1932

Abstract

The neural code that relates the firing of neurons to the generation of behavior and mental states must be implemented by spatiotemporal patterns of activity across neuronal populations. These patterns engage selective groups of neurons, called neuronal ensembles, which are emergent building blocks of neural circuits. We review optical and computational methods, based on two-photon calcium imaging and two-photon optogenetics, to detect, characterize, and manipulate neuronal ensembles in three dimensions. We review data using these methods in the mammalian cortex that demonstrate the existence of neuronal ensembles in the spontaneous and evoked cortical activity in vitro and in vivo. Moreover, two-photon optogenetics enable the possibility of artificially imprinting neuronal ensembles into awake, behaving animals and of later recalling those ensembles selectively by stimulating individual cells. These methods could enable deciphering the neural code and also be used to understand the pathophysiology of and design novel therapies for neurological and mental diseases.

Keyword(s): calciumoptogeneticstwo-photon
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-033647
2017-05-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/46/1/annurev-biophys-070816-033647.html?itemId=/content/journals/10.1146/annurev-biophys-070816-033647&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Fusi S, Miller EK. 1.  2013. Theoretical approaches to neuroscience: examples from single neurons to networks. Principles of Neural Science. ER Kandel, JH Schwartz, TJ Jessel, SA Siegelbaum, AJ Hudspeth New York: McGraw Hill [Google Scholar]
  2. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. 2.  2013. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10:413–20 [Google Scholar]
  3. Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R. 3.  2012. The brain activity map project and the challenge of functional connectomics. Neuron 74:970–74 [Google Scholar]
  4. Anselmi F, Ventalon C, Begue A, Ogden D, Emiliani V. 4.  2011. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. PNAS 108:19504–9 [Google Scholar]
  5. Berger H. 5.  1929. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkrankheit. 87:527–70 [Google Scholar]
  6. Botcherby EJ, Smith CW, Kohl MM, Debarre D, Booth MJ. 6.  et al. 2012. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. PNAS 109:2919–24 [Google Scholar]
  7. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 7.  2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68 [Google Scholar]
  8. Brown SL, Joseph J, Stopfer M. 8.  2005. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8:1568–76 [Google Scholar]
  9. Buonomano DV, Maass W. 9.  2009. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10:113–25 [Google Scholar]
  10. Buzsaki G. 10.  2009. Rhythms of the Brain. New York: Oxford Univ. Press [Google Scholar]
  11. Buzsaki G. 11.  2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–85 [Google Scholar]
  12. Carrillo-Reid L, Hernández-López S, Tapia D, Galarraga E, Bargas J. 12.  2011. Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies. J. Neurosci. 31:14972–83 [Google Scholar]
  13. Carrillo-Reid L, Miller JE, Hamm JP, Jackson J, Yuste R. 13.  2015. Endogenous sequential cortical activity evoked by visual stimuli. J. Neurosci. 35:8813–28 [Google Scholar]
  14. Carrillo-Reid L, Tecuapetla F, Ibañez-Sandoval O, Hernández-Cruz A, Galarraga E, Bargas J. 14.  2009. Activation of the cholinergic system endows compositional properties to striatal cell assemblies. J. Neurophysiol. 101:737–49 [Google Scholar]
  15. Carrillo-Reid L, Tecuapetla F, Tapia D, Hernández-Cruz A, Galarraga E. 15.  et al. 2008. Encoding network states by striatal cell assemblies. J. Neurophysiol. 99:1435–50 [Google Scholar]
  16. Carrillo-Reid L, Yang W, Bando Y, Peterka DS, Yuste R. 16.  2016. Imprinting and recalling cortical ensembles. Science 353:691–94 [Google Scholar]
  17. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL. 17.  et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300 [Google Scholar]
  18. Cheng A, Gonçalves JT, Golshani P, Arisaka K, Portera-Cailliau C. 18.  2011. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8:139–42 [Google Scholar]
  19. Cossart R, Aronov D, Yuste R. 19.  2003. Attractor dynamics of network UP states in the neocortex. Nature 423:283–88 [Google Scholar]
  20. Denk W, Strickler JH, Webb WW. 20.  1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76 [Google Scholar]
  21. Dubbs A, Guevara J, Yuste R. 21.  2016. moco: fast motion correction for calcium imaging. Front. Neuroinform. 10:6 [Google Scholar]
  22. Ducros M, Goulam Houssen Y, Bradley J, de Sars V, Charpak S. 22.  2013. Encoded multisite two-photon microscopy. PNAS 110:13138–43 [Google Scholar]
  23. Duemani Reddy G, Kelleher K, Fink R, Saggau P. 23.  2008. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11:713–20 [Google Scholar]
  24. Emiliani V, Cohen AE, Deisseroth K, Hausser M. 24.  2015. All-optical interrogation of neural circuits. J. Neurosci. 35:13917–26 [Google Scholar]
  25. Grewe BF, Helmchen F. 25.  2009. Optical probing of neuronal ensemble activity. Curr. Opin. Neurobiol. 19:520–29 [Google Scholar]
  26. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F. 26.  2010. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7:399–405 [Google Scholar]
  27. Grewe BF, Voigt FF, van 't Hoff M, Helmchen F. 27.  2011. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 22035–46 [Google Scholar]
  28. Grosenick L, Marshel JH, Deisseroth K. 28.  2015. Closed-loop and activity-guided optogenetic control. Neuron 86:106–39 [Google Scholar]
  29. Guizar-Sicairos M, Thurman ST, Fienup JR. 29.  2008. Efficient subpixel image registration algorithms. Opt. Lett. 33:156–58 [Google Scholar]
  30. Harris KD. 30.  2005. Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6:399–407 [Google Scholar]
  31. Hebb DO. 31.  1949. The Organization of Behavior. New York: Wiley [Google Scholar]
  32. Helmchen F, Konnerth A, Yuste R. 32.  2011. Imaging in Neuroscience: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harb. Press [Google Scholar]
  33. Hopfield JJ. 33.  1982. Neural networks and physical systems with emergent collective computational abilities. PNAS 79:2554–58 [Google Scholar]
  34. Hopfield JJ, Tank DW. 34.  1985. “Neural” computation of decisions in optimization problems. Biol. Cybern. 52:141–52 [Google Scholar]
  35. Hopfield JJ, Tank DW. 35.  1986. Computing with neural circuits: a model. Science 233:625–33 [Google Scholar]
  36. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I. 36.  et al. 2004. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304:559–64 [Google Scholar]
  37. Ikegaya Y, Matsumoto W, Chiou H-Y, Yuste R, Aaron G. 37.  2008. Statistical significance of precisely repeated intracellular synaptic patterns. PLOS ONE 3:e3983 [Google Scholar]
  38. Jáidar O, Carrillo-Reid L, Hernández A, Drucker-Colin R, Bargas J, Hernández-Cruz A. 38.  2010. Dynamics of the Parkinsonian striatal microcircuit: entrainment into a dominant network state. J. Neurosci. 30:11326–36 [Google Scholar]
  39. Ji N, Milkie DE, Betzig E. 39.  2010. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7:141–47 [Google Scholar]
  40. Kaplan A, Friedman N, Davidson N. 40.  2001. Acousto-optic lens with very fast focus scanning. Opt. Lett. 26:1078–80 [Google Scholar]
  41. Katona G, Szalay G, Maak P, Kaszas A, Veress M. 41.  et al. 2012. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9:201–8 [Google Scholar]
  42. Kim KH, Buehler C, Bahlmann K, Ragan T, Lee W-CA. 42.  et al. 2007. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express 15:11658–78 [Google Scholar]
  43. Kirkby PA, Nadella KMNS, Silver RA. 43.  2010. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt. Express 18:13720–44 [Google Scholar]
  44. Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A. 44.  2007. Measuring spike train synchrony. J. Neurosci. Methods 165:151–61 [Google Scholar]
  45. Levy N, Horn D, Meilijson I, Ruppin E. 45.  2001. Distributed synchrony in a cell assembly of spiking neurons. Neural Netw 14:815–24 [Google Scholar]
  46. Lorente de No R. 46.  1938. Analysis of the activity of the chains of internuncial neurons. J. Neurophysiol. 1:207–44 [Google Scholar]
  47. Lutz C, Otis TS, DeSars V, Charpak S, DiGregorio DA, Emiliani V. 47.  2008. Holographic photolysis of caged neurotransmitters. Nat. Methods 5:821–27 [Google Scholar]
  48. MacLean JN, Fenstermaker V, Watson BO, Yuste R. 48.  2006. A visual thalamocortical slice. Nat. Methods 3:129–34 [Google Scholar]
  49. MacLean JN, Watson BO, Aaron GB, Yuste R. 49.  2005. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–23 [Google Scholar]
  50. Mao B-Q, Hamzei-Sichani F, Aronov D, Froemke RC, Yuste R. 50.  2001. Dynamics of spontaneous activity in neocortical slices. Neuron 32:883–98 [Google Scholar]
  51. McCormick DA. 51.  1992. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39:331–88 [Google Scholar]
  52. Miller JE, Ayzenshtat I, Carrillo-Reid L, Yuste R. 52.  2014. Visual stimuli recruit intrinsically generated cortical ensembles. PNAS 111:E4053–61 [Google Scholar]
  53. Mokeichev A, Okun M, Barak O, Katz Y, Ben-Shahar O, Lampl I. 53.  2007. Stochastic emergence of repeating cortical motifs in spontaneous membrane potential fluctuations in vivo. Neuron 53:413–25 [Google Scholar]
  54. Morelli A, Lauro Grotto R, Arecchi FT. 54.  2006. Neural coding for the retrieval of multiple memory patterns. BioSyst 86:100–9 [Google Scholar]
  55. Mukamel EA, Nimmerjahn A, Schnitzer MJ. 55.  2009. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63:747–60 [Google Scholar]
  56. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N. 56.  et al. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. PNAS 100:13940–45 [Google Scholar]
  57. Nikolenko V, Fino E, Yuste R. 57.  2011. Two-photon mapping of neural circuits. Cold Spring Harb. Protoc 2011:pdb.top111 [Google Scholar]
  58. Nikolenko V, Poskanzer KE, Yuste R. 58.  2007. Two-photon photostimulation and imaging of neural circuits. Nat. Methods 4:943–50 [Google Scholar]
  59. Nikolenko V, Watson BO, Araya R, Woodruff A, Peterka DS, Yuste R. 59.  2008. SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators. Front. Neural Circuits 2:5 [Google Scholar]
  60. Packer AM, Peterka DS, Hirtz JJ, Prakash R, Deisseroth K, Yuste R. 60.  2012. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9:1202–5 [Google Scholar]
  61. Packer AM, Roska B, Hausser M. 61.  2013. Targeting neurons and photons for optogenetics. Nat. Neurosci. 16:805–15 [Google Scholar]
  62. Packer AM, Russell LE, Dalgleish HW, Hausser M. 62.  2015. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12:140–46 [Google Scholar]
  63. Peinado A, Yuste R, Katz LC. 63.  1993. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10:103–14 [Google Scholar]
  64. Pnevmatikakis EA, Merel J, Pakman A, Paninski L. 64.  2013. Bayesian spike inference from calcium imaging data. arXiv1311.6864 [q-bio.NC]
  65. Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J. 65.  et al. 2016. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89:285–99 [Google Scholar]
  66. Prakash R, Yizhar O, Grewe B, Ramakrishnan C, Wang N. 66.  et al. 2012. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat. Methods 9:1171–79 [Google Scholar]
  67. Quirin S, Jackson J, Peterka DS, Yuste R. 67.  2014. Simultaneous imaging of neural activity in three dimensions. Front. Neural Circuits 8:29 [Google Scholar]
  68. Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M. 68.  et al. 2013. Creating a false memory in the hippocampus. Science 341:387–91 [Google Scholar]
  69. Rickgauer JP, Deisseroth K, Tank DW. 69.  2014. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17:1816–24 [Google Scholar]
  70. Sasaki T, Matsuki N, Ikegaya Y. 70.  2007. Metastability of active CA3 networks. J. Neurosci. 27:517–28 [Google Scholar]
  71. Sasaki T, Takahashi N, Matsuki N, Ikegaya Y. 71.  2008. Fast and accurate detection of action potentials from somatic calcium fluctuations. J. Neurophysiol. 100:1668–76 [Google Scholar]
  72. Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ. 72.  2003. A new correlation-based measure of spike timing reliability. Neurocomputing 52–4:925–31 [Google Scholar]
  73. Seung HS, Yuste R. 73.  2013. Neural networks. Principles of Neural Science ER Kandel, TJ Jessel 1581–1600 New York: McGraw-Hill, 5th ed.. [Google Scholar]
  74. Sherrington CS. 74.  1906. Observations on the scratch-reflex in the spinal dog. J. Physiol. 34:1–50 [Google Scholar]
  75. Smetters D, Majewska A, Yuste R. 75.  1999. Detecting action potentials in neuronal populations with calcium imaging. Methods 18:215–21 [Google Scholar]
  76. Theis L, Berens P, Froudarakis E, Reimer J, Román Rosón M. 76.  et al. 2016. Benchmarking spike rate inference in population calcium imaging. Neuron 90:471–82 [Google Scholar]
  77. Thevenaz P, Ruttimann UE, Unser M. 77.  1998. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7:27–41 [Google Scholar]
  78. Tiesinga P, Fellous JM, Sejnowski TJ. 78.  2008. Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9:97–107 [Google Scholar]
  79. Victor JD, Purpura KP. 79.  1996. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J. Neurophysiol. 76:1310–26 [Google Scholar]
  80. Vogelstein JT, Packer AM, Machado TA, Sippy T, Babadi B. 80.  et al. 2010. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104:3691–704 [Google Scholar]
  81. Watson BO, MacLean JN, Yuste R. 81.  2008. UP states protect ongoing cortical activity from thalamic inputs. PLOS ONE 3:e3971 [Google Scholar]
  82. Yaksi E, Friedrich RW. 82.  2006. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging. Nat. Methods 3:377–83 [Google Scholar]
  83. Yang W, Miller JE, Carrillo-Reid L, Pnevmatikakis E, Paninski L. 83.  et al. 2016. Simultaneous multi-plane imaging of neural circuits. Neuron 89:269–84 [Google Scholar]
  84. Yang X, Rode DL, Peterka DS, Yuste R, Rothman SM. 84.  2012. Optical control of focal epilepsy in vivo with caged gamma-aminobutyric acid. Ann. Neurol. 71:68–75 [Google Scholar]
  85. Yuste R. 85.  1994. Calcium imaging of cortical circuits in slices of developing neocortex. Enabling Technologies for Cultured Neural Networks D Stenger, T McKenna 207–34 San Diego: Academic [Google Scholar]
  86. Yuste R. 86.  2015. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16:487–97 [Google Scholar]
  87. Yuste R, Church GM. 87.  2014. The new century of the brain. Sci. Am. 310:38–45 [Google Scholar]
  88. Yuste R, Denk W. 88.  1995. Dendritic spines as basic units of synaptic integration. Nature 375:682–84 [Google Scholar]
  89. Yuste R, Katz LC. 89.  1989. Transmitter-induced changes in intracellular free calcium in brain slice of developing neocortex. Soc. Neurosci. Abstr. 4.5:2 [Google Scholar]
  90. Yuste R, Katz LC. 90.  1991. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–44 [Google Scholar]
  91. Yuste R, Peinado A, Katz LC. 91.  1992. Neuronal domains in developing neocortex. Science 257:665–69 [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-033647
Loading
/content/journals/10.1146/annurev-biophys-070816-033647
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error