1932

Abstract

In stark contrast to foldable proteins with a unique folded state, intrinsically disordered proteins and regions (IDPs) persist in perpetually disordered ensembles. Yet an IDP ensemble has conformational features—even when averaged—that are specific to its sequence. In fact, subtle changes in an IDP sequence can modulate its conformational features and its function. Recent advances in theoretical physics reveal a set of elegant mathematical expressions that describe the intricate relationships among IDP sequences, their ensemble conformations, and the regulation of their biological functions. These equations also describe the molecular properties of IDP sequences that predict similarities and dissimilarities in their functions and facilitate classification of sequences by function, an unmet challenge to traditional bioinformatics. These physical sequence-patterning metrics offer a promising new avenue for advancing synthetic biology at a time when multiple novel functional modes mediated by IDPs are emerging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-120221-095357
2022-05-09
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-120221-095357.html?itemId=/content/journals/10.1146/annurev-biophys-120221-095357&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Amin AN, Lin YH, Das S, Chan HS 2020. Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins. J. Phys. Chem. B 124:6709–20
    [Google Scholar]
  2. 2.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  3. 3.
    Bah A, Forman-Kay JD. 2016. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291:6696–705
    [Google Scholar]
  4. 4.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  5. 5.
    Baul U, Chakraborty D, Mugnai ML, Straub JE, Thirumalai D. 2019. Sequence effects on size, shape, and structural heterogeneity in intrinsically disordered proteins. J. Phys. Chem. B 123:163462–74
    [Google Scholar]
  6. 6.
    Beh LY, Colwell LJ, Francis NJ. 2012. A core subunit of polycomb repressive complex 1 is broadly conserved in function but not primary sequence. PNAS 109:18E1063–71
    [Google Scholar]
  7. 7.
    Bhandari K, Cotten MA, Kim J, Rosen MK, Schmit JD 2021. Structure-function properties in disordered condensates. J. Phys. Chem. B 125:1467–76
    [Google Scholar]
  8. 8.
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M et al. 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28:6420–35
    [Google Scholar]
  9. 9.
    Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO et al. 2018. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61–66
    [Google Scholar]
  10. 10.
    Bowman M, Riback J, Rodriguez A, Guo H, Li J et al. 2020. Properties of protein unfolded states suggest broad selection for expanded conformational ensembles. PNAS 117:3823356–64
    [Google Scholar]
  11. 11.
    Brady JP, Farber PJ, Sekhar A, Lin YH, Huang R et al. 2017. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. PNAS 114:39E8194–203
    [Google Scholar]
  12. 12.
    Camacho CJ, Schanke T. 1997. From collapse to freezing in random heteropolymers. Europhys. Lett. 37:603–8
    [Google Scholar]
  13. 13.
    Camacho CJ, Thirumalai D. 1993. Minimum energy compact structures of random sequences of heteropolymers. Phys. Rev. Lett. 71:2505–8
    [Google Scholar]
  14. 14.
    Chakraborty AK. 2001. Disordered heteropolymers: models for biomimetic polymers and polymers with frustrating quenched disorder. Phys. Rep. 342:1–61
    [Google Scholar]
  15. 15.
    Chan HS, Dill KA. 1994. Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys. 100:9238–57
    [Google Scholar]
  16. 16.
    Choi JM, Dar F, Pappu RV. 2019. Lassi: a lattice model for simulating phase transitions of multivalent proteins. PLOS Comput. Biol. 15:e1007028
    [Google Scholar]
  17. 17.
    Cohan M, Ruff K, Pappu R. 2019. Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins. Protein Eng. Des. Sel. 32:4191–202
    [Google Scholar]
  18. 18.
    Danielson S, McCarty J, Shea JE, Delaney K, Fredrickson G 2019. Molecular design of self-coacervation phenomena in block polyampholytes. PNAS 116:178224–32
    [Google Scholar]
  19. 19.
    Das RK, Pappu RV. 2013. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. PNAS 110:3313392–97
    [Google Scholar]
  20. 20.
    Das RK, Ruff KM, Pappu RV. 2015. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32:102–12
    [Google Scholar]
  21. 21.
    Das S, Amin AN, Lin YH, Chan HS. 2018. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Phys. Chem. Chem. Phys. 20:28558–74
    [Google Scholar]
  22. 22.
    Das S, Elsen A, Lin YH, Chan HS. 2018. A lattice model of charge-pattern-dependent polyampholyte phase separation. J. Phys. Chem. B 122:215418–31
    [Google Scholar]
  23. 23.
    Das S, Lin YH, Vernon RM, Forman-Kay JD, Chan HS. 2020. Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. PNAS 117:4628795–805
    [Google Scholar]
  24. 24.
    Dignon GL, Zheng W, Best RB, Kim YC, Mittal J. 2018. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. PNAS 115:409929–34
    [Google Scholar]
  25. 25.
    Dignon GL, Zheng W, Kim YC, Best RB, Mittal J. 2018. Sequence determinants of protein phase behavior from a coarse-grained model. PLOS Comput. Biol. 14:1e1005941
    [Google Scholar]
  26. 26.
    Dignon GL, Zheng W, Kim YC, Mittal J. 2019. Temperature-controlled liquid-liquid phase separation of disordered proteins. ACS Cent. Sci. 5:5821–30
    [Google Scholar]
  27. 27.
    Dill KA, Bromberg S. 2002. Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology Oxford, UK: Garland. , 1st ed..
  28. 28.
    Dobrynin AV, Colby RH, Rubinstein M. 2004. Polyampholytes. J. Polym. Sci. B 42:3513–38
    [Google Scholar]
  29. 29.
    Dyson HJ, Wright PE. 2005. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6:3197–208
    [Google Scholar]
  30. 30.
    Edwards SF, Singh P. 1979. Size of a polymer molecule in solution. Part 1: Excluded volume problem. J. Chem. Soc. Faraday Trans. 2 75:1020–29
    [Google Scholar]
  31. 31.
    Firman T, Ghosh K. 2018. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins. J. Chem. Phys. 148:12123305
    [Google Scholar]
  32. 32.
    Ghosh K, Carri GA, Muthukumar M 2001. Configurational properties of a single semiflexible polyelectrolyte. J. Chem. Phys. 115:4367–75
    [Google Scholar]
  33. 33.
    Ghosh K, de Graff AMR, Sawle L, Dill KA 2016. Role of proteome physical chemistry in cell behavior. J. Phys. Chem. B 120:369549–63
    [Google Scholar]
  34. 34.
    Ghosh K, Dill KA. 2009. Theory for protein folding cooperativity: helix bundles. J. Am. Chem. Soc. 131:62306–12
    [Google Scholar]
  35. 35.
    Ghosh K, Ozkan SB, Dill KA. 2007. The ultimate speed limit to protein folding is conformational searching. J. Am. Chem. Soc. 129:11920–27
    [Google Scholar]
  36. 36.
    Gomes GNW, Krzeminski M, Namini A, Martin EW, Mittag T et al. 2020. Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS, and single-molecule FRET. J. Am. Chem. Soc. 142:3715697–710
    [Google Scholar]
  37. 37.
    Guillou J, Zinn-Justin J. 1977. Critical exponents for the n-vector model in three dimensions from field theory. Phys. Rev. Lett. 39:95–98
    [Google Scholar]
  38. 38.
    Gutin AM, Shakhnovich EI. 1994. Effect of a net charge on the conformation of polyampholytes. Phys. Rev. E 50:R3322–25
    [Google Scholar]
  39. 39.
    Ha BY, Thirumalai D. 1999. Conformations of a polyelectrolyte chain. Phys. Rev. A 46:R3012–15
    [Google Scholar]
  40. 40.
    Harmon TS, Holehouse AS, Rosen MK, Pappu RV. 2017. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6:e30294
    [Google Scholar]
  41. 41.
    Higgs P, Joanny J. 1991. Theory of polyampholyte solutions. J. Chem. Phys. 94:1543–54
    [Google Scholar]
  42. 42.
    Hnisz D, Shrinivas K, Young RA, Chakraborty A, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:113–23
    [Google Scholar]
  43. 43.
    Hofmann H, Soranno A, Borgia A, Gast K, Nettels D, Schuler B 2012. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. PNAS 109:4016155–60
    [Google Scholar]
  44. 44.
    Holehouse A, Das R, Ahad J, Richardson M, Pappu R. 2017. Cider: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112:16–21
    [Google Scholar]
  45. 45.
    Huihui J, Firman T, Ghosh K. 2018. Modulating charge patterning and ionic strength as a strategy to induce conformational changes in intrinsically disordered proteins. J. Chem. Phys. 149:085101
    [Google Scholar]
  46. 46.
    Huihui J, Ghosh K. 2020. An analytical theory to describe sequence-specific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins. J. Chem. Phys. 52:161102
    [Google Scholar]
  47. 47.
    Huihui J, Ghosh K. 2021. Intrachain interaction topology can identify functionally similar intrinsically disordered proteins. Biophys. J. 120:101860–68
    [Google Scholar]
  48. 48.
    Hyman AA, Weber CA, Julicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell. Dev. Biol. 30:39–58
    [Google Scholar]
  49. 49.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  50. 50.
    Kohn JE, Millett IS, Jacob J, Zagrovic B, Dillon TM et al. 2004. Random-coil behavior and the dimensions of chemically unfolded proteins. PNAS 101:12491–96
    [Google Scholar]
  51. 51.
    Lange J, Wyrwicz LS, Vriend G. 2016. KMAD: knowledge-based multiple sequence alignment for intrinsically disordered proteins. Bioinformatics 32:932–36
    [Google Scholar]
  52. 52.
    Larson AG, Elnatam D, Keenen MM, Trnka MJ, Johnston JB et al. 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–40
    [Google Scholar]
  53. 53.
    Lazar T, Martínez-Pérez E, Quaglia F, Hatos A, Chemes LB et al. 2021. PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Res. 49:D404–11
    [Google Scholar]
  54. 54.
    Lin YH, Brady J, Chan HS, Ghosh K 2020. A unified analytical theory of heteropolymers for sequence specific phase behaviors of polyelectrolytes and polyampholytes. J. Chem. Phys. 152:045102
    [Google Scholar]
  55. 55.
    Lin YH, Chan HS. 2017. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys. J. 112:102043–46
    [Google Scholar]
  56. 56.
    Lin YH, Forman-Kay JD, Chan HS. 2016. Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 117:178101
    [Google Scholar]
  57. 57.
    Lin YH, Forman-Kay JD, Chan HS. 2018. Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57:2499–508
    [Google Scholar]
  58. 58.
    Lin YH, Wu H, Jia B, Zhang M, Chan HS. 2022. Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding. Biophys. J. 121:46
    [Google Scholar]
  59. 59.
    Lincoff J, Haghighatlari M, Krzeminski M, Teixeira JMC, Gomes GN et al. 2020. Extended experimental inferential structure determination method in determining the structural ensembles of disordered protein states. Commun. Chem. 3:74
    [Google Scholar]
  60. 60.
    Madinya JJ, Chang LW, Perry SL, Sing CE 2020. Sequence-dependent self-coacervation in high charge-density polyampholytes. Mol. Syst. Des. Eng. 5:632–44
    [Google Scholar]
  61. 61.
    Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV. 2010. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. PNAS 107:8183–88
    [Google Scholar]
  62. 62.
    Marsh JA, Forman-Kay JD. 2010. Sequence determinants of compaction in intrinsically disordered proteins. Biophys. J. 98:2383–90
    [Google Scholar]
  63. 63.
    Martin EW, Holehouse AS, Grace CR, Hughes A, Pappu RV, Mittag T. 2016. Sequence determinants of the conformational properties of an intrinsically disordered protein prior to and upon multisite phosphorylation. J. Am. Chem. Soc. 138:15323–35
    [Google Scholar]
  64. 64.
    Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ et al. 2020. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367:694–99
    [Google Scholar]
  65. 65.
    McCarty J, Delaney KT, Danielson SPO, Fredrickson GH, Shea JE. 2019. Complete phase diagram for liquid-liquid phase separation of intrinsically disordered proteins. J. Phys. Chem. Lett. 10:81644–52
    [Google Scholar]
  66. 66.
    Miyazawa S, Jernigan R. 1985. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–52
    [Google Scholar]
  67. 67.
    Muller-Spath S, Soranno A, Hirschfeld V, Hofmann H, Ruegger S et al. 2010. Charge interactions can dominate the dimensions of intrinsically disordered proteins. PNAS 107:14609–14
    [Google Scholar]
  68. 68.
    Muthukumar M. 1987. Adsorption of a polyelectrolyte chain to a charged surface. J. Chem. Phys. 86:7230–35
    [Google Scholar]
  69. 69.
    Muthukumar M. 1996. Double screening in polyelectrolyte solutions: limiting laws and crossover formulas. J. Chem. Phys. 105:5183–99
    [Google Scholar]
  70. 70.
    Muthukumar M. 2017. 50th anniversary perspective: a perspective on polyelectrolyte solutions. Macromolecules 50:249528–60
    [Google Scholar]
  71. 71.
    Nguemaha V, Zhou HX. 2018. Liquid-liquid phase separation of patchy particles illuminates diverse effects of regulatory components on protein droplet formation. Sci. Rep. 8:6728
    [Google Scholar]
  72. 72.
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57:5936–47
    [Google Scholar]
  73. 73.
    Ozkan SB. 2021. Can sequence-specific and dynamics-based metrics allow us to decipher the function in IDP sequences?. Biophys. J. 120:101857–59
    [Google Scholar]
  74. 74.
    Peng B, Muthukumar M. 2015. Modeling competitive substitution in a polyelectrolyte complex. J. Chem. Phys. 143:243133
    [Google Scholar]
  75. 75.
    Portz B, Lu F, Gibbs EB, Mayfield JE, Mehaffey MR et al. 2017. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat. Commun. 8:15231
    [Google Scholar]
  76. 76.
    Rana U, Brangwynne CP, Panagiotopoulos AZ 2021. Phase separation versus aggregation behavior for model disordered proteins. J. Chem. Phys. 155:125101
    [Google Scholar]
  77. 77.
    Riback JA, Bowman MA, Zmyslowski AM, Knoverek CR, Jumper JM et al. 2017. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358:6360238–41
    [Google Scholar]
  78. 78.
    Riback JA, Katanski C, Kear-Scott J, Pilipenko E, Rojek A et al. 2017. Stress-triggered phase separation is an adaptive, evolutionary tuned response. Cell 168:61028–40
    [Google Scholar]
  79. 79.
    Ruff KM, Harmon TS, Pappu RV 2015. Camelot: a machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. J. Chem. Phys. 143:24243123
    [Google Scholar]
  80. 80.
    Ruff KM, Pappu RV. 2021. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433:20167208
    [Google Scholar]
  81. 81.
    Rustad M, Ghosh K. 2012. Why and how does native topology dictate the folding speed of a protein?. J. Chem. Phys. 137:205104
    [Google Scholar]
  82. 82.
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958
    [Google Scholar]
  83. 83.
    Samanta HS, Chakraborty D, Thirumalai D. 2018. Charge fluctuation effects on the shape of flexible polyampholytes with applications to intrinsically disordered proteins. J. Chem. Phys. 149:163323
    [Google Scholar]
  84. 84.
    Samanta HS, Zhuravlev PI, Hinczewski M, Hori N, Chakrabarti S, Thirumalai D 2017. Protein collapse is encoded in the folded state architecture. Soft Matter 13:3622–38
    [Google Scholar]
  85. 85.
    Sawle L, Ghosh K. 2015. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem. Phys. 143:085101
    [Google Scholar]
  86. 86.
    Schmit JD, Bouchard JJ, Martin EW, Mittag T. 2020. Protein network structure enables switching between liquid and gel states. J. Am. Chem. Soc. 142:874–83
    [Google Scholar]
  87. 87.
    Schuster BS, Dignon GL, Tang WS, Kelley FM, Ranganath AK et al. 2020. Identifying sequence perturbations to an intrinsically disordered protein that determines its phase-separation behavior. PNAS 117:11421–31
    [Google Scholar]
  88. 88.
    Shakhnovich EI. 1994. Proteins with selected sequences fold into unique native conformation. Phys. Rev. Lett. 72:3907–10
    [Google Scholar]
  89. 89.
    Shea JE, Best RB, Mittal J. 2021. Physics-based computational and theoretical approaches to intrinsically disordered proteins. Curr. Opin. Struct. Biol. 67:219–25
    [Google Scholar]
  90. 90.
    Sherry KP, Das RK, Pappu RV, Barrick D. 2017. Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor. PNAS 114:44E9243–52
    [Google Scholar]
  91. 91.
    Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  92. 92.
    Showalter S. 2014. Intrinsically disordered proteins: methods for structure and dynamics studies. eMagRes 3:181–90
    [Google Scholar]
  93. 93.
    Sizemore SM, Cope SM, Roy A, Ghirlanda G, Vaiana SM 2015. Slow internal dynamics and charge expansion in the disordered protein CGRP: a comparison with amylin. Biophys. J. 109:51038–48
    [Google Scholar]
  94. 94.
    Socci ND, Onuchic JN. 1994. Folding kinetics of proteinlike heteropolymers. J. Chem. Phys. 101:1519–28
    [Google Scholar]
  95. 95.
    Socci ND, Onuchic JN. 1995. Kinetic and thermodynamic analysis of proteinlike heteropolymers: Monte Carlo histogram technique. J. Chem. Phys. 103:4732–44
    [Google Scholar]
  96. 96.
    Song J, Li J, Chan HS 2021. Small-angle X-ray scattering signatures of conformational heterogeneity and homogeneity of disordered protein ensembles. J Phys. Chem. B 125:6451–78
    [Google Scholar]
  97. 97.
    Srivastava D, Muthukumar M. 1996. Sequence dependence of conformations of polyampholytes. Macromolecules 29:2324–26
    [Google Scholar]
  98. 98.
    Statt A, Casademunt H, Brangwynne CP, Panagiotopoulos AZ. 2020. Model for disordered proteins with strongly sequence-dependent liquid phase behavior. J. Chem. Phys. 152:075101
    [Google Scholar]
  99. 99.
    Tesei G, Schulze TK, Crehuet R, Larsen-Lindorff K. 2021. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. PNAS 118:44e2111696118
    [Google Scholar]
  100. 100.
    Wang J, Choi JM, Holehouse A, Lee HO, Zhang X et al. 2018. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174:688–99
    [Google Scholar]
  101. 101.
    Wessen J, Pal T, Das S, Lin YH, Chan HS. 2021. A simple explicit-solvent model of polyampholyte phase behaviors and its ramifications for dielectric effects in biomolecular condensates. J. Phys. Chem. B 125:174337–58
    [Google Scholar]
  102. 102.
    Wiggers F, Wohl S, Dubovetskyi A, Rosenblum G, Zheng W, Hofmann H 2021. Diffusion of a disordered protein on its folded ligand. PNAS 118:37e2106690118
    [Google Scholar]
  103. 103.
    Wirth A, Gruebele M. 2013. Quinary protein structure and the consequence of crowding in living cells: leaving the test-tube behind. Bioessays 35:11984–93
    [Google Scholar]
  104. 104.
    Wohl S, Jakubowski M, Zheng W. 2021. Salt-dependent conformational changes of intrinsically disordered proteins. J. Phys. Chem. Lett. 12:286684–91
    [Google Scholar]
  105. 105.
    Zarin T, Strome B, Nguyen Ba AN, Alberti S, Forman-Kay JD, Moses AM 2019. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. eLife 8:46883
    [Google Scholar]
  106. 106.
    Zarin T, Strome B, Peng G, Pritisanac I, Forman-Kay JD, Moses AM. 2021. Identifying molecular features that are associated with biological function of intrinsically disordered regions. eLife 10:e60220
    [Google Scholar]
  107. 107.
    Zarin T, Tsai CN, Nguyen Ba AN, Moses AM 2017. Selection maintains signaling function of a highly diverged intrinsically disordered region. PNAS 114:8E1450–59
    [Google Scholar]
  108. 108.
    Zeng X, Holehouse AS, Chilkoti A, Mittag T, Pappu RV. 2020. Connecting coil-to-globule transitions to full phase diagrams for intrinsically disordered proteins. Biophys. J. 119:402–18
    [Google Scholar]
  109. 109.
    Zerze GH, Best RB, Mittal J. 2015. Sequence- and temperature-dependent properties of unfolded and disordered proteins from atomistic simulations. J. Phys. Chem. B 119:14622–30
    [Google Scholar]
  110. 110.
    Zheng W, Dignon G, Brown M, Kim YC, Mittal J. 2020. Hydropathy patterning complements charge patterning to describe conformational preferences of disordered proteins. J. Phys. Chem. Lett. 11:93408–15
    [Google Scholar]
  111. 111.
    Zheng W, Zerze GH, Borgia A, Mittal J, Schuler B, Best RB. 2018. Inferring properties of disordered chains from FRET transfer efficiencies. J. Chem. Phys. 148:123329
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-120221-095357
Loading
/content/journals/10.1146/annurev-biophys-120221-095357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error