1932

Abstract

For decades, rates of protein evolution have been interpreted in terms of the vague concept of functional importance. Slowly evolving proteins or sites within proteins were assumed to be more functionally important and thus subject to stronger selection pressure. More recently, biophysical models of protein evolution, which combine evolutionary theory with protein biophysics, have completely revolutionized our view of the forces that shape sequence divergence. Slowly evolving proteins have been found to evolve slowly because of selection against toxic misfolding and misinteractions, linking their rate of evolution primarily to their abundance. Similarly, most slowly evolving sites in proteins are not directly involved in function, but mutating these sites has a large impact on protein structure and stability. In this article, we review the studies in the emerging field of biophysical protein evolution that have shaped our current understanding of sequence divergence patterns. We also propose future research directions to develop this nascent field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-033819
2017-05-22
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/46/1/annurev-biophys-070816-033819.html?itemId=/content/journals/10.1146/annurev-biophys-070816-033819&mimeType=html&fmt=ahah

Literature Cited

  1. Arenas M, Sanchez-Cobos A, Bastolla U. 1.  2015. Maximum-likelihood phylogenetic inference with selection on protein folding stability. Mol. Biol. Evol. 32:2195–207 [Google Scholar]
  2. Ashenberg O, Gong LI, Bloom JD. 2.  2013. Mutational effects on stability are largely conserved during protein evolution. PNAS 110:21071–76 [Google Scholar]
  3. Bastolla U, Porto M, Roman HE, Vendruscolo M. 3.  2004. Principal eigenvector of contact matrices and hydrophobicity profiles in proteins. Proteins 58:22–30 [Google Scholar]
  4. Bastolla U, Porto M, Roman HE, Vendruscolo M. 4.  2006. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank. BMC Evol. Biol. 6:43 [Google Scholar]
  5. Bloom JD, Drummond DA, Arnold FH, Wilke CO. 5.  2006. Structural determinants of the rate of protein evolution in yeast. Mol. Biol. Evol. 23:1751–61 [Google Scholar]
  6. Bloom JD, Glassman MJ. 6.  2009. Inferring stabilizing mutations from protein phylogenies: application to influenza hemagglutinin. PLOS Comput. Biol. 5:e1000349 [Google Scholar]
  7. Bloom JD, Raval A, Wilke CO. 7.  2007. Thermodynamics of neutral protein evolution. Genetics 175:255–66 [Google Scholar]
  8. Bloom JD, Silberg JJ, Wilke CO, Drummond DA, Adami C, Arnold FH. 8.  2005. Thermodynamic prediction of protein neutrality. PNAS 102:606–11 [Google Scholar]
  9. Bloom JD, Wilke CO, Arnold FH, Adami C. 9.  2004. Stability and the evolvability of function in a model protein. Biophys. J. 86:2758–64 [Google Scholar]
  10. Bornberg-Bauer E, Chan HS. 10.  1999. Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space. PNAS 96:10689–94 [Google Scholar]
  11. Cherry JL. 11.  2010. Expression level, evolutionary rate, and the cost of expression. Genome Biol. Evol. 2:757–69 [Google Scholar]
  12. Choi SC, Hobolth A, Robinson DM, Kishino H, Thorne JL. 12.  2007. Quantifying the impact of protein tertiary structure on molecular evolution. Mol. Biol. Evol. 24:1769–82 [Google Scholar]
  13. Deeds EJ, Ashenberg O, Shakhnovich EI. 13.  2006. A simple physical model for scaling in protein-protein interaction networks. PNAS 103:311–16 [Google Scholar]
  14. DePristo MA, Weinreich DM, Hartl DL. 14.  2005. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6:678–87 [Google Scholar]
  15. Ding F, Dokholyan NV. 15.  2006. Emergence of protein fold families through rational design. PLOS Comput. Biol. 2:725–33 [Google Scholar]
  16. Doud MB, Ashenberg O, Bloom JD. 16.  2015. Site-specific amino acid preferences are mostly conserved in two closely related protein homologs. Mol. Biol. Evol. 32:2944–60 [Google Scholar]
  17. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. 17.  2005. Why highly expressed proteins evolve slowly. PNAS 102:14338–43 [Google Scholar]
  18. Drummond DA, Wilke CO. 18.  2008. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–52 [Google Scholar]
  19. Drummond DA, Wilke CO. 19.  2009. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 10:715–24 [Google Scholar]
  20. Echave J, Jackson EL, Wilke CO. 20.  2015. Relationship between protein thermodynamic constraints and variation of evolutionary rates among sites. Phys. Biol. 12:025002 [Google Scholar]
  21. Echave J, Spielman SJ, Wilke CO. 21.  2016. Causes of evolutionary rate variation among protein sites. Nat. Rev. Genet. 17:109–21 [Google Scholar]
  22. England JL, Shakhnovich EI. 22.  2003. Structural determinant of protein designability. Phys. Rev. Lett. 90:218101 [Google Scholar]
  23. Faure G, Koonin EV. 23.  2015. Universal distribution of mutational effects on protein stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary modes of prokaryotic and eukaryotic proteins. Phys. Biol. 12:035001 [Google Scholar]
  24. Fornasari MS, Parisi G, Echave J. 24.  2002. Site-specific amino acid replacement matrices from structurally constrained protein evolution simulations. Mol. Biol. Evol. 19:352–56 [Google Scholar]
  25. Fornasari MS, Parisi G, Echave J. 25.  2007. Quaternary structure constraints on evolutionary sequence divergence. Mol. Biol. Evol. 24:349–51 [Google Scholar]
  26. Franzosa EA, Xia Y. 26.  2009. Structural determinants of protein evolution are context-sensitive at the residue level. Mol. Biol. Evol. 26:2387–95 [Google Scholar]
  27. Franzosa EA, Xia Y. 27.  2012. Independent effects of protein core size and expression on residue-level structure-evolution relationships. PLOS ONE 7:e46602 [Google Scholar]
  28. Geiler-Samerotte KA, Dion MF, Budnik BA, Wang SM, Hartl DL, Drummond DA. 28.  2011. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. PNAS 108:680–85 [Google Scholar]
  29. Goldstein RA, Pollock DD. 29.  2016. The tangled bank of amino acids. Protein Sci. 25:1354–62 [Google Scholar]
  30. Gout JF, Kahn D, Duret L. 30.  2010. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLOS Genet. 6:e1000944 [Google Scholar]
  31. Grahnen JA, Nandakumar P, Kubelka J, Liberles DA. 31.  2011. Biophysical and structural considerations for protein sequence evolution. BMC Evol. Biol. 11:361 [Google Scholar]
  32. Guerois R, Nielsen JE, Serrano L. 32.  2002. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320:369–87 [Google Scholar]
  33. Huang TT, Marcos ML, Hwang JK, Echave J. 33.  2014. A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility. BMC Evol. Biol. 14:78 [Google Scholar]
  34. Jack BR, Meyer AG, Echave J, Wilke CO. 34.  2016. Functional sites induce long-range evolutionary constraints in enzymes. PLOS Biol. 14:e1002452 [Google Scholar]
  35. Jackson EL, Ollikainen N, Covert AW, Kortemme T, Wilke CO. 35.  2013. Amino-acid site variability among natural and designed proteins. PeerJ 1:e211 [Google Scholar]
  36. Juritz EI, Palopoli N, Fornasari MS, Fernandez-Alberti S, Parisi GD. 36.  2012. Protein conformational diversity modulates protein divergence. Mol. Biol. Evol. 30:79–87 [Google Scholar]
  37. Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO, Marcotte EM. 37.  2015. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348:921–25 [Google Scholar]
  38. Kleinman CL, Rodrigue N, Lartillot N, Philippe H. 38.  2010. Statistical potentials for improved structurally constrained evolutionary models. Mol. Biol. Evol. 27:1546–60 [Google Scholar]
  39. Kumar MDS, Bava KA, Gromiha MM, Prabakaran P, Kitajima K. 39.  et al. 2006. ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nucleic Acids Res. 34:D204–6 [Google Scholar]
  40. Larson SM, Ruczinski I, Davidson AR, Baker D, Plaxco KW. 40.  2002. Residues participating in the protein folding nucleus do not exhibit preferential evolutionary conservation. J. Mol. Biol. 316:225–33 [Google Scholar]
  41. Liberles DA, Tisdell MD, Grahnen JA. 41.  2011. Binding constraints on the evolution of enzymes and signalling proteins: the important role of negative pleiotropy. Proc. Biol. Sci. 278:1930–35 [Google Scholar]
  42. Lobkovsky AE, Wolf YI, Koonin EV. 42.  2010. Universal distribution of protein evolution rates as a consequence of protein folding physics. PNAS 107:2983–88 [Google Scholar]
  43. Marcos ML, Echave J. 43.  2015. Too packed to change: side-chain packing and site-specific substitution rates in protein evolution. PeerJ 3:e911 [Google Scholar]
  44. McCandlish DM, Epstein CL, Plotkin JB. 44.  2015. Formal properties of the probability of fixation: identities, inequalities and approximations. Theor. Popul. Biol. 99:98–113 [Google Scholar]
  45. McCandlish DM, Shah P, Plotkin JB. 45.  2016. Epistasis and the dynamics of reversion in molecular evolution. Genetics 203:1335–51 [Google Scholar]
  46. McCandlish DM, Stoltzfus A. 46.  2014. Modeling evolution using the probability of fixation: history and implications. Q. Rev. Biol. 89:225–52 [Google Scholar]
  47. Meyer AG, Wilke CO. 47.  2013. Integrating sequence variation and protein structure to identify sites under selection. Mol. Biol. Evol. 30:36–44 [Google Scholar]
  48. Michnick SW, Shakhnovich E. 48.  1998. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies. Fold. Des. 3:239–51 [Google Scholar]
  49. Miller DW, Dill KA. 49.  1997. Ligand binding to proteins: the binding landscape model. Protein Sci. 6:2166–79 [Google Scholar]
  50. Naganathan AN, Muñoz V. 50.  2010. Insights into protein folding mechanisms from large scale analysis of mutational effects. PNAS 107:8611–16 [Google Scholar]
  51. Nelson ED, Grishin NV. 51.  2016. Evolution of off-lattice model proteins under ligand binding constraints. Phys. Rev. E 94:022410 [Google Scholar]
  52. Ollikainen N, Kortemme T. 52.  2013. Computational protein design quantifies structural constraints on amino acid covariation. PLOS Comput. Biol. 9:e1003313 [Google Scholar]
  53. Parisi G, Echave J. 53.  2001. Structural constraints and emergence of sequence patterns in protein evolution. Mol. Biol. Evol. 18:750–56 [Google Scholar]
  54. Parisi G, Echave J. 54.  2004. The structurally constrained protein evolution model accounts for sequence patterns of the LβH superfamily. BMC Evol. Biol. 4:41 [Google Scholar]
  55. Parisi G, Echave J. 55.  2005. Generality of the structurally constrained protein evolution model: assessment on representatives of the four main fold classes. Gene 345:45–53 [Google Scholar]
  56. Pollock DD, Thiltgen G, Goldstein RA. 56.  2012. Amino acid coevolution induces an evolutionary Stokes shift. PNAS 109:E1352–59 [Google Scholar]
  57. Porto M, Roman HE, Vendruscolo M, Bastolla U. 57.  2005. Prediction of site-specific amino acid distributions and limits of divergent evolutionary changes in protein sequences. Mol. Biol. Evol. 22:630–38 [Google Scholar]
  58. Ramsey DC, Scherrer MP, Zhou T, Wilke CO. 58.  2011. The relationship between relative solvent accessibility and evolutionary rate in protein evolution. Genetics 188:479–88 [Google Scholar]
  59. Rastogi S, Reuter N, Liberles DA. 59.  2006. Evaluation of models for the evolution of protein sequences and functions under structural constraint. Biophys. Chem. 124:134–44 [Google Scholar]
  60. Robinson D, Jones D, Kishino H, Goldman N, Thorne JL. 60.  2003. Protein evolution with dependence among codons due to tertiary structure. Mol. Biol. Evol. 20:1692–704 [Google Scholar]
  61. Rodrigue N, Lartillot N, Bryant D, Philippe H. 61.  2005. Site interdependence attributed to tertiary structure in amino acid sequence evolution. Gene 347:207–17 [Google Scholar]
  62. Saito S, Sasai M, Yomo T. 62.  1997. Evolution of the folding ability of proteins through functional selection. PNAS 94:11324–28 [Google Scholar]
  63. Sasaki TN, Sasai M. 63.  2002. Correlation between the conformation space and the sequence space of peptide chain. J. Biol. Phys. 28:483–92 [Google Scholar]
  64. Scherrer MP, Meyer AG, Wilke CO. 64.  2012. Modeling coding-sequence evolution within the context of residue solvent accessibility. BMC Evol. Biol. 12:179 [Google Scholar]
  65. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L. 65.  2005. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. PNAS 102:10147–52 [Google Scholar]
  66. Sella G, Hirsh AE. 66.  2005. The application of statistical physics to evolutionary biology. PNAS 102:9541–46 [Google Scholar]
  67. Serohijos AWR, Lee SYR, Shakhnovich EI. 67.  2013. Highly abundant proteins favor more stable 3D structures in yeast. Biophys. J. 104:L1–3 [Google Scholar]
  68. Serohijos AWR, Rimas Z, Shakhnovich EI. 68.  2012. Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep. 2:249–56 [Google Scholar]
  69. Serohijos AWR, Shakhnovich EI. 69.  2014. Contribution of selection for protein folding stability in shaping the patterns of polymorphisms in coding regions. Mol. Biol. Evol. 31:165–76 [Google Scholar]
  70. Serohijos AWR, Shakhnovich EI. 70.  2014. Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics. Curr. Opin. Struct. Biol. 26:84–91 [Google Scholar]
  71. Shah P, McCandlish DM, Plotkin JB. 71.  2015. Contingency and entrenchment in protein evolution under purifying selection. PNAS 112:E3226–35 [Google Scholar]
  72. Shakhnovich EI, Abkevich V, Ptitsyn O. 72.  1996. Conserved residues and the mechanism of protein folding. Nature 379:96–98 [Google Scholar]
  73. Shakhnovich EI, Gutin AM. 73.  1993. Engineering of stable and fast-folding sequences of model proteins. PNAS 90:7195–99 [Google Scholar]
  74. Sikosek T, Chan HS. 74.  2014. Biophysics of protein evolution and evolutionary protein biophysics. J. R. Soc. Interface 11:20140419 [Google Scholar]
  75. Tien MZ, Meyer AG, Sydykova DK, Spielman SJ, Wilke CO. 75.  2013. Maximum allowed solvent accessibilites of residues in proteins. PLOS ONE 8:e80635 [Google Scholar]
  76. Tokuriki N, Stricher F, Schymkowitz J, Serrano L, Tawfik DS. 76.  2007. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 369:1318–32 [Google Scholar]
  77. Tseng YY, Liang J. 77.  2004. Are residues in a protein folding nucleus evolutionarily conserved?. J. Mol. Biol. 335:869–80 [Google Scholar]
  78. van Nimwegen E, Crutchfield JP, Huynen M. 78.  1999. Neutral evolution of mutational robustness. PNAS 96:9716–20 [Google Scholar]
  79. Wilke CO. 79.  2004. Molecular clock in neutral protein evolution. BMC Genet. 5:25 [Google Scholar]
  80. Wilke CO, Bloom JD, Drummond DA, Raval A. 80.  2005. Predicting the tolerance of proteins to random amino acid substitution. Biophys. J. 89:3714–20 [Google Scholar]
  81. Wilke CO, Drummond DA. 81.  2006. Population genetics of translational robustness. Genetics 173:473–81 [Google Scholar]
  82. Williams PD, Pollock DD, Blackburne BP, Goldstein RA. 82.  2006. Assessing the accuracy of ancestral protein reconstruction methods. PLOS Comput. Biol. 2:e69 [Google Scholar]
  83. Williams PD, Pollock DD, Goldstein RA. 83.  2001. Evolution of functionality in lattice proteins. J. Mol. Graph. Model. 19:150–56 [Google Scholar]
  84. Wright S. 84.  1988. Surfaces of selective value revisited. Am. Nat. 131:115–23 [Google Scholar]
  85. Yang JR, Liao BY, Zhuang SM, Zhang J. 85.  2012. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. PNAS 109:E831–40 [Google Scholar]
  86. Yang JR, Zhuang SM, Zhang J. 86.  2010. Impact of translational error-induced and error-free misfolding on the rate of protein evolution. Mol. Syst. Biol. 6:421 [Google Scholar]
  87. Yeh SW, Liu JW, Yu SH, Shih CH, Hwang JK, Echave J. 87.  2014. Site-specific structural constraints on protein sequence evolutionary divergence: local packing density versus solvent exposure. Mol. Biol. Evol. 31:135–39 [Google Scholar]
  88. Yomo T, Saito S, Sasai M. 88.  1999. Gradual development of protein-like global structures through functional selection. Nat. Struct. Biol. 6:743–46 [Google Scholar]
  89. Zhang J, Maslov S, Shakhnovich EI. 89.  2008. Constraints imposed by non-functional protein-protein interactions on gene expression and proteome size. Mol. Syst. Biol. 4:210 [Google Scholar]
  90. Zhang J, Yang JR. 90.  2015. Determinants of the rate of protein sequence evolution. Nat. Rev. Genet. 16:409–20 [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-033819
Loading
/content/journals/10.1146/annurev-biophys-070816-033819
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error