reticulum. Biochim. Biophys. Acta 1833:2403–9
    [Google Scholar]
  72. 72.  Kappeler F, Klopfenstein DR, Foguet M, Paccaud JP, Hauri HP 1997. The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a cytosolic endoplasmic reticulum–exit determinant interacting with COPII. J. Biol. Chem. 272:31801–8
    [Google Scholar]
  73. 73.  Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR et al. 2008. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456:976–79
    [Google Scholar]
  74. 74.  Kirchhausen T, Owen D, Harrison SC 2014. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 6:a016725
    [Google Scholar]
  75. 75.  Kliouchnikov L, Bigay J, Mesmin B, Parnis A, Rawet M et al. 2009. Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat. Mol. Biol. Cell 20:859–69
    [Google Scholar]
  76. 76.  Kung LF, Pagant S, Futai E, D'Arcangelo JG, Buchanan R et al. 2012. Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J 31:1014–27
    [Google Scholar]
  77. 77.  Kurokawa K, Suda Y, Nakano A 2016. Sar1 localizes at the rims of COPII-coated membranes in vivo. J. Cell Sci. 129:3231–37
    [Google Scholar]
  78. 78.  Langer JD, Roth CM, Béthune J, Stoops EH, Brugger B et al. 2008. A conformational change in the α-subunit of coatomer induced by ligand binding to γ-COP revealed by single-pair FRET. Traffic 9:597–607
    [Google Scholar]
  79. 79.  Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D et al. 2001. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J. Cell Biol. 155:1199–212
    [Google Scholar]
  80. 80.  Laukkanen ML, Oker-Blom C, Keinanen K 1996. Secretion of green fluorescent protein from recombinant baculovirus-infected insect cells. Biochem. Biophys. Res. Commun. 226:755–61
    [Google Scholar]
  81. 81.  Lavieu G, Dunlop MH, Lerich A, Zheng H, Bottanelli F, Rothman JE 2014. The Golgi ribbon structure facilitates anterograde transport of large cargoes. Mol. Biol. Cell 25:3028–36
    [Google Scholar]
  82. 82.  Lavieu G, Zheng H, Rothman JE 2013. Stapled Golgi cisternae remain in place as cargo passes through the stack. eLife 2:e00558
    [Google Scholar]
  83. 83.  Lee C, Goldberg J 2010. Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats. Cell 142:123–32
    [Google Scholar]
  84. 84.  Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R 2005. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122:605–17
    [Google Scholar]
  85. 85.  Liu J, O'Kane DJ, Escher A 1997. Secretion of functional Renilla reniformis luciferase by mammalian cells. Gene 203:141–48
    [Google Scholar]
  86. 86.  Liu JJ. 2016. Retromer-mediated protein sorting and vesicular trafficking. J. Genet. Genomics 43:165–77
    [Google Scholar]
  87. 87.  Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D et al. 2011. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473:181–86
    [Google Scholar]
  88. 88.  Luo R, Ha VL, Hayashi R, Randazzo PA 2009. Arf GAP2 is positively regulated by coatomer and cargo. Cell Signal 21:1169–79
    [Google Scholar]
  89. 89.  Ma W, Goldberg J 2016. TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats. PNAS 113:10061–66
    [Google Scholar]
  90. 90.  Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R et al. 2016. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351:969–72
    [Google Scholar]
  91. 91.  Malsam J, Satoh A, Pelletier L, Warren G 2005. Golgin tethers define subpopulations of COPI vesicles. Science 307:1095–98
    [Google Scholar]
  92. 92.  Mancias JD, Goldberg J 2007. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol. Cell 26:403–14
    [Google Scholar]
  93. 93.  Mancias JD, Goldberg J 2008. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J 27:2918–28
    [Google Scholar]
  94. 94.  Matsuoka K, Orci L, Amherdt M, Bednarek SY, Hamamoto S et al. 1998. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93:263–75
    [Google Scholar]
  95. 95.  McMahon HT, Gallop JL 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96
    [Google Scholar]
  96. 96.  Michelsen K, Schmid V, Metz J, Heusser K, Liebel U et al. 2007. Novel cargo-binding site in the β and δ subunits of coatomer. J. Cell Biol. 179:209–17
    [Google Scholar]
  97. 97.  Miller E, Antonny B, Hamamoto S, Schekman R 2002. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21:6105–13
    [Google Scholar]
  98. 98.  Miller EA, Beilharz TH, Malkus PN, Lee MC, Hamamoto S et al. 2003. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:497–509
    [Google Scholar]
  99. 99.  Montegna EA, Bhave M, Liu Y, Bhattacharyya D, Glick BS 2012. Sec12 binds to Sec16 at transitional ER sites. PLOS ONE 7:e31156
    [Google Scholar]
  100. 100.  Mossessova E, Bickford LC, Goldberg J 2003. SNARE selectivity of the COPII coat. Cell 114:483–95
    [Google Scholar]
  101. 101.  Muniz M, Riezman H 2016. Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface. J. Lipid Res. 57:352–60
    [Google Scholar]
  102. 102.  Nishimura N, Balch WE 1997. A di-acidic signal required for selective export from the endoplasmic reticulum. Science 277:556–58
    [Google Scholar]
  103. 103.  Noble AJ, Zhang Q, O'Donnell J, Hariri H, Bhattacharya N et al. 2013. A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry. Nat. Struct. Mol. Biol. 20:167–73
    [Google Scholar]
  104. 104.  Novick P, Field C, Schekman R 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–15
    [Google Scholar]
  105. 105.  Nyathi Y, Wilkinson BM, Pool MR 2013. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim. Biophys. Acta 1833:2392–402
    [Google Scholar]
  106. 106.  Orci L, Ravazzola M, Meda P, Holcomb C, Moore HP et al. 1991. Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. PNAS 88:8611–15
    [Google Scholar]
  107. 107.  Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A et al. 1997. Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90:335–49
    [Google Scholar]
  108. 108.  Pagant S, Wu A, Edwards S, Diehl F, Miller EA 2015. Sec24 is a coincidence detector that simultaneously binds two signals to drive ER export. Curr. Biol. 25:403–12
    [Google Scholar]
  109. 109.  Palade G. 1975. Intracellular aspects of the process of protein synthesis. Science 189:347–58
    [Google Scholar]
  110. 110.  Pellett PA, Dietrich F, Bewersdorf J, Rothman JE, Lavieu G 2013. Inter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes. eLife 2:e01296
    [Google Scholar]
  111. 111.  Peng R, Grabowski R, De Antoni A Gallwitz D 1999. Specific interaction of the yeast cis-Golgi syntaxin Sed5p and the coat protein complex II component Sec24p of endoplasmic reticulum–derived transport vesicles. PNAS 96:3751–56
    [Google Scholar]
  112. 112.  Pevzner I, Strating J, Lifshitz L, Parnis A, Glaser F et al. 2012. Distinct role of subcomplexes of the COPI coat in the regulation of ArfGAP2 activity. Traffic 13:849–56
    [Google Scholar]
  113. 113.  Pfeffer SR, Rothman JE 1987. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56:829–52
    [Google Scholar]
  114. 114.  Poon PP, Cassel D, Spang A, Rotman M, Pick E et al. 1999. Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J 18:555–64
    [Google Scholar]
  115. 115.  Pryer NK, Salama NR, Schekman R, Kaiser CA 1993. Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J. Cell Biol. 120:865–75
    [Google Scholar]
  116. 116.  Pucadyil TJ, Schmid SL 2009. Conserved functions of membrane active GTPases in coated vesicle formation. Science 325:1217–20
    [Google Scholar]
  117. 117.  Rawet M, Levi-Tal S, Szafer-Glusman E, Parnis A, Cassel D 2010. ArfGAP1 interacts with coat proteins through tryptophan-based motifs. Biochem. Biophys. Res. Commun. 394:553–57
    [Google Scholar]
  118. 118.  Reinhard C, Harter C, Bremser M, Brugger B, Sohn K et al. 1999. Receptor-induced polymerization of coatomer. PNAS 96:1224–48
    [Google Scholar]
  119. 119.  Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH 2013. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152:755–67
    [Google Scholar]
  120. 120.  Roberg KJ, Crotwell M, Espenshade P, Gimeno R, Kaiser CA 1999. LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J. Cell Biol. 145:659–72
    [Google Scholar]
  121. 121.  Robinson MS. 2015. Forty years of clathrin-coated vesicles. Traffic 16:1210–38
    [Google Scholar]
  122. 122.  Saito K, Chen M, Bard F, Chen S, Zhou H et al. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136:891–902
    [Google Scholar]
  123. 123.  Saito K, Katada T 2015. Mechanisms for exporting large-sized cargoes from the endoplasmic reticulum. Cell Mol. Life Sci. 72:3709–20
    [Google Scholar]
  124. 124.  Saito K, Yamashiro K, Ichikawa Y, Erlmann P, Kontani K et al. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22:2301–8
    [Google Scholar]
  125. 125.  Saito K, Yamashiro K, Shimazu N, Tanabe T, Kontani K, Katada T 2014. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. J. Cell Biol. 206:751–62
    [Google Scholar]
  126. 126.  Salama NR, Yeung T, Schekman RW 1993. The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins. EMBO J 12:4073–82
    [Google Scholar]
  127. 127.  Sauvageau E, Rochdi MD, Oueslati M, Hamdan FF, Percherancier Y et al. 2014. CNIH4 interacts with newly synthesized GPCR and controls their export from the endoplasmic reticulum. Traffic 15:383–400
    [Google Scholar]
  128. 128.  Serafini T, Stenbeck G, Brecht A, Lottspeich F, Orci L et al. 1991. A coat subunit of Golgi-derived non-clathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein β-adaptin. Nature 349:215–20
    [Google Scholar]
  129. 129.  Shibata Y, Hu J, Kozlov MM, Rapoport TA 2009. Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 25:329–54
    [Google Scholar]
  130. 130.  Shimoni Y, Kurihara T, Ravazzola M, Amherdt M, Orci L, Schekman R 2000. Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. J. Cell Biol. 151:973–84
    [Google Scholar]
  131. 131.  Sohn K, Orci L, Ravazzola M, Amherdt M, Bremser M et al. 1996. A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J. Cell Biol. 135:1239–48
    [Google Scholar]
  132. 132.  Spang A, Matsuoka K, Hamamoto S, Schekman R, Orci L 1998. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. PNAS 95:11199–204
    [Google Scholar]
  133. 133.  Stagg SM, Gurkan C, Fowler DM, LaPointe P, Foss TR et al. 2006. Structure of the Sec13/31 COPII coat cage. Nature 439:234–38
    [Google Scholar]
  134. 134.  Stagg SM, LaPointe P, Razvi A, Gurkan C, Potter CS et al. 2008. Structural basis for cargo regulation of COPII coat assembly. Cell 134:474–84
    [Google Scholar]
  135. 135.  Stephens DJ, Pepperkok R 2002. Imaging of procollagen transport reveals COPI-dependent cargo sorting during ER-to-Golgi transport in mammalian cells. J. Cell Sci. 115:1149–60
    [Google Scholar]
  136. 136.  Sun Z, Anderl F, Frohlich K, Zhao L, Hanke S et al. 2007. Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP. Traffic 8:582–93
    [Google Scholar]
  137. 137.  Szafer E, Rotman M, Cassel D 2001. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane. J. Biol. Chem. 276:47834–39
    [Google Scholar]
  138. 138.  Tanabe T, Maeda M, Saito K, Katada T 2016. Dual function of cTAGE5 in collagen export from the endoplasmic reticulum. Mol. Biol. Cell 27:2008–13
    [Google Scholar]
  139. 139.  Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE 1993. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell Biol. 123:1365–71
    [Google Scholar]
  140. 140.  Thor F, Gautschi M, Geiger R, Helenius A 2009. Bulk flow revisited: transport of a soluble protein in the secretory pathway. Traffic 10:1819–30
    [Google Scholar]
  141. 141.  Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A et al. 2012. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337:1668–72
    [Google Scholar]
  142. 142.  Waters MG, Serafini T, Rothman JE 1991. ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349:248–51
    [Google Scholar]
  143. 143.  Watson PJ, Frigerio G, Collins BM, Duden R, Owen DJ 2004. γ-COP appendage domain–structure and function. Traffic 5:79–88
    [Google Scholar]
  144. 144.  Wiedmann M, Huth A, Rapoport TA 1984. Xenopus oocytes can secrete bacterial beta-lactamase. Nature 309:637–39
    [Google Scholar]
  145. 145.  Wieland FT, Gleason ML, Serafini TA, Rothman JE 1987. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50:289–300
    [Google Scholar]
  146. 146.  Yorimitsu T, Sato K 2012. Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites. Mol. Biol. Cell 23:2930–42
    [Google Scholar]
  147. 147.  Yoshihisa T, Barlowe C, Schekman R 1993. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259:1466–68
    [Google Scholar]
  148. 148.  Yu X, Breitman M, Goldberg J 2012. A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes. Cell 148:530–42
    [Google Scholar]
  149. 149.  Zanetti G, Prinz S, Daum S, Meister A, Schekman R et al. 2013. The structure of the COPII transport-vesicle coat assembled on membranes. eLife 2:e00951
    [Google Scholar]
  150. 150.  Zhao L, Helms JB, Brügger B, Harter C, Martoglio B et al. 1997. Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit β. PNAS 94:4418–23
    [Google Scholar]
  151. 151.  Zhao L, Helms JB, Brunner J, Wieland FT 1999. GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J. Biol. Chem. 274:14198–203
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-033259
Loading
/content/journals/10.1146/annurev-biophys-070317-033259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error