1932

Abstract

The study of membrane proteins and receptors presents many challenges to researchers wishing to perform biophysical measurements to determine the structure, function, and mechanism of action of such components. In most cases, to be fully functional, proteins and receptors require the presence of a native phospholipid bilayer. In addition, many complex multiprotein assemblies involved in cellular communication require an integral membrane protein as well as a membrane surface for assembly and information transfer to soluble partners in a signaling cascade. Incorporation of membrane proteins into Nanodiscs renders the target soluble and provides a native bilayer environment with precisely controlled composition of lipids, cholesterol, and other components. Likewise, Nanodiscs provide a surface of defined area useful in revealing lipid specificity and affinities for the assembly of signaling complexes. In this review, we highlight several biophysical techniques made possible through the use of Nanodiscs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-033620
2018-05-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070816-033620.html?itemId=/content/journals/10.1146/annurev-biophys-070816-033620&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Akkaladevi N, Mukherjee S, Katayama H, Janowiak B, Patel D et al. 2015. Following natures lead: on the construction of membrane-inserted toxins in lipid bilayer nanodiscs. J. Membr. Biol. 248:595–607
    [Google Scholar]
  2. 2.  Alami M, Dalal K, Lelj-Garolla B, Sligar SG, Duong F 2007. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26:1995–2004
    [Google Scholar]
  3. 3.  Anthis NJ, Campbell ID 2011. The tail of integrin activation. Trends Biochem Sci 36:191–98
    [Google Scholar]
  4. 4.  Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT et al. 2009. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J 28:3623–32
    [Google Scholar]
  5. 5.  Baas BJ, Denisov IG, Sligar SG 2004. Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch. Biochem. Biophys. 430:218–28
    [Google Scholar]
  6. 6.  Barbacid M. 1987. ras genes. Annu. Rev. Biochem. 56:779–827
    [Google Scholar]
  7. 7.  Barsukov IL, Prescot A, Bate N, Patel B, Floyd DN et al. 2003. Phosphatidylinositol phosphate kinase type 1γ and β1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J. Biol. Chem. 278:31202–9
    [Google Scholar]
  8. 8.  Bayburt TH, Carlson JW, Sligar SG 1998. reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J. Struct. Biol. 123:37–44
    [Google Scholar]
  9. 9.  Bayburt TH, Carlson JW, Sligar SG 2000. Single molecule height measurements on a membrane protein in nanometer-scale phospholipid bilayer disks. Langmuir 16:5993–97
    [Google Scholar]
  10. 10.  Bayburt TH, Grinkova YV, Sligar SG 2002. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–56
    [Google Scholar]
  11. 11.  Bayburt TH, Grinkova YV, Sligar SG 2006. Assembly of single bacteriorhodopsin trimers in bilayer Nanodiscs. Arch. Biochem. Biophys. 450:215–22
    [Google Scholar]
  12. 12.  Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG 2007. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282:14875–81
    [Google Scholar]
  13. 13.  Bayburt TH, Sligar SG 2002. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. PNAS 99:6725–30
    [Google Scholar]
  14. 14.  Bayburt TH, Sligar SG 2010. Membrane protein assembly into Nanodiscs. FEBS Lett 584:1721–27
    [Google Scholar]
  15. 15.  Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC et al. 2011. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 286:1420–28
    [Google Scholar]
  16. 16.  Baylon JL, Lenov IL, Sligar SG, Tajkhorshid E 2013. Characterizing the membrane-bound state of cytochrome P450 3A4: structure, depth of insertion, and orientation. J. Am. Chem. Soc. 135:8542–51
    [Google Scholar]
  17. 17.  Bhattacharya P, Grimme S, Ganesh B, Gopisetty A, Sheng JR et al. 2010. Nanodisc-incorporated hemagglutinin provides protective immunity against influenza virus infection. J. Virol. 84:361–71
    [Google Scholar]
  18. 18.  Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL 2006. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. PNAS 103:11509–14
    [Google Scholar]
  19. 19.  Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J 1998. The structural basis of the activation of Ras by Sos. Nature 394:337–43
    [Google Scholar]
  20. 20.  Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW 2001. Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim. Biophys. Acta 1531:4–46
    [Google Scholar]
  21. 21.  Calderwood DA. 2004. Talin controls integrin activation. Biochem. Soc. Trans. 32:434–37
    [Google Scholar]
  22. 22.  Calderwood DA, Campbell ID, Critchley DR 2013. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14:503–17
    [Google Scholar]
  23. 23.  Calderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T et al. 2003. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. PNAS 100:2272–77
    [Google Scholar]
  24. 24.  Campbell ID, Ginsberg MH 2004. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem. Sci. 29:429–35
    [Google Scholar]
  25. 25.  Carlson JW, Bayburt T, Sligar SG 2000. Nanopatterning phospholipid bilayers. Langmuir 16:3927–31
    [Google Scholar]
  26. 25a.  Castellano FN, Dattelbaum JD, Lakowicz JR 1998. Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal. Biochem. 255:165–70
    [Google Scholar]
  27. 26.  Choi W-S, Rice WJ, Stokes DL, Coller BS 2013. Three-dimensional reconstruction of intact human integrin αIIbβ3: new implications for activation-dependent ligand binding. Blood 122:4165–71
    [Google Scholar]
  28. 27.  Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ 2014. Drugging the undruggable RAS: mission possible?. Nat. Rev. Drug Discov. 13:828–51
    [Google Scholar]
  29. 28.  Critchley DR. 2009. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu. Rev. Biophys. 38:235–54
    [Google Scholar]
  30. 29.  Dai A, Ye F, Taylor DW, Hu G, Ginsberg MH, Taylor KA 2015. The structure of a full-length membrane-embedded Integrin bound to a physiological ligand. J. Biol. Chem. 290:27168–75
    [Google Scholar]
  31. 30.  Dalal K, Chan CS, Sligar SG, Duong F 2012. Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. PNAS 109:4104–9
    [Google Scholar]
  32. 31.  Dalal K, Nguyen N, Alami M, Tan J, Moraes TF et al. 2009. Structure, binding, and activity of Syd, a SecY-interacting protein. J. Biol. Chem. 284:7897–902
    [Google Scholar]
  33. 32.  Das A, Sligar SG 2009. Modulation of the cytochrome P450 reductase redox potential by the phospholipid bilayer. Biochemistry 48:12104–12
    [Google Scholar]
  34. 33.  Das A, Zhao J, Schatz GC, Sligar SG, Van Duyne RP 2009. Screening of type I and II drug binding to human cytochrome P450-3A4 in Nanodiscs by localized surface plasmon resonance spectroscopy. Anal. Chem. 81:3754–59
    [Google Scholar]
  35. 34.  de Pereda JM, Wegener KL, Santelli E, Bate N, Ginsberg MH et al. 2005. Structural basis for phosphatidylinositol phosphate kinase type Iγ binding to talin at focal adhesions. J. Biol. Chem. 280:8381–86
    [Google Scholar]
  36. 35.  Denisov IG, Dawson JH, Hager LP, Sligar SG 2007. The ferric-hydroperoxo complex of chloroperoxidase. Biochem. Biophys. Res. Commun. 363:954–58
    [Google Scholar]
  37. 36.  Denisov IG, Grinkova YV, Lazarides AA, Sligar SG 2004. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 126:3477–87
    [Google Scholar]
  38. 37.  Denisov IG, McLean MA, Shaw AW, Grinkova YV, Sligar SG 2005. Thermotropic phase transition in soluble nanoscale lipid bilayers. J. Phys. Chem. B. 109:15580–88
    [Google Scholar]
  39. 38.  Denisov IG, Sligar SG 2011. Cytochromes P450 in Nanodiscs. Biochim. Biophys. Acta 1814:223–29
    [Google Scholar]
  40. 39.  Denisov IG, Sligar SG 2016. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23:481–86
    [Google Scholar]
  41. 40.  Denisov IG, Sligar SG 2017. Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 117:4669–4713
    [Google Scholar]
  42. 41.  Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R et al. 2002. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin. Nature 420:85–89
    [Google Scholar]
  43. 42.  Dominik PK, Kossiakoff AA 2015. Phage display selections for affinity reagents to membrane proteins in nanodiscs. Methods Enzymol 557:219–45
    [Google Scholar]
  44. 43.  Efremov RG, Leitner A, Aebersold R, Raunser S 2015. Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39–43
    [Google Scholar]
  45. 44.  Feng Y, Sligar SG, Wand AJ 1994. Solution structure of apocytochrome b562. Nat. Struct. Biol. 1:30–35
    [Google Scholar]
  46. 45.  Forte TM, Nordhausen RW 1986. Electron microscopy of negatively stained lipoproteins. Methods Enzymol 128:442–57
    [Google Scholar]
  47. 46.  Gao Y, Cao E, Julius D, Cheng Y 2016. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–51
    [Google Scholar]
  48. 47.  García-Alvarez B, De Pereda JM, Calderwood DA, Ulmer TS, Critchley D et al. 2003. Structural determinants of integrin recognition by talin. Mol. Cell 11:49–58
    [Google Scholar]
  49. 48.  Gillette WK, Esposito D, Abreu Blanco M, Alexander P, Bindu L et al. 2015. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Sci. Rep. 5:15916
    [Google Scholar]
  50. 49.  Gingras AR, Bate N, Goult BT, Hazelwood L, Canestrelli I et al. 2008. The structure of the C-terminal actin-binding domain of talin. EMBO J 27:458–69
    [Google Scholar]
  51. 50.  Goksoy E, Ma YQ, Wang X, Kong X, Perera D et al. 2008. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol. Cell 31:124–33
    [Google Scholar]
  52. 51.  Goksoy E, Ma Y, Wang X, Kong X, Perera D et al. 2009. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol. Cell 31:124–33
    [Google Scholar]
  53. 52.  Goluch ED, Shaw AW, Sligar SG, Liu C 2008. Microfluidic patterning of nanodisc lipid bilayers and multiplexed analysis of protein interaction. Lab Chip 8:1723–28
    [Google Scholar]
  54. 53.  Gregory MC, McLean MA, Sligar SG 2017. Interaction of KRas4b with anionic membranes: a special role for PIP2. Biochem. Biophys. Res. Commun. 487:351–55
    [Google Scholar]
  55. 54.  Grinkova YV, Denisov IG, Sligar SG 2010. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng. Des. Sel. 23:843–48
    [Google Scholar]
  56. 55.  Hagn F, Etzkorn M, Raschle T, Wagner G 2013. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135:1919–25
    [Google Scholar]
  57. 56.  Hagn F, Wagner G 2015. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J. Biomol. NMR 61:249–60
    [Google Scholar]
  58. 57.  Ham M-H, Choi JH, Boghossian AA, Jeng ES, Graff RA et al. 2010. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat. Chem 2:929–36
    [Google Scholar]
  59. 58.  Hancock JF, Cadwallader K, Marshall CJ 1991. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J 10:641–46
    [Google Scholar]
  60. 59.  Her C, Filoti DI, McLean MA, Sligar SG, Ross JBA et al. 2016. The charge properties of phospholipid Nanodiscs. Biophys. J. 111:989–98
    [Google Scholar]
  61. 60.  Hoi KK, Robinson CV, Marty MT 2016. Unraveling the composition and behavior of heterogeneous lipid Nanodiscs by mass spectrometry. Anal. Chem. 88:6199–204
    [Google Scholar]
  62. 61.  Hynes RO. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–87
    [Google Scholar]
  63. 62.  Inagaki S, Ghirlando R, Grisshammer R 2013. Biophysical characterization of membrane proteins in nanodiscs. Methods 59:287–300. Erratum 2014. Methods 65:367–68
    [Google Scholar]
  64. 63.  Jonas A. 1986. Reconstitution of high-density lipoproteins. Methods Enzymol 128:553–82
    [Google Scholar]
  65. 64.  Kijac A, Shih AY, Nieuwkoop AJ, Schulten K, Sligar SG, Rienstra CM 2010. Lipid-protein correlations in nanoscale phospholipid bilayers by solid-state NMR. Biochemistry 49:9190–98
    [Google Scholar]
  66. 65.  Kijac AZ, Li Y, Sligar SG, Rienstra CM 2007. Magic-angle spinning solid-state NMR spectroscopy of Nanodisc-embedded human CYP3A4. Biochemistry 46:13696–703
    [Google Scholar]
  67. 66.  Kim C, Ye F, Hu X, Ginsberg MH 2012. Talin activates integrins by altering the topology of the β transmembrane domain. J. Cell Biol. 197:5605–11
    [Google Scholar]
  68. 67.  Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy New York: Springer, 3rd ed..
  69. 68.  Lam Q, Kato M, Cheruzel L 2016. Ru(II)-diimine functionalized metalloproteins: from electron transfer studies to light-driven biocatalysis. Biochim. Biophys. Acta 1857:589–97
    [Google Scholar]
  70. 69.  Laue TM, Hazard AL, Ridgeway TM, Yphantis DA 1989. Direct determination of macromolecular charge by equilibrium electrophoresis. Anal. Biochem. 182:377–82
    [Google Scholar]
  71. 70.  Laursen T, Borch J, Knudsen C, Bavishi K, Torta F et al. 2016. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354:890–93
    [Google Scholar]
  72. 71.  Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH 2009. RIAM activates integrins by linking talin to Ras GTPase membrane-targeting sequences. J. Biol. Chem. 284:5119–27
    [Google Scholar]
  73. 72.  Leitz AJ, Bayburt TH, Barnakov AN, Springer BA, Sligar SG 2006. Functional reconstitution of β2-adrenergic receptors utilizing self-assembling Nanodisc technology. Biotechniques 40:601–12
    [Google Scholar]
  74. 73.  Li Y, Kijac AZ, Sligar SG, Rienstra CM 2006. Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys. J. 91:3819–28
    [Google Scholar]
  75. 74.  Ling K, Doughman RL, Iyer VV, Firestone AJ, Bairstow SF et al. 2003. Tyrosine phosphorylation of type Iγ phosphatidylinositol phosphate kinase by Src regulates an integrin–talin switch. J. Cell Biol. 163:1339–49
    [Google Scholar]
  76. 75.  Luo BH, Carman CV, Springer TA 2007. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25:619–47
    [Google Scholar]
  77. 76.  Luo BH, Carman CV, Takagi J, Springer TA 2005. Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. PNAS 102:3679–84
    [Google Scholar]
  78. 77.  Luthra A, Gregory M, Grinkova YV, Denisov IG, Sligar SG 2013. Nanodiscs in the studies of membrane-bound cytochrome P450 enzymes. Methods Mol. Biol. 987:115–27
    [Google Scholar]
  79. 78.  Mak PJ, Gregory MC, Denisov IG, Sligar SG, Kincaid JR 2015. Unveiling the crucial intermediates in androgen production. PNAS 112:15856–61
    [Google Scholar]
  80. 79.  Makris TM, Denisov IG, Sligar SG 2003. Haem-oxygen reactive intermediates: catalysis by the two-step. Biochem. Soc. Trans. 31:516–19
    [Google Scholar]
  81. 80.  Marty MT, Das A, Sligar SG 2012. Ultra-thin layer MALDI mass spectrometry of membrane proteins in Nanodiscs. Anal. Bioanal. Chem. 402:721–29
    [Google Scholar]
  82. 81.  Marty MT, Hoi KK, Robinson CV 2016. Interfacing membrane mimetics with mass spectrometry. Acc. Chem. Res. 4:2459–67
    [Google Scholar]
  83. 82.  Marty MT, Sloan CDK, Bailey RC, Sligar SG 2012. Nonlinear analyte concentration gradients for one-step kinetic analysis employing optical microring resonators. Anal. Chem. 84:5556–64
    [Google Scholar]
  84. 83.  Marty MT, Wilcox KC, Klein WL, Sligar SG 2013. Nanodisc-solubilized membrane protein library reflects the membrane proteome. Anal. Bioanal. Chem. 405:4009–16
    [Google Scholar]
  85. 84.  Marty MT, Zhang H, Cui W, Blankenship RE, Gross ML, Sligar SG 2012. Native mass spectrometry characterization of intact nanodisc lipoprotein complexes. Anal. Chem. 84:8957–60
    [Google Scholar]
  86. 85.  Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GMC, Stathopulos PB et al. 2015. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. PNAS 112:6625–30
    [Google Scholar]
  87. 86.  McClary WD, Sumida JP, Scian M, Paço L, Atkins WM 2016. Membrane fluidity modulates thermal stability and ligand binding of cytochrome P4503A4 in lipid nanodiscs. Biochemistry 55:6258–68
    [Google Scholar]
  88. 87.  Molony L, McCaslin D, Abernethy J, Paschal B, Burridge K 1987. Properties of talin from chicken gizzard smooth muscle. J. Biol. Chem. 26:7790–95
    [Google Scholar]
  89. 88.  Morrissey JH, Pureza V, Davis-Harrison RL, Sligar SG, Rienstra CM et al. 2009. Protein-membrane interactions: blood clotting on nanoscale bilayers. J. Thromb. Haemost. 7:169–72
    [Google Scholar]
  90. 89.  Morrissey JH, Tajkhorshid E, Rienstra CM 2011. Nanoscale studies of protein-membrane interactions in blood clotting. J. Thromb. Haemost. 9:Suppl. 1162–67
    [Google Scholar]
  91. 90.  Muguruma M, Nishimuta S, Tomisaka Y, Ito T, Matsumura S 1995. Organization of the functional domains in membrane cytoskeletal protein talin. J. Biochem. 117:1036–42
    [Google Scholar]
  92. 91.  Näsvik Öjemyr L, von Ballmoos C, Gennis RB, Sligar SG, Brzezinski P 2012. Reconstitution of respiratory oxidases in membrane nanodiscs for investigation of proton-coupled electron transfer. FEBS Lett 586:640–45
    [Google Scholar]
  93. 92.  Planchard N, Point É, Dahmane T, Giusti F, Renault M et al. 2014. The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J. Membr. Biol. 247:827–42
    [Google Scholar]
  94. 93.  Puthenveetil R, Vinogradova O 2013. Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR. Proteins 81:1222–31
    [Google Scholar]
  95. 94.  Rees DJG, Ades SE, Singer SJ, Hynes RO 1990. Sequence and domain structure of talin. Nature 347:685–89
    [Google Scholar]
  96. 95.  Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK et al. 2009. Reconstitution of membrane proteins in phospholipid bilayer Nanodiscs. Methods Enzym 464:211–31
    [Google Scholar]
  97. 96.  Saltel F, Mortier E, Hytonen VP, Jacquier M-C, Zimmermann P et al. 2009. New PI(4,5)P2- and membrane proximal integrin–binding motifs in the talin head control β3-integrin clustering. J. Cell Biol. 187:715–31
    [Google Scholar]
  98. 97.  Scanu AM, Edelstein C 2008. HDL: bridging past and present with a look at the future. FASEB J 22:4044–54
    [Google Scholar]
  99. 98.  Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A et al. 1997. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–38
    [Google Scholar]
  100. 99.  Schuler MA, Denisov IG, Sligar SG 2013. Nanodiscs as a new tool to examine lipid-protein interactions. Lipid-Protein Interactions: Methods and Protocols JH Kleinschmidt 415–33 Totowa, NJ: Humana
    [Google Scholar]
  101. 100.  Scott JR, Willie A, McLean M, Stayton PS, Stigar SG et al. 1993. Intramolecular electron transfer in cytochrome b5 labeled with ruthenium(II) polypyridine complexes: rate measurements in the Marcus inverted region. J. Am. Chem. Soc. 115:6820–24
    [Google Scholar]
  102. 101.  Shaw AW. 2007. Protein-lipid interactions in soluble lipid bilayers PhD thesis, Univ. Illinois at Urbana-Champaign
  103. 102.  Shaw AW, McLean MA, Sligar SG 2004. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs. FEBS Lett 556:260–64
    [Google Scholar]
  104. 103.  Simanshu DK, Nissley DV, McCormick F 2017. RAS proteins and their regulators in human disease. Cell 170:17–33
    [Google Scholar]
  105. 104.  Skar-Gislinge N, Kynde SAR, Denisov IG, Ye X, Lenov I et al. 2015. Small-angle scattering determination of the shape and localization of human cytochrome P450 embedded in a phospholipid nanodisc environment. Acta Crystallogr. D 71:2412–21
    [Google Scholar]
  106. 105.  Sloan CD, Marty MT, Sligar SG, Bailey RC 2013. Interfacing lipid bilayer nanodiscs and silicon photonic sensor arrays for multiplexed protein–lipid and protein–membrane protein interaction screening. Anal. Chem. 85:2970–76
    [Google Scholar]
  107. 106.  Stephen AG, Esposito D, Bagni RK, McCormick F 2014. Dragging Ras back in the ring. Cancer Cell 25:272–81
    [Google Scholar]
  108. 107.  Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF 1994. Activation of Raf as a result of recruitment to the plasma-membrane. Science 264:1463–67
    [Google Scholar]
  109. 108.  Tark S-H, Das A, Sligar S, Dravid VP 2010. Nanomechanical detection of cholera toxin using microcantilevers functionalized with ganglioside nanodiscs. Nanotechnology 21:435502
    [Google Scholar]
  110. 109.  Tavoosi N, Davis-Harrison RL, Pogorelov TV, Ohkubo YZ, Arcario MJ et al. 2011. Molecular determinants of phospholipid synergy in blood clotting. J. Biol. Chem. 286:23247–53
    [Google Scholar]
  111. 109a.  Terpetsching E, Dattelbaum JD, Szmacinski H, Lakowicz JR 1997. Synthesis and spectral characterization of a thiol-reactive long-lifetime Ru(II) complex. Anal. Biochem. 252:241–45
    [Google Scholar]
  112. 110.  Ulmer TS, Calderwood DA, Ginsberg MH, Campbell ID 2003. Domain-specific interactions of talin with the membrane-proximal region of the integrin β3 subunit. Biochemistry 42:8307–12
    [Google Scholar]
  113. 111.  Van Eps N, Caro LN, Morizumi T, Kusnetzow AK, Szczepek M et al. 2017. Conformational equilibria of light-activated rhodopsin in nanodiscs. PNAS 114:E3268–75
    [Google Scholar]
  114. 112.  Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas TA et al. 2002. A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face. Cell 110:587–97
    [Google Scholar]
  115. 113.  Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC et al. 2007. Structural basis of integrin activation by talin. Cell 128:171–82
    [Google Scholar]
  116. 114.  Wilcox KC, Marunde MR, Das A, Velasco PT, Kuhns BD et al. 2015. Nanoscale synaptic membrane mimetic allows unbiased high throughput screen that targets binding sites for Alzheimer's-associated Aβ oligomers. PLOS ONE 10:1–24
    [Google Scholar]
  117. 115.  Xu XP, Kim E, Swift M, Smith JW, Volkmann N, Hanein D 2016. Three-dimensional structures of full-length, membrane-embedded human αIIbβ3 integrin complexes. Biophys. J. 110:798–809
    [Google Scholar]
  118. 116.  Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA et al. 2010. Recreation of the terminal events in physiological integrin activation. J. Cell Biol. 188:157
    [Google Scholar]
  119. 117.  Ye F, Snider AK, Ginsberg MH 2014. Talin and kindlin: the one-two punch in integrin activation. Front. Med. 8:6–16
    [Google Scholar]
  120. 118.  Ye X, McLean MA, Sligar SG 2016. Conformational equilibrium of talin is regulated by anionic lipids. Biochim. Biophys. Acta 1858:1833–40
    [Google Scholar]
  121. 119.  Ye X, McLean MA, Sligar SG 2016. Phosphatidylinositol 4,5-bisphosphate modulates the affinity of talin-1 for phospholipid bilayers and activates its autoinhibited form. Biochemistry 55:5038–48
    [Google Scholar]
  122. 120.  Zamir E, Geiger B 2001. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114:3583–90
    [Google Scholar]
  123. 121.  Zhao J, Das A, Schatz GC, Sligar SG, Van Duyne RP 2008. Resonance localized surface plasmon spectroscopy: sensing substrate and inhibitor binding to cytochrome P450. J. Phys. Chem. C 112:13084–88
    [Google Scholar]
  124. 122.  Zhao J, Das A, Zhang X, Schatz GC, Sligar SG, Van Duyne RP 2006. Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450. J. Am. Chem. Soc. 128:11004–5
    [Google Scholar]
  125. 123.  Ziegler WH, Gingras AR, Critchley DR, Emsley J 2008. Integrin connections to the cytoskeleton through talin and vinculin. Biochem. Soc. Trans. 36:235–39
    [Google Scholar]
  126. 124.  Zwaal RFA, Comfurius P, Bevers EM 1998. Lipid-protein interactions in blood coagulation. Biochim. Biophys. Acta 1376:433–53
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-033620
Loading
/content/journals/10.1146/annurev-biophys-070816-033620
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error