1932

Abstract

The epithelial–mesenchymal transition (EMT) is a process by which cells lose epithelial traits, such as cell–cell adhesion and apico-basal polarity, and acquire migratory and invasive traits. EMT is crucial to embryonic development and wound healing. Misregulated EMT has been implicated in processes associated with cancer aggressiveness, including metastasis. Recent experimental advances such as single-cell analysis and temporal phenotypic characterization have established that EMT is a multistable process wherein cells exhibit and switch among multiple phenotypic states. This is in contrast to the classical perception of EMT as leading to a binary choice. Mathematical modeling has been at the forefront of this transformation for the field, not only providing a conceptual framework to integrate and analyze experimental data, but also making testable predictions. In this article, we review the key features and characteristics of EMT dynamics, with a focus on the mathematical modeling approaches that have been instrumental to obtaining various useful insights.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-121219-081557
2020-05-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biophys/49/1/annurev-biophys-121219-081557.html?itemId=/content/journals/10.1146/annurev-biophys-121219-081557&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J et al. 2018. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45:6681–95.e4
    [Google Scholar]
  2. 2. 
    Albert R, Thakar J. 2014. Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip. Rev. Syst. Biol. Med. 6:5353–69
    [Google Scholar]
  3. 3. 
    Alon U. 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits New York: Chapman and Hall/CRC. , 1st ed..
  4. 4. 
    Alon U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:6450–61
    [Google Scholar]
  5. 5. 
    Al-Radhawi MA, Vecchio DD, Sontag ED 2019. Multi-modality in gene regulatory networks with slow promoter kinetics. PLOS Comput. Biol. 15:2e1006784
    [Google Scholar]
  6. 6. 
    Andriani F, Bertolini G, Facchinetti F, Baldoli E, Moro M et al. 2016. Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial and mesenchymal features in lung cancer cells. Mol. Oncol 10:2253–71
    [Google Scholar]
  7. 7. 
    Bhatia S, Monkman J, Blick T, Pinto C, Waltham M et al. 2019. Interrogation of phenotypic plasticity between epithelial and mesenchymal states in breast cancer. J. Clin. Med 8:6E893
    [Google Scholar]
  8. 8. 
    Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C, Ben-Jacob E 2015. Jagged-Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. PNAS 112:5E402–9
    [Google Scholar]
  9. 9. 
    Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E et al. 2019. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. PNAS 116:1148–57
    [Google Scholar]
  10. 10. 
    Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP et al. 2019. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr. Biol 116251–63
  11. 11. 
    Brabletz S, Bajdak K, Meidhof S, Burk U, Niedermann G et al. 2011. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30:4770–82
    [Google Scholar]
  12. 12. 
    Bray SJ. 2016. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17:11722–35
    [Google Scholar]
  13. 13. 
    Bu P, Chen K-Y, Chen JH, Wang L, Walters J et al. 2013. A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell 12:5602–15
    [Google Scholar]
  14. 14. 
    Celià-Terrassa T, Bastian C, Liu D, Ell B, Aiello NM et al. 2018. Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nat. Commun. 9:15005
    [Google Scholar]
  15. 15. 
    Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG et al. 2013. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:161–74
    [Google Scholar]
  16. 16. 
    Chang HH, Oh PY, Ingber DE, Huang S 2006. Multistable and multistep dynamics in neutrophil differentiation. BMC Cell Biol. 7:111
    [Google Scholar]
  17. 17. 
    Chapman MP, Risom T, Aswani AJ, Langer EM, Sears RC, Tomlin CJ 2019. Modeling differentiation-state transitions linked to therapeutic escape in triple-negative breast cancer. PLOS Comput. Biol. 15:3e1006840
    [Google Scholar]
  18. 18. 
    Chen Z, Li S, Subramaniam S, Shyy JY-J, Chien S 2017. Epigenetic regulation: a new frontier for biomedical engineers. Annu. Rev. Biomed. Eng. 19:195–219
    [Google Scholar]
  19. 19. 
    Cheng B, Lin M, Huang G, Li Y, Ji B et al. 2017. Cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses. Phys. Life Rev. 22–23:88–119
    [Google Scholar]
  20. 20. 
    Cox TR, Bird D, Baker A-M, Barker HE, Ho MW-Y et al. 2013. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73:61721–32
    [Google Scholar]
  21. 21. 
    Danuser G, Allard J, Mogilner A 2013. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol. 29:501–28
    [Google Scholar]
  22. 22. 
    de Antonellis P, Medaglia C, Cusanelli E, Andolfo I, Liguori L et al. 2011. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLOS ONE 6:9e24584
    [Google Scholar]
  23. 23. 
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:7350179–83
    [Google Scholar]
  24. 24. 
    Ebert MS, Sharp PA. 2012. Roles for microRNAs in conferring robustness to biological processes. Cell 149:3515–24
    [Google Scholar]
  25. 25. 
    Ehrbar M, Sala A, Lienemann P, Ranga A, Mosiewicz K et al. 2011. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 1002284–93
  26. 26. 
    Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:4677–89
    [Google Scholar]
  27. 27. 
    Font-Clos F, Zapperi S, La Porta CAM 2018. Topography of epithelial-mesenchymal plasticity. PNAS 115:235902–7
    [Google Scholar]
  28. 28. 
    George JT, Jolly MK, Xu J, Somarelli J, Levine H 2017. Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res 77:226415–28
    [Google Scholar]
  29. 29. 
    Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA et al. 2011. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol. Biol. Cell 22:101686–98
    [Google Scholar]
  30. 30. 
    Grosse-Wilde A, d'Hérouël AF, McIntosh E, Ertaylan G, Skupin A et al. 2015. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLOS ONE 10:5e0126522
    [Google Scholar]
  31. 31. 
    Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K et al. 2011. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:4633–44
    [Google Scholar]
  32. 31a. 
    Hari K, Sabuwala B, Subramani BV, La Porta C, Zepperi S 2019. Identifying inhibitors of epithelial-mesenchymal plasticity using a network topology based approach. bioRxiv 854307. https://doi.org/10.1101/854307
    [Crossref] [Google Scholar]
  33. 32. 
    Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q, Dai X 2015. An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLOS Comput. Biol 11:11e1004569
    [Google Scholar]
  34. 33. 
    Huang B, Lu M, Jia D, Ben-Jacob E, Levine H, Onuchic JN 2017. Interrogating the topological robustness of gene regulatory circuits by randomization. PLOS Comput. Biol 13:3e1005456
    [Google Scholar]
  35. 34. 
    Huang RY-J, Wong MK, Tan TZ, Kuay KT, Ng AHC et al. 2013. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915
    [Google Scholar]
  36. 35. 
    Jablonka E, Raz G. 2009. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol 84:2131–76
    [Google Scholar]
  37. 36. 
    Jia D, George JT, Tripathi SC, Kundnani DL, Lu M et al. 2019. Testing the gene expression classification of the EMT spectrum. Phys. Biol 16:2025002
    [Google Scholar]
  38. 37. 
    Jia D, Jolly MK, Harrison W, Boareto M, Ben-Jacob E, Levine H 2017. Operating principles of tristable circuits regulating cellular differentiation. Phys. Biol 14:3035007
    [Google Scholar]
  39. 38. 
    Jia W, Deshmukh A, Mani SA, Jolly MK, Levine H 2019. A possible role for epigenetic feedback regulation in the dynamics of the epithelial-mesenchymal transition (EMT). Phys. Biol 16066004
  40. 39. 
    Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC et al. 2017. Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer 3:121
    [Google Scholar]
  41. 40. 
    Jolly MK, Boareto M, Lu M, Onuchic JN, Clementi C, Ben-Jacob E 2015. Operating principles of Notch-Delta-Jagged module of cell-cell communication. New J. Phys 17:5055021
    [Google Scholar]
  42. 41. 
    Jolly MK, Levine H. 2017. Computational systems biology of epithelial-hybrid-mesenchymal transitions. Curr. Opin. Syst. Biol 3:1–6
    [Google Scholar]
  43. 42. 
    Jolly MK, Tripathi SC, Jia D, Mooney SM, Celiktas M et al. 2016. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7:1927067–84
    [Google Scholar]
  44. 43. 
    Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H 2017. EMT and MET: necessary or permissive for metastasis?. Mol. Oncol 11:7755–69
    [Google Scholar]
  45. 44. 
    Karacosta LG, Anchang B, Ignatiadis N, Kimmey SC, Benson JA et al. 2019. Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution. Nat. Commun 105587
  46. 45. 
    Kolch W, Halasz M, Granovskaya M, Kholodenko BN 2015. The dynamic control of signal transduction networks in cancer cells. Nat. Rev. Cancer 159515–27
    [Google Scholar]
  47. 46. 
    Kumar S, Das A, Sen S 2014. Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol. Biosyst 10:4838–50
    [Google Scholar]
  48. 47. 
    Leggett SE, Sim JY, Rubins JE, Neronha ZJ, Williams EK, Wong IY 2016. Morphological single cell profiling of the epithelial-mesenchymal transition. Integr. Biol 8:111133–44
    [Google Scholar]
  49. 48. 
    Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS 2012. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23:5781–91
    [Google Scholar]
  50. 49. 
    Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E 2013. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. PNAS 110:4518144–49
    [Google Scholar]
  51. 50. 
    Mandal M, Ghosh B, Anura A, Mitra P, Pathak T, Chatterjee J 2016. Modeling continuum of epithelial mesenchymal transition plasticity. Integr. Biol 8:2167–76
    [Google Scholar]
  52. 51. 
    Matte BF, Kumar A, Placone JK, Zanella VG, Martins MD et al. 2019. Matrix stiffness mechanically conditions EMT and migratory behavior of oral squamous cell carcinoma. J. Cell Sci 132:1jcs224360
    [Google Scholar]
  53. 52. 
    Mezard M, Parisi G, Virasoro M 1986. Spin Glass Theory and Beyond, Vol. 9 Singapore: World Sci.
  54. 53. 
    Miyamoto T, Furusawa C, Kaneko K 2015. Pluripotency, differentiation, and reprogramming: a gene expression dynamics model with epigenetic feedback regulation. PLOS Comput. Biol 11:8e1004476
    [Google Scholar]
  55. 54. 
    Morris R, Sancho-Martinez I, Sharpee TO, Izpisua Belmonte JC 2014. Mathematical approaches to modeling development and reprogramming. PNAS 111:145076–82
    [Google Scholar]
  56. 54a. 
    Neelakantan D, Zhou H, Oliphant MUJ, Zhang X, Simon LM 2017. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat. Commun 8:15773
    [Google Scholar]
  57. 55. 
    Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A 2008. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J. Cell Biol 182:2315–25
    [Google Scholar]
  58. 56. 
    Nieto MA, Huang RY-J, Jackson RA, Thiery JP 2016. EMT: 2016. Cell 166:121–45
    [Google Scholar]
  59. 57. 
    Park S-M, Gaur AB, Lengyel E, Peter ME 2008. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:7894–907
    [Google Scholar]
  60. 58. 
    Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T et al. 2018. Identification of the tumour transition states occurring during EMT. Nature 556:7702463–68
    [Google Scholar]
  61. 59. 
    Peng DH, Ungewiss C, Tong P, Byers LA, Wang J et al. 2017. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene 36:141925–38
    [Google Scholar]
  62. 60. 
    Provenzano PP, Inman DR, Eliceiri KW, Keely PJ 2009. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28:494326–43
    [Google Scholar]
  63. 61. 
    Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K et al. 2017. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:71611–24.e24
    [Google Scholar]
  64. 62. 
    Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS 2015. A hardwired HIV latency program. Cell 160:5990–1001
    [Google Scholar]
  65. 63. 
    Risom T, Langer EM, Chapman MP, Rantala J, Fields AJ et al. 2018. Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nat. Commun 9:13815
    [Google Scholar]
  66. 64. 
    Ruscetti M, Dadashian EL, Guo W, Quach B, Mulholland DJ et al. 2016. HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 35:293781–95
    [Google Scholar]
  67. 65. 
    Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U 2008. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. PNAS 105:176392–97
    [Google Scholar]
  68. 66. 
    Sánchez-Elsner T, Botella LM, Velasco B, Corbí A, Attisano L, Bernabéu C 2001. Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J. Biol. Chem 276:4238527–35
    [Google Scholar]
  69. 67. 
    Sasai M, Kawabata Y, Makishi K, Itoh K, Terada TP 2013. Time scales in epigenetic dynamics and phenotypic heterogeneity of embryonic stem cells. PLOS Comput. Biol 9:12e1003380
    [Google Scholar]
  70. 68. 
    Schliekelman MJ, Taguchi A, Zhu J, Dai X, Rodriguez J et al. 2015. Molecular portraits of epithelial, mesenchymal, and hybrid states in lung adenocarcinoma and their relevance to survival. Cancer Res 75:91789–800
    [Google Scholar]
  71. 69. 
    Schoen I, Pruitt BL, Vogel V 2013. The yin-yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res 43:589–618
    [Google Scholar]
  72. 70. 
    Sharpe J. 2017. Computer modeling in developmental biology: growing today, essential tomorrow. Development 144:234214–25
    [Google Scholar]
  73. 71. 
    Shaya O, Sprinzak D. 2011. From Notch signaling to fine-grained patterning: modeling meets experiments. Curr. Opin. Genet. Dev 21:6732–39
    [Google Scholar]
  74. 72. 
    Shis DL, Bennett MR, Igoshin OA 2018. Dynamics of bacterial gene regulatory networks. Annu. Rev. Biophys 47:447–67
    [Google Scholar]
  75. 73. 
    Siebel C, Lendahl U. 2017. Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev 97:41235–94
    [Google Scholar]
  76. 74. 
    Sneppen K, Krishna S, Semsey S 2010. Simplified models of biological networks. Annu. Rev. Biophys 39:43–59
    [Google Scholar]
  77. 75. 
    Sneppen K, Ringrose L. 2019. Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat. Commun 10:12133
    [Google Scholar]
  78. 76. 
    Somarelli JA, Schaeffer D, Marengo MS, Bepler T, Rouse D et al. 2016. Distinct routes to metastasis: plasticity-dependent and plasticity-independent pathways. Oncogene 35:334302–11
    [Google Scholar]
  79. 77. 
    Steinway SN, Zañudo JGT, Ding W, Rountree CB, Feith DJ et al. 2014. Network modeling of TGF signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint Sonic Hedgehog and Wnt pathway activation. Cancer Res 74:215963–77
    [Google Scholar]
  80. 78. 
    Steinway SN, Zañudo JGT, Michel PJ, Feith DJ, Loughran TP, Albert R 2015. Combinatorial interventions inhibit TGFβ-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes. NPJ Syst. Biol. Appl 1:15014
    [Google Scholar]
  81. 79. 
    Sun M, Spill F, Zaman MH 2016. A computational model of YAP/TAZ mechanosensing. Biophys. J 110:112540–50
    [Google Scholar]
  82. 80. 
    Thiery JP, Acloque H, Huang RYJ, Nieto MA 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139:5871–90
    [Google Scholar]
  83. 81. 
    Tian X-J, Zhang H, Xing J 2013. Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys. J 105:41079–89
    [Google Scholar]
  84. 82. 
    Toneff MJ, Sreekumar A, Tinnirello A, Hollander PD, Habib S et al. 2016. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biol 14:147
    [Google Scholar]
  85. 83. 
    Tripathi S, Levine H, Jolly MK 2019. A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. bioRxiv 592691. https://doi.org/10.1101/592691
    [Crossref]
  86. 84. 
    Vlamakis H, Aguilar C, Losick R, Kolter R 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:7945–53
    [Google Scholar]
  87. 85. 
    Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M et al. 2014. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev. Cell 29:159–74
    [Google Scholar]
  88. 86. 
    Wells RG. 2008. The role of matrix stiffness in regulating cell behavior. Hepatology 47:41394–400
    [Google Scholar]
  89. 87. 
    Wittkopp PJ. 2007. Variable gene expression in eukaryotes: a network perspective. J. Exp. Biol 210:91567–75
    [Google Scholar]
  90. 88. 
    Wu C-Y, Tsai Y-P, Wu M-Z, Teng S-C, Wu K-J 2012. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 28:9454–63
    [Google Scholar]
  91. 89. 
    Xu S, Ware KE, Ding Y, Kim SY, Sheth MU et al. 2019. An integrative systems biology and experimental approach identifies convergence of epithelial plasticity, metabolism, and autophagy to promote chemoresistance. J. Clin. Med 8:2205
    [Google Scholar]
  92. 90. 
    Zhao M, Kong L, Liu Y, Qu H 2015. dbEMT: an epithelial-mesenchymal transition associated gene resource. Sci. Rep 5:11459
    [Google Scholar]
  93. 91. 
    Zhou JX, Huang S. 2011. Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet 27:255–62
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-121219-081557
Loading
/content/journals/10.1146/annurev-biophys-121219-081557
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error