1932

Abstract

Membrane lipids and cellular water (soft matter) are becoming increasingly recognized as key determinants of protein structure and function. Their influences can be ascribed to modulation of the bilayer properties or to specific binding and allosteric regulation of protein activity. In this review, we first consider hydrophobic matching of the intramembranous proteolipid boundary to explain the conformational changes and oligomeric states of proteins within the bilayer. Alternatively, membranes can be viewed as complex fluids, whose properties are linked to key biological functions. Critical behavior and nonideal mixing of the lipids have been proposed to explain how raft-like microstructures involving cholesterol affect membrane protein activity. Furthermore, the persistence length for lipid–protein interactions suggests the curvature force field of the membrane comes into play. A flexible surface model describes how curvature and hydrophobic forces lead to the emergence of new protein functional states within the membrane lipid bilayer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-033843
2017-05-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/46/1/annurev-biophys-070816-033843.html?itemId=/content/journals/10.1146/annurev-biophys-070816-033843&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerman DG, Feigenson GW. 1.  2015. Multiscale modeling of four-component lipid mixtures: domain composition, size, alignment, and properties of the phase interface. J. Phys. Chem. B 119:4240–50 [Google Scholar]
  2. Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL. 2.  2008. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. PNAS 105:7439–44 [Google Scholar]
  3. Andersen OS, Koeppe RE II. 3.  2007. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomolec. Struct. 36:107–30 [Google Scholar]
  4. Anderson D, Wennerström H, Olsson U. 4.  1989. Isotropic bicontinuous solutions in surfactant-solvent systems: the L3 phase. J. Phys. Chem. 93:4243–53 [Google Scholar]
  5. Antonny B. 5.  2011. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80:101–23 [Google Scholar]
  6. Aranda-Espinoza H, Berman A, Dan P, Pincus P, Safran S. 6.  1996. Interaction between inclusions embedded in membranes. Biophys. J. 71:648–56 [Google Scholar]
  7. Attard GS, Templer RH, Smith WS, Hunt AN, Jackowski S. 7.  2000. Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. PNAS 97:9032–36 [Google Scholar]
  8. Baldwin PA, Hubbell WL. 8.  1985. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 2. Roles of lipid chain length, unsaturation, and phase state. Biochemistry 24:2633–39 [Google Scholar]
  9. Bassereau P, Sorre B, Lévy A. 9.  2014. Bending lipid membranes: experiments after W. Helfrich's model. Adv. Colloid Interface Sci. 208:47–57 [Google Scholar]
  10. Baumgart T, Capraro BR, Zhu C, Das SL. 10.  2011. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62:483–506 [Google Scholar]
  11. Bloom M, Evans E, Mouritsen OG. 11.  1991. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q. Rev. Biophys. 24:293–397 [Google Scholar]
  12. Bogdanov M, Heacock P, Guan Z, Dowhan W. 12.  2010. Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli.. PNAS 107:15057–62 [Google Scholar]
  13. Botelho AV, Gibson NJ, Wang Y, Thurmond RL, Brown MF. 13.  2002. Conformational energetics of rhodopsin modulated by nonlamellar forming lipids. Biochemistry 41:6354–68 [Google Scholar]
  14. Botelho AV, Huber T, Brown MF. 14.  2003. Flexible surface model for lipid-rhodopsin interactions: further analysis. Biophys. J. 84:55A [Google Scholar]
  15. Botelho AV, Huber T, Sakmar TP, Brown MF. 15.  2006. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys. J. 91:4464–77 [Google Scholar]
  16. Brown DA, London E. 16.  1998. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14:111–36 [Google Scholar]
  17. Brown FLH. 17.  2008. Elastic modeling of biomembranes and lipid bilayers. Annu. Rev. Phys. Chem. 59:685–712 [Google Scholar]
  18. Brown MF. 18.  1982. Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J. Chem. Phys. 77:1576–99 [Google Scholar]
  19. Brown MF. 19.  1994. Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73:159–80 [Google Scholar]
  20. Brown MF. 20.  1997. Influence of non-lamellar forming lipids on rhodopsin. Current Topics in Membranes RM Epand 285–356 San Diego: Academic [Google Scholar]
  21. Brown MF. 21.  2012. Curvature forces in membrane lipid–protein interactions. Biochemistry 51:9782–95 [Google Scholar]
  22. Brown MF. 22.  2012. UV–visible and infrared methods for investigating lipid–rhodopsin membrane interactions. Membrane Protein Structure and Dynamics: Methods and Protocols (Methods in Molecular Biology) N Vaidehi, J Klein-Seetharaman 127–53 New York: Springer Science+Business Media, LLC [Google Scholar]
  23. Brown MF, Miljanich GP, Dratz EA. 23.  1977. Proton spin-lattice relaxation of retinal rod outer segment membranes and liposomes of extracted phospholipids. PNAS 74:1978–82 [Google Scholar]
  24. Brown MF, Ribeiro AA, Williams GD. 24.  1983. New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. PNAS 80:4325–29 [Google Scholar]
  25. Brown MF, Seelig J. 25.  1977. Ion-induced changes in head group conformation of lecithin bilayers. Nature 269:721–23 [Google Scholar]
  26. Brown MF, Seelig J. 26.  1978. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry 17:381–84 [Google Scholar]
  27. Brown MF, Seelig J, Häberlen U. 27.  1979. Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements. J. Chem. Phys. 70:5045–53 [Google Scholar]
  28. Brown MF, Thurmond RL, Dodd SW, Otten D, Beyer K. 28.  2002. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. J. Am. Chem. Soc. 124:8471–84 [Google Scholar]
  29. Campelo F, Arnarez C, Marrink SJ, Kozlov MM. 29.  2014. Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 208:25–33 [Google Scholar]
  30. Cantor RS. 30.  1997. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem. B 101:1723–25 [Google Scholar]
  31. Cantor RS. 31.  1999. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem. Phys. Lipids 101:45–56 [Google Scholar]
  32. Cantor RS. 32.  1999. Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76:2625–39 [Google Scholar]
  33. Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR, Abramson J. 33.  2011. Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition. PNAS 108:9361–66 [Google Scholar]
  34. Chawla U, Jiang Y, Zheng W, Kuang L, Perera SMDC. 34.  et al. 2016. A usual G-protein-coupled receptor in unusual membranes. Angew. Chem. Int. Ed. 128:598–602 [Google Scholar]
  35. Chawla U, Perera SMDC, Struts AV, Pitman MC, Brown MF. 35.  2016. Hydration mediated G-protein-coupled receptor activation. Biophys. J. 110:83a [Google Scholar]
  36. Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF. 36.  et al. 2011. Crystal structure of metarhodopsin II. Nature 471:651–55 [Google Scholar]
  37. Cronan JE. 37.  2003. Bacterial membrane lipids: Where do we stand?. Annu. Rev. Microbiol. 57:203–24 [Google Scholar]
  38. Curnow P, Lorch M, Charalambous K, Booth PJ. 38.  2004. The reconstitution and activity of the small multidrug transporter EmrE is modulated by non-bilayer lipid composition. J. Mol. Biol. 343:213–22 [Google Scholar]
  39. Dahlqvist A, Nordström S, Karlsson OP, Mannock DA, McElhaney RN, Wieslander Å. 39.  1995. Efficient modulation of glucolipid enzyme activities in membranes of Acholeplasma laidlawii by the type of lipids in the bilayer matrix. Biochemistry 34:13381–89 [Google Scholar]
  40. Dan N, Pincus P, Safran SA. 40.  1993. Membrane-induced interactions between inclusions. Langmuir 9:2768–71 [Google Scholar]
  41. Dawaliby R, Trubbia C, Delporte C, Masureel M, Van Antwerpen P. 41.  et al. 2016. Allosteric regulation of G protein–coupled receptor activity by phospholipids. Nat. Chem. Biol. 12:35–39 [Google Scholar]
  42. Day CA, Kenworthy AK. 42.  2009. Tracking microdomain dynamics in cell membranes. Biochim. Biophys. Acta 1788:245–53 [Google Scholar]
  43. Deese AJ, Dratz EA, Brown MF. 43.  1981. Retinal rod outer segment lipids form bilayers in the presence and absence of rhodopsin: a 31P NMR study. FEBS Lett 124:93–99 [Google Scholar]
  44. Dill KA, Flory PJ. 44.  1980. Interphases of chain molecules: monolayers and lipid bilayer membranes. PNAS 77:3115–19 [Google Scholar]
  45. Dill KA, Truskett TM, Vlachy V, Hribar-Lee B. 45.  2005. Modeling water, the hydrophobic effect, and ion solvation. Annu. Rev. Biophys. Biomol. Struct. 34:173–99 [Google Scholar]
  46. Dowhan W. 46.  1997. Molecular basis for membrane phospholipid diversity: Why are there so many lipids?. Annu. Rev. Biochem. 66:199–232 [Google Scholar]
  47. Engelman DM. 47.  2005. Membranes are more mosaic than fluid. Nature 438:578–80 [Google Scholar]
  48. Epand RM. 48.  1998. Lipid polymorphism and protein–lipid interactions. Biochim. Biophys. Acta 1376:353–68 [Google Scholar]
  49. Fattal DR, Ben-Shaul A. 49.  1993. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys. J. 65:1795–809 [Google Scholar]
  50. Frost A, Unger VM, De Camilli P. 50.  2009. The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–96 [Google Scholar]
  51. Fuller N, Rand RP. 51.  2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81:243–54 [Google Scholar]
  52. Gibson NJ, Brown MF. 52.  1991. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis. Photochem. Photobiol. 54:985–92 [Google Scholar]
  53. Gibson NJ, Brown MF. 53.  1993. Lipid headgroup and acyl chain composition modulate the MI–MII equilibrium of rhodopsin in recombinant membranes. Biochemistry 32:2438–54 [Google Scholar]
  54. Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y. 54.  et al. 2005. Lipid-protein interactions in double-layered two-dimensional AQPO crystals. Nature 438:633–38 [Google Scholar]
  55. Goñi F, Alonso A, Bagatolli LA, Brown RE, Marsh D. 55.  et al. 2008. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim. Biophys. Acta 1781:665–84 [Google Scholar]
  56. Granier S, Kobilka B. 56.  2012. A new era of GPCR structural and chemical biology. Nat. Chem. Biol. 8:670–73 [Google Scholar]
  57. Griffith OH, Jost PC. 57.  1976. Lipid spin labels in biological membranes. Spin Labeling: Theory and Applications LJ Berliner 453–523 New York: Academic [Google Scholar]
  58. Grossfield A, Feller SE, Pitman MC. 58.  2006. A role for direct interactions in the modulation of rhodopsin by ω-3 polyunsaturated lipids. PNAS 103:4888–93 [Google Scholar]
  59. Gruner SM. 59.  1985. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. PNAS 82:3665–69 [Google Scholar]
  60. Gruner SM. 60.  1989. Stability of lyotropic phases with curved interfaces. J. Phys. Chem. 93:7562–70 [Google Scholar]
  61. Gullingsrud J, Schulten K. 61.  2004. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86:3496–509 [Google Scholar]
  62. Hamai C, Yang T, Kataoka S, Cremer PS, Musser SM. 62.  2006. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Biophys. J. 90:1241–48 [Google Scholar]
  63. Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW. 63.  1999. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys. J. 76:3176–85 [Google Scholar]
  64. Helfrich W. 64.  1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c:693–703 [Google Scholar]
  65. Helfrich W, Servuss R-M. 65.  1984. Undulations, steric interaction and cohesion of fluid membranes. Nuovo Cim 3:137–51 [Google Scholar]
  66. Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, den Nijs M. 66.  et al. 2008. Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys. J. 95:236–46 [Google Scholar]
  67. Honerkamp-Smith AR, Veatch SL, Keller SL. 67.  2009. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim. Biophys. Acta 1788:53–63 [Google Scholar]
  68. Hong H, Tamm LK. 68.  2004. Elastic coupling of integral membrane protein stability to lipid bilayer forces. PNAS 101:4065–70 [Google Scholar]
  69. Huang HW. 69.  1986. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50:1061–70 [Google Scholar]
  70. Huber T, Botelho AV, Beyer K, Brown MF. 70.  2004. Membrane model for the GPCR prototype rhodopsin: hydrophobic interface and dynamical structure. Biophys. J. 86:2078–100 [Google Scholar]
  71. Hui SW. 71.  1997. Curvature stress and biomembrane function. Current Topics in Membranes RM Epand 541–63 San Diego: Academic [Google Scholar]
  72. Hyde ST, Andersson S, Larsson K, Blum Z, Landh T. 72.  et al. 1997. The Language of Shape. The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology Amsterdam: Elsevier
  73. Israelachvili JN. 73.  2011. Intermolecular and Surface Forces San Diego: Academic, 3rd ed..
  74. Jensen JW, Schutzbach JS. 74.  1984. Activation of mannosyltransferase II by nonbilayer phospholipids. Biochemistry 23:1115–19 [Google Scholar]
  75. Jensen JW, Schutzbach JS. 75.  1988. Modulation of dolichyl-phosphomannose synthase activity by changes in the lipid environment of the enzyme. Biochemistry 27:6315–20 [Google Scholar]
  76. Jensen , Mouritsen OG. 76.  2004. Lipids do influence protein function—the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 1666:205–26 [Google Scholar]
  77. Johner N, Mondal S, Morra G, Caffrey M, Weinstein H, Khelashvili G. 77.  2014. Protein and lipid interactions driving molecular mechanisms of in meso crystallization. J. Am. Chem. Soc. 136:3271–84 [Google Scholar]
  78. Katritch V, Cherezov V, Stevens RC. 78.  2012. Diversity and modularity of G protein-coupled receptor structures. Trends Pharm. Sci. 33:17–27 [Google Scholar]
  79. Keller SL, Bezrukov SM, Gruner SM, Tate MW, Vodyanoy I, Parsegian VA. 79.  1993. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys. J. 65:23–27 [Google Scholar]
  80. Khalili-Araghi F, Gumbart J, Wen P-C, Sotomayor M, Tajkhorshid E, Schulten K. 80.  2009. Molecular dynamics simulations of membrane channels and transporters. Curr. Opin. Struct. Biol. 19:128–37 [Google Scholar]
  81. Khelashvili G, Blecua Carrillo Albornoz P, Johner N, Mondal S, Caffrey M, Weinstein H. 81.  2012. Why GPCRs behave differently in cubic and lamellar lipidic mesophases. J. Am. Chem. Soc. 134:15858–68 [Google Scholar]
  82. Killian JA. 82.  1998. Hydrophobic mismatch between proteins and lipids in membranes. Biochim. Biophys. Acta 1376:401–16 [Google Scholar]
  83. Kimata N, Pope A, Eilers M, Opefi CA, Ziliox M. 83.  et al. 2016. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat. Comm. 7:12683 [Google Scholar]
  84. Kinnun JJ, Mallikarjunaiah KJ, Petrache HI, Brown MF. 84.  2015. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy. Biochim. Biophys. Acta 1848:246–59 [Google Scholar]
  85. Kobayashi M, Struts AV, Fujiwara T, Brown MF, Akutsu H. 85.  2008. Fluid mechanical matching of H+-ATP synthase subunit c-ring with lipid membranes revealed by 2H solid-state NMR. Biophys. J. 94:4339–47 [Google Scholar]
  86. Koldsø H, Sansom MSP. 86.  2015. Organization and dynamics of receptor proteins in a plasma membrane. J. Am. Chem. Soc. 137:14694–704 [Google Scholar]
  87. Kralchevsky PA, Paunov VN, Denkov ND, Nagayama K. 87.  1995. Stresses in lipid membranes and interactions between inclusions. J. Chem. Soc. Faraday Trans. 91:3415–32 [Google Scholar]
  88. Kusnetzow AK, Altenbach C, Hubbell WL. 88.  2006. Conformational states and dynamics of rhodopsin in micelles and bilayers. Biochemistry 45:5538–50 [Google Scholar]
  89. Kwon B, Waring AJ, Hong M. 89.  2013. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes. Biophys. J. 105:2333–42 [Google Scholar]
  90. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT. 90.  et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–75 [Google Scholar]
  91. Landau LD, Lifshitz EM. 91.  1986. Theory of Elasticity Oxford, UK: Pergamon, 3rd ed..
  92. Lee AG. 92.  1998. How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim. Biophys. Acta 1376:381–90 [Google Scholar]
  93. Lee AG. 93.  2004. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666:62–87 [Google Scholar]
  94. Lee AG. 94.  2011. Biological membranes: the importance of molecular detail. Trends Biochem. Sci. 36:493–500 [Google Scholar]
  95. Leftin A, Brown MF. 95.  2011. An NMR data base for simulations of membrane dynamics. Biochim. Biophys. Acta 1808:818–39 [Google Scholar]
  96. Lewis JR, Cafiso DS. 96.  1999. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. Biochemistry 38:5932–38 [Google Scholar]
  97. Lindblom G, Brentel I, Sjölund M, Wikander G, Wieslander Å. 97.  1986. Phase equilibria of membrane lipids from Acholeplasma laidlawii: importance of a single lipid forming nonlamellar phases. Biochemistry 25:7502–10 [Google Scholar]
  98. Lyman E, Cui HS, Voth GA. 98.  2011. Reconstructing protein remodeled membranes in molecular detail from mesoscopic models. Phys. Chem. Chem. Phys. 13:10430–36 [Google Scholar]
  99. Machta BB, Veatch SL, Sethna JP. 99.  2012. Critical Casimir forces in cellular membranes. Phys. Rev. Lett. 109:138101 [Google Scholar]
  100. Mahalingam M, Martínez-Mayorga K, Brown MF, Vogel R. 100.  2008. Two protonation switches control rhodopsin activation in membranes. PNAS 105:17795–800 [Google Scholar]
  101. Marsh D. 101.  1996. Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys. J. 70:2248–55 [Google Scholar]
  102. Marsh D. 102.  1996. Lateral pressure in membranes. Biochim. Biophys. Acta 1286:183–223 [Google Scholar]
  103. Marsh D. 103.  2007. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 93:3884–99 [Google Scholar]
  104. Marsh D. 104.  2008. Protein modulation of lipids, and vice-versa, in membranes. Biochim. Biophys. Acta 1778:1545–75 [Google Scholar]
  105. Marsh D. 105.  2013. Handbook of Lipid Bilayers Boca Raton, FL: CRC Press, 2nd ed..
  106. Martinez GV, Dykstra EM, Lope-Piedrafita S, Job C, Brown MF. 106.  2002. NMR elastometry of fluid membranes in the mesoscopic regime. Phys. Rev. E 66:050902 [Google Scholar]
  107. Marty MT, Hoi KK, Gault J, Robinson CV. 107.  2016. Probing the lipid annular belt by gas-phase dissociation of membrane proteins in nanodiscs. Angew. Chem. Int. Ed. 55:550–54 [Google Scholar]
  108. May S, Ben-Shaul A. 108.  1999. Molecular theory of lipid-protein interaction and the Lα-HII transition. Biophys. J 76:751–67 [Google Scholar]
  109. McConnell HM, Vrljic M. 109.  2003. Liquid-liquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct. 32:469–92 [Google Scholar]
  110. McMahon HT, Gallop JL. 110.  2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96 [Google Scholar]
  111. Miljanich GP, Brown MF, Mabrey-Gaud S, Dratz EA, Sturtevant JM. 111.  1985. Thermotropic behavior of retinal rod membranes and dispersions of extracted phospholipids. J. Membr. Biol. 85:79–86 [Google Scholar]
  112. Mim C, Cui H, Gawronski-Salerno JA, Frost A, Lyman E. 112.  et al. 2012. Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149:137–45 [Google Scholar]
  113. Mitchell DC, Straume M, Miller JL, Litman BJ. 113.  1990. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29:9143–49 [Google Scholar]
  114. Molugu TR, Brown MF. 114.  2016. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem. Phys. Lipids 199:39–51 [Google Scholar]
  115. Mondal S, Khelashvili G, Shan J, Andersen OS, Weinstein H. 115.  2011. Quantitative modeling of membrane deformations by multihelical membrane proteins: application to G-protein coupled receptors. Biophys. J. 101:2092–101 [Google Scholar]
  116. Moon CP, Fleming KG. 116.  2011. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. PNAS 108:10174–77 [Google Scholar]
  117. Morein S, Andersson A-S, Rilfors L, Lindblom G. 117.  1996. Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structures. J. Biol. Chem. 271:6801–9 [Google Scholar]
  118. Mouritsen OG. 118.  2005. Life—As a Matter of Fat Heidelberg, Ger.: Springer
  119. Mouritsen OG, Bloom M. 119.  1993. Models of lipid-protein interactions in membranes. Annu. Rev. Biophys. Biomol. Struct. 22:145–71 [Google Scholar]
  120. Nagle JF, Tristram-Nagle S. 120.  2000. Structure of lipid bilayers. Biochim. Biophys. Acta 1469:159–95 [Google Scholar]
  121. Navarro J, Toivio-Kinnucan M, Racker E. 121.  1984. Effect of lipid composition on the calcium/adenosine 5′-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry 23:130–35 [Google Scholar]
  122. Nielsen C, Andersen OS. 122.  2000. Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys. J. 79:2583–604 [Google Scholar]
  123. Niu S-L, Mitchell DC. 123.  2005. Effect of packing density on rhodopsin stability and function in polyunsaturated membranes. Biophys. J. 89:1833–40 [Google Scholar]
  124. Olesen C, Picard M, Winther A-ML, Gyrup C, Morth JP. 124.  et al. 2007. The structural basis of calcium transport by the calcium pump. Nature 450:1036–42 [Google Scholar]
  125. Ollila OHS, Risselada HJ, Louhivuori M, Lindahl E, Vattulainen I, Marrink SJ. 125.  2009. 3D pressure field in lipid membranes and membrane-protein complexes. Phys. Rev. Lett. 102:078101 [Google Scholar]
  126. Park SH, Opella SJ. 126.  2005. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J. Mol. Biol. 350:310–18 [Google Scholar]
  127. Perozo E, Kloda A, Cortes DM, Martinac B. 127.  2002. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9:696–703 [Google Scholar]
  128. Petrache HI, Dodd SW, Brown MF. 128.  2000. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys. J. 79:3172–92 [Google Scholar]
  129. Phillips R, Ursell T, Wiggins P, Sens P. 129.  2009. Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–85 [Google Scholar]
  130. Rand RP, Fuller NL, Gruner SM, Parsegian VA. 130.  1990. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry 29:76–87 [Google Scholar]
  131. Rietveld A, van Kemenade TJJM, Hak T, Verkleij AJ, de Kruijff B. 131.  1987. The effect of cytochrome c oxidase on lipid polymorphism of model membranes containing cardiolipin. Eur. J. Biochem. 164:137–40 [Google Scholar]
  132. Rietveld AG, Chupin VV, Koorengevel MC, Wienk HLJ, Dowhan W, de Kruijff B. 132.  1994. Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine-deficient Escherichia coli cells. J. Biol. Chem. 269:28670–75 [Google Scholar]
  133. Rietveld AG, Killian JA, Dowhan W, de Kruijff B. 133.  1993. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J. Biol. Chem. 268:12427–33 [Google Scholar]
  134. Rietveld AG, Koorengevel MC, de Kruijff B. 134.  1995. Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. . EMBO J. 14:5506–13 [Google Scholar]
  135. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D. 135.  et al. 2011. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469:236–40 [Google Scholar]
  136. Sachs JN, Engelman DM. 136.  2006. Introduction to the membrane protein reviews: the interplay of structure, dynamics, and environment in membrane protein function. Annu. Rev. Biochem. 75:707–12 [Google Scholar]
  137. Salamon Z, Brown MF, Tollin G. 137.  1999. Plasmon resonance spectroscopy: probing molecular interactions within membranes. Trends Biochem. Sci. 24:213–19 [Google Scholar]
  138. Salmon A, Dodd SW, Williams GD, Beach JM, Brown MF. 138.  1987. Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J. Am. Chem. Soc. 109:2600–9 [Google Scholar]
  139. Schwartz SD, Schramm VL. 139.  2009. Enzymatic transition states and dynamic motion in barrier crossing. Nat. Chem. Biol. 5:552–59 [Google Scholar]
  140. Seddon JM. 140.  1990. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta 1031:1–69 [Google Scholar]
  141. Seelig J, MacDonald PM, Scherer PG. 141.  1987. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry 26:7535–41 [Google Scholar]
  142. Seelig J, Seelig A. 142.  1980. Lipid conformation in model membranes and biological membranes. Quart. Rev. Biophys. 13:19–61 [Google Scholar]
  143. Siegel DP, Cherezov V, Greathouse DV, Koeppe II RE, Killian JA, Caffrey M. 143.  2006. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion. Biophys. J. 90:200–11 [Google Scholar]
  144. Simons K, Gerl MJ. 144.  2010. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11:688–99 [Google Scholar]
  145. Simons K, Vaz WLC. 145.  2004. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 33:269–95 [Google Scholar]
  146. Simunovic M, Srivastava A, Voth GA. 146.  2013. Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. PNAS 110:20396–401 [Google Scholar]
  147. Simunovic M, Voth GA, Callan-Jones A, Bassereau P. 147.  2015. When physics takes over: BAR proteins and membrane curvature. Trends Cell Bio 25:780–92 [Google Scholar]
  148. Singer SJ, Nicolson GL. 148.  1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31 [Google Scholar]
  149. Smith SO. 149.  2010. Structure and activation of the visual pigment rhodopsin. Annu. Rev. Biophys. 39:309–28 [Google Scholar]
  150. Sodt AJ, Pastor RW. 150.  2013. Bending free energy from simulation: correspondence of planar and inverse hexagonal lipid phases. Biophys. J. 104:2202–11 [Google Scholar]
  151. Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E. 151.  2014. The molecular structure of the liquid-ordered phase of lipid bilayers. J. Am. Chem. Soc. 136:725–32 [Google Scholar]
  152. Soubias O, Teague WE Jr., Hines KG, Gawrisch K. 152.  2015. Rhodopsin/lipid hydrophobic matching—rhodopsin oligomerization and function. Biophys. J. 108:1125–32 [Google Scholar]
  153. Soubias O, Teague WE Jr., Hines KG, Mitchell DC, Gawrisch K. 153.  2010. Contribution of membrane elastic energy to rhodopsin function. Biophys. J. 99:817–24 [Google Scholar]
  154. Standfuss J, Edwards PC, D'Antona A, Fransen MR, Xie G. 154.  et al. 2011. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471:656–60 [Google Scholar]
  155. Struts AV, Salgado GFJ, Martínez-Mayorga K, Brown MF. 155.  2011. Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat. Struct. Mol. Biol. 18:392–94 [Google Scholar]
  156. Teague WE Jr., Soubias O, Petrache H, Fuller N, Hines KG. 156.  et al. 2013. Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function. Faraday Discuss 161:383–95 [Google Scholar]
  157. Thurmond RL, Lindblom G, Brown MF. 157.  1993. Curvature, order, and dynamics of lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemistry 32:5394–410 [Google Scholar]
  158. van den Brink-van der Laan E, Killian JA, de Kruijff B. 158.  2004. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta 1666:275–88 [Google Scholar]
  159. van der Wel PCA, Strandberg E, Killian JA, Koeppe RE II. 159.  2002. Geometry and intrinsic tilt of a tryptophan-anchored transmembrane α-helix determined by 2H NMR. Biophys. J. 83:1479–88 [Google Scholar]
  160. Veatch SL, Cicuta P, Sengupta P, Honerkamp-Smith A, Holowka D, Barbara BB. 160.  2008. Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3:287–93 [Google Scholar]
  161. Veatch SL, Soubias O, Keller SL, Gawrisch K. 161.  2007. Critical fluctuations in domain-forming lipid mixtures. PNAS 104:17650–55 [Google Scholar]
  162. White SH, Wimley WC. 162.  1999. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28:319–65 [Google Scholar]
  163. Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF. 163.  1988. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 27:6469–74 [Google Scholar]
  164. Zimmerberg J, Gawrisch K. 164.  2006. The physical chemistry of biological membranes. Nat. Chem. Biol. 2:564–67 [Google Scholar]
  165. Zimmerberg J, Kozlov MM. 165.  2006. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7:9–19 [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-033843
Loading
/content/journals/10.1146/annurev-biophys-070816-033843
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error