1932

Abstract

Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation–associated cellular defects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-121219-081604
2020-05-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biophys/49/1/annurev-biophys-121219-081604.html?itemId=/content/journals/10.1146/annurev-biophys-121219-081604&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahola S, Langer T, MacVicar T 2019. Mitochondrial proteolysis and metabolic control. Cold Spring Harb. Perspect. Biol. 11:a033936
    [Google Scholar]
  2. 2. 
    Allio R, Donega S, Galtier N, Nabholz B 2017. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34:112762–72
    [Google Scholar]
  3. 3. 
    Anand R, Wai T, Baker MJ, Kladt N, Schauss AC et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204:6919–29
    [Google Scholar]
  4. 4. 
    Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:5806457–65
    [Google Scholar]
  5. 5. 
    Antonicka H, Shoubridge EA. 2015. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep 10:6920–32
    [Google Scholar]
  6. 6. 
    Apetri AC, Horwich AL. 2008. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. PNAS 105:4517351–55
    [Google Scholar]
  7. 7. 
    Backes S, Hess S, Boos F, Woellhaf MW, Godel S et al. 2018. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217:41369–82
    [Google Scholar]
  8. 8. 
    Baeza J, Smallegan MJ, Denu JM 2015. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 10:1122–28
    [Google Scholar]
  9. 9. 
    Baeza J, Smallegan MJ, Denu JM 2016. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 41:3231–44
    [Google Scholar]
  10. 10. 
    Beckman KB, Ames BN. 1998. Mitochondrial aging: open questions. Ann. N. Y. Acad. Sci. 854:118–27
    [Google Scholar]
  11. 11. 
    Bender T, Lewrenz I, Franken S, Baitzel C, Voos W 2011. Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease. Mol. Biol. Cell 22:5541–54
    [Google Scholar]
  12. 12. 
    Bertelsen B, Melchior L, Jensen LR, Groth C, Glenthoj B et al. 2014. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome. Eur. J. Hum. Genet. 22:111283–89
    [Google Scholar]
  13. 13. 
    Beverly KN, Sawaya MR, Schmid E, Koehler CM 2008. The Tim8-Tim13 complex has multiple substrate binding sites and binds cooperatively to Tim23. J. Mol. Biol. 382:51144–56
    [Google Scholar]
  14. 14. 
    Boos F, Krämer L, Groh C, Jung F, Haberkant P et al. 2019. Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nat. Cell Biol. 21:4442–51
    [Google Scholar]
  15. 15. 
    Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ 2013. Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 41:21223–40
    [Google Scholar]
  16. 16. 
    Bota DA, Davies KJA. 2016. Mitochondrial Lon protease in human disease and aging: including an etiologic classification of Lon-related diseases and disorders. Free Radic. Biol. Med. 100:188–98
    [Google Scholar]
  17. 17. 
    Branda SS, Isaya G. 1995. Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J. Biol. Chem. 270:4527366–73
    [Google Scholar]
  18. 18. 
    Brix J, Dietmeier K, Pfanner N 1997. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272:3320730–35
    [Google Scholar]
  19. 19. 
    Brix J, Ziegler GA, Dietmeier K, Schneider-Mergener J, Schulz GE, Pfanner N 2000. The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J. Mol. Biol. 303:4479–88
    [Google Scholar]
  20. 20. 
    Brodie EJ, Zhan H, Saiyed T, Truscott KN, Dougan DA 2018. Perrault syndrome type 3 caused by diverse molecular defects in CLPP. Sci. Rep. 8:112862
    [Google Scholar]
  21. 21. 
    Brown A, Amunts A, Bai X-C, Sugimoto Y, Edwards PC et al. 2014. Structure of the large ribosomal subunit from human mitochondria. Science 346:6210718–22
    [Google Scholar]
  22. 22. 
    Brunetti D, Torsvik J, Dallabona C, Teixeira P, Sztromwasser P et al. 2016. Defective PITRM1 mitochondrial peptidase is associated with Aβ amyloidotic neurodegeneration. EMBO Mol. Med. 8:3176–90
    [Google Scholar]
  23. 23. 
    Cha S-S, An YJ, Lee CR, Lee HS, Kim Y-G et al. 2010. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J 29:203520–30
    [Google Scholar]
  24. 24. 
    Chae YC, Angelin A, Lisanti S, Kossenkov AV, Speicher KD et al. 2013. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat. Commun. 4:2139
    [Google Scholar]
  25. 25. 
    Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC et al. 2010. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142:1112–22
    [Google Scholar]
  26. 26. 
    Chen Y, Umanah GKE, Dephoure N, Andrabi SA, Gygi SP et al. 2014. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail‐anchored proteins. EMBO J 33:141548–64
    [Google Scholar]
  27. 27. 
    Cheng F, Song W, Kang Y, Yu S, Yuan H 2011. A 556 kb deletion in the downstream region of the PAX6 gene causes familial aniridia and other eye anomalies in a Chinese family. Mol. Vis. 17:448–55
    [Google Scholar]
  28. 28. 
    Cheng MY, Hartl FU, Martin J, Pollock RA, Kalousek F et al. 1989. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:6208620–25
    [Google Scholar]
  29. 29. 
    Chew A, Sirugo G, Alsobrook JP 2nd, Isaya G 2000. Functional and genomic analysis of the human mitochondrial intermediate peptidase, a putative protein partner of frataxin. Genomics 65:2104–12
    [Google Scholar]
  30. 30. 
    Choquet K, Zurita-Rendón O, La Piana R, Yang S, Dicaire M-J et al. 2016. Autosomal recessive cerebellar ataxia caused by a homozygous mutation in PMPCA. . Brain 139:3e19
    [Google Scholar]
  31. 31. 
    Choy JS, Aung LL, Karzai AW 2007. Lon protease degrades transfer-messenger RNA-tagged proteins. J. Bacteriol. 189:186564–71
    [Google Scholar]
  32. 32. 
    Chrétien D, Bénit P, Ha H-H, Keipert S, El-Khoury R et al. 2018. Mitochondria are physiologically maintained at close to 50°C. PLOS Biol 16:1e2003992
    [Google Scholar]
  33. 33. 
    Costa EA, Subramanian K, Nunnari J, Weissman JS 2018. Defining the physiological role of SRP in protein-targeting efficiency and specificity. Science 359:6376689–92
    [Google Scholar]
  34. 34. 
    Costanzo MC, Fox TD. 1988. Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. PNAS 85:82677–81
    [Google Scholar]
  35. 35. 
    Couvillion MT, Soto IC, Shipkovenska G, Churchman LS 2016. Synchronized mitochondrial and cytosolic translation programs. Nature 533:7604499–503
    [Google Scholar]
  36. 36. 
    Davies MJ. 2016. Protein oxidation and peroxidation. Biochem. J. 473:7805–25
    [Google Scholar]
  37. 37. 
    De Los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P 2006. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. PNAS 103:166166–71
    [Google Scholar]
  38. 38. 
    Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK 2008. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283:149089–100
    [Google Scholar]
  39. 39. 
    Diogo CV, Yambire KF, Fernández Mosquera L, Branco FT, Raimundo N 2018. Mitochondrial adventures at the organelle society. Biochem. Biophys. Res. Commun. 500:187–93
    [Google Scholar]
  40. 40. 
    Duborjal H, Beugnot R, Mousson de Camaret B, Issartel JP 2002. Large functional range of steady-state levels of nuclear and mitochondrial transcripts coding for the subunits of the human mitochondrial OXPHOS system. Genome Res 12:121901–9
    [Google Scholar]
  41. 41. 
    Dziembowski A, Piwowarski J, Hoser R, Minczuk M, Dmochowska A et al. 2003. The yeast mitochondrial degradosome: its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J. Biol. Chem. 278:31603–11
    [Google Scholar]
  42. 42. 
    Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S et al. 2009. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187:71023–36
    [Google Scholar]
  43. 43. 
    Elnatan D, Betegon M, Liu Y, Ramelot T, Kennedy MA, Agard DA 2017. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1. eLife 6:e25235
    [Google Scholar]
  44. 44. 
    Esaki M, Kanamori T, Nishikawa S, Shin I, Schultz PG, Endo T 2003. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nat. Struct. Biol. 10:12988–94
    [Google Scholar]
  45. 45. 
    Fedorov AN, Baldwin TO. 1997. Cotranslational protein folding. J. Biol. Chem. 272:5232715–18
    [Google Scholar]
  46. 46. 
    Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO 2000. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275:53305–12
    [Google Scholar]
  47. 47. 
    Fischer F, Langer JD, Osiewacz HD 2015. Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism. Sci. Rep. 5:18375
    [Google Scholar]
  48. 48. 
    Flynn JM, Neher SB, Kim Y-I, Sauer RT, Baker TA 2003. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11:3671–83
    [Google Scholar]
  49. 49. 
    Friedman JR, Nunnari J. 2014. Mitochondrial form and function. Nature 505:7483335–43
    [Google Scholar]
  50. 50. 
    Funfschilling U, Rospert S. 1999. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10:103289–99
    [Google Scholar]
  51. 51. 
    Gakh O, Cavadini P, Isaya G 2002. Mitochondrial processing peptidases. Biochim. Biophys. Acta Mol. Cell Res. 1592:163–77
    [Google Scholar]
  52. 52. 
    Gamerdinger M, Hanebuth MA, Frickey T, Deuerling E 2015. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348:6231201–7
    [Google Scholar]
  53. 53. 
    Garcia-Rodriguez LJ, Gay AC, Pon LA 2007. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J. Cell Biol. 176:2197–207
    [Google Scholar]
  54. 54. 
    George R, Beddoe T, Landl K, Lithgow T 1998. The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. PNAS 95:52296–301
    [Google Scholar]
  55. 55. 
    George R, Walsh P, Beddoe T, Lithgow T 2002. The nascent polypeptide-associated complex (NAC) promotes interaction of ribosomes with the mitochondrial surface in vivo. FEBS Lett 516:1–3213–16
    [Google Scholar]
  56. 56. 
    Gerbeth C, Schmidt O, Rao S, Harbauer AB, Mikropoulou D et al. 2013. Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab 18:4578–87
    [Google Scholar]
  57. 57. 
    Germaniuk A, Liberek K, Marszalek J 2002. A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 277:3127801–8
    [Google Scholar]
  58. 58. 
    Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A et al. 2013. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb. Perspect. Biol. 5:5a011080
    [Google Scholar]
  59. 59. 
    Gold VA, Chroscicki P, Bragoszewski P, Chacinska A 2017. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep 18:101786–800
    [Google Scholar]
  60. 60. 
    Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R et al. 2015. Ribosome: the complete structure of the 55S mammalian mitochondrial ribosome. Science 348:6232303–8
    [Google Scholar]
  61. 61. 
    Gur E, Sauer RT. 2008. Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev 22:162267–77
    [Google Scholar]
  62. 62. 
    Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF et al. 2008. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. PNAS 105:3513145–50
    [Google Scholar]
  63. 63. 
    Hartmann B, Wai T, Hu H, MacVicar T, Musante L et al. 2016. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. eLife 5:e16078
    [Google Scholar]
  64. 64. 
    He L, Lemasters JJ. 2002. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function?. FEBS Lett 512:1–31–7
    [Google Scholar]
  65. 65. 
    Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, Dephoure N et al. 2010. A stress-responsive system for mitochondrial protein degradation. Mol. Cell 40:3465–80
    [Google Scholar]
  66. 66. 
    Herst PM, Rowe MR, Carson GM, Berridge MV 2017. Functional mitochondria in health and disease. Front. Endocrinol. 8:296
    [Google Scholar]
  67. 67. 
    Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A 2018. A futile battle? Protein quality control and the stress of aging. Dev. Cell 44:2139–63
    [Google Scholar]
  68. 68. 
    Hipp MS, Kasturi P, Hartl FU 2019. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20:421–35
    [Google Scholar]
  69. 69. 
    Hirschey MD, Zhao Y. 2015. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell. Proteom. 14:92308–15
    [Google Scholar]
  70. 70. 
    Horst M, Oppliger W, Rospert S, Schonfeld HJ, Schatz G, Azem A 1997. Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:81842–49
    [Google Scholar]
  71. 71. 
    Hughes AL, Hughes CE, Henderson KA, Yazvenko N, Gottschling DE 2016. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. eLife 5:e13943
    [Google Scholar]
  72. 72. 
    Ieva R, Heisswolf AK, Gebert M, Vogtle F-N, Wollweber F et al. 2013. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 4:2853
    [Google Scholar]
  73. 73. 
    Ishii Y, Sonezaki S, Iwasaki Y, Miyata Y, Akita K et al. 2000. Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli.J. . Biochem 127:5837–44
    [Google Scholar]
  74. 74. 
    Izawa T, Park SH, Zhao L, Hartl FU, Neupert W 2017. Cytosolic protein Vms1 links ribosome quality control to mitochondrial and cellular homeostasis. Cell 171:4890–903.e18
    [Google Scholar]
  75. 75. 
    Jobling RK, Assoum M, Gakh O, Blaser S, Raiman JA et al. 2015. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain 138:61505–17
    [Google Scholar]
  76. 76. 
    Joshi M, Anselm I, Shi J, Bale TA, Towne M et al. 2016. Mutations in the substrate binding glycine-rich loop of the mitochondrial processing peptidase-α protein (PMPCA) cause a severe mitochondrial disease. Cold Spring Harb. Mol. Case Stud. 2:3a000786
    [Google Scholar]
  77. 77. 
    Jourdain AA, Koppen M, Wydro M, Rodley CD, Lightowlers RN et al. 2013. GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab 17:3399–410
    [Google Scholar]
  78. 78. 
    Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC 2007. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131:2257–70
    [Google Scholar]
  79. 79. 
    Kang PJ, Ostermann J, Shilling J, Neupert W, Craig EA, Pfanner N 1990. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348:6297137–43
    [Google Scholar]
  80. 80. 
    Kang S, Louboutin J-P, Datta P, Landel CP, Martinez D et al. 2012. Loss of HtrA2/Omi activity in non-neuronal tissues of adult mice causes premature aging. Cell Death Differ 20:259–69
    [Google Scholar]
  81. 81. 
    Karbowski M, Youle RJ. 2011. Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol. 23:4476–82
    [Google Scholar]
  82. 82. 
    Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N et al. 2015. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:6232340–43
    [Google Scholar]
  83. 83. 
    Keiler KC, Waller PR, Sauer RT 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:5251990–93
    [Google Scholar]
  84. 84. 
    Kim NC, Tresse E, Kolaitis R-M, Molliex A, Thomas RE et al. 2013. VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 78:165–80
    [Google Scholar]
  85. 85. 
    König T, Tröder SE, Bakka K, Korwitz A, Richter-Dennerlein R et al. 2016. The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol. Cell 64:1148–62
    [Google Scholar]
  86. 86. 
    Koppen M, Langer T. 2007. Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit. Rev. Biochem. Mol. Biol. 42:3221–42
    [Google Scholar]
  87. 87. 
    Lavery LA, Partridge JR, Ramelot TA, Elnatan D, Kennedy MA, Agard DA 2014. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism. Mol. Cell 53:2330–43
    [Google Scholar]
  88. 88. 
    Leary SC, Battersby BJ, Hansford RG, Moyes CD 1998. Interactions between bioenergetics and mitochondrial biogenesis. Biochim. Biophys. Acta Bioenerg. 1365:3522–30
    [Google Scholar]
  89. 89. 
    Lee KW, Okot-Kotber C, La Comb JF, Bogenhagen DF 2013. Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid. J. Biol. Chem. 288:4331386–99
    [Google Scholar]
  90. 90. 
    Leonhardt SA, Fearson K, Danese PN, Mason TL 1993. HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol. Cell. Biol. 13:106304–13
    [Google Scholar]
  91. 91. 
    Lesnik C, Cohen Y, Atir-Lande A, Schuldiner M, Arava Y 2014. OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nat. Commun. 5:5711
    [Google Scholar]
  92. 92. 
    Leszczyniecka M, Bhatia U, Cueto M, Nirmala NR, Towbin H et al. 2006. MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Oncogene 25:243471–78
    [Google Scholar]
  93. 93. 
    Li Y, Xue Y, Xu X, Wang G, Liu Y et al. 2019. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity. EMBO J 38:3e98786
    [Google Scholar]
  94. 94. 
    Lin Y-F, Haynes CM. 2016. Metabolism and the UPRmt. Mol. Cell 61:5677–82
    [Google Scholar]
  95. 95. 
    Liu Q, D'Silva P, Walter W, Marszalek J, Craig EA 2003. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300:5616139–41
    [Google Scholar]
  96. 96. 
    Lombard DB, Alt FW, Cheng H-L, Bunkenborg J, Streeper RS et al. 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27:248807–14
    [Google Scholar]
  97. 97. 
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G 2013. The hallmarks of aging. Cell 153:61194–217
    [Google Scholar]
  98. 98. 
    Malecki M, Jedrzejczak R, Puchta O, Stepien PP, Golik P 2008. In vivo and in vitro approaches for studying the yeast mitochondrial RNA degradosome complex. Methods Enzymol 447:463–88
    [Google Scholar]
  99. 99. 
    Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P et al. 2015. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J. Clin. Invest. 125:1263–74
    [Google Scholar]
  100. 100. 
    Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G 2009. Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J. Neurosci. 29:299244–54
    [Google Scholar]
  101. 101. 
    Margulis L. 2010. Symbiogenesis: a new principle of evolution rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957). Paleontol. J. 44:121525–39
    [Google Scholar]
  102. 102. 
    Mårtensson CU, Priesnitz C, Song J, Ellenrieder L, Doan KN et al. 2019. Mitochondrial protein translocation-associated degradation. Nature 569:7758679–83
    [Google Scholar]
  103. 103. 
    Matheoud D, Sugiura A, Bellemare-Pelletier A, Laplante A, Rondeau C et al. 2016. Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166:2314–27
    [Google Scholar]
  104. 104. 
    Matouschek A, Pfanner N, Voos W 2000. Protein unfolding by mitochondria: the Hsp70 import motor. EMBO Rep 1:5404–10
    [Google Scholar]
  105. 105. 
    Matsushima Y, Goto Y, Kaguni LS 2010. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). PNAS 107:4318410–15
    [Google Scholar]
  106. 106. 
    Mayhew M, da Silva AC, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU 1996. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379:6564420–26
    [Google Scholar]
  107. 107. 
    McFaline-Figueroa JR, Vevea J, Swayne TC, Zhou C, Liu C et al. 2011. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10:5885–95
    [Google Scholar]
  108. 108. 
    Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA et al. 2011. The human mitochondrial transcriptome. Cell 146:4645–58
    [Google Scholar]
  109. 109. 
    Mereschkowski KS. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Cent. Ger. 5:18593–604
    [Google Scholar]
  110. 110. 
    Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A et al. 2011. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 39:104284–99
    [Google Scholar]
  111. 111. 
    Moehle EA, Shen K, Dillin A 2018. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J. Biol. Chem. 294:5396–407
    [Google Scholar]
  112. 112. 
    Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:5629–40
    [Google Scholar]
  113. 113. 
    Moran Luengo T, Kityk R, Mayer MP, Rudiger SGD 2018. Hsp90 breaks the deadlock of the Hsp70 chaperone system. Mol. Cell 70:3545–52.e9
    [Google Scholar]
  114. 114. 
    Morgenstern M, Stiller SB, Lübbert P, Peikert CD, Dannenmaier S et al. 2017. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 19:132836–52
    [Google Scholar]
  115. 115. 
    Mossmann D, Vögtle F-N, Taskin AA, Teixeira PF, Ring J et al. 2014. Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab 20:4662–69
    [Google Scholar]
  116. 116. 
    Mulero JJ, Fox TD. 1993. PET111 acts in the 5′-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation. Genetics 133:3509–16
    [Google Scholar]
  117. 117. 
    Nagaike T, Suzuki T, Katoh T, Ueda T 2005. Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J. Biol. Chem. 280:2019721–27
    [Google Scholar]
  118. 118. 
    Neupert W, Herrmann JM. 2007. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76:723–49
    [Google Scholar]
  119. 119. 
    Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P et al. 2008. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18:2102–8
    [Google Scholar]
  120. 120. 
    Ng K-P, Gugiu B, Renganathan K, Davies MW, Gu X et al. 2008. Retinal pigment epithelium lipofuscin proteomics. Mol. Cell. Proteom. 7:71397–405
    [Google Scholar]
  121. 121. 
    Ngo JK, Davies KJA. 2007. Importance of the Lon protease in mitochondrial maintenance and the significance of declining Lon in aging. Ann. N. Y. Acad. Sci. 1119:178–87
    [Google Scholar]
  122. 122. 
    Nielson JR, Fredrickson EK, Waller TC, Rendón OZ, Schubert HL et al. 2017. Sterol oxidation mediates stress-responsive Vms1 translocation to mitochondria. Mol. Cell 68:4673–85.e6
    [Google Scholar]
  123. 123. 
    Nielsen KL, Cowan NJ. 1998. A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol. Cell 2:193–99
    [Google Scholar]
  124. 124. 
    Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A 2015. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. PNAS 112:196044–49
    [Google Scholar]
  125. 125. 
    Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T 2005. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123:2277–89
    [Google Scholar]
  126. 126. 
    Nunnari J, Fox TD, Walter P 1993. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:51421997–2004
    [Google Scholar]
  127. 127. 
    Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell 148:61145–59
    [Google Scholar]
  128. 128. 
    O'Brien EP, Brooks BR, Thirumalai D 2012. Effects of pH on proteins: predictions for ensemble and single-molecule pulling experiments. J. Am. Chem. Soc. 134:2979–87
    [Google Scholar]
  129. 129. 
    Ojala D, Montoya J, Attardi G 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature 290:5806470–74
    [Google Scholar]
  130. 130. 
    Okreglak V, Walter P. 2014. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. PNAS 111:228019–24
    [Google Scholar]
  131. 131. 
    Osman C, Wilmes C, Tatsuta T, Langer T 2006. Prohibitins interact genetically with Atp23, a novel processing peptidase and chaperone for the F1FO-ATP synthase. Mol. Biol. Cell 18:2627–35
    [Google Scholar]
  132. 132. 
    Ostermann J, Horwich AL, Neupert W, Hartl FU 1989. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341:6238125–30
    [Google Scholar]
  133. 133. 
    O'Toole JF, Liu Y, Davis EE, Westlake CJ, Attanasio M et al. 2010. Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J. Clin. Invest. 120:3791–802
    [Google Scholar]
  134. 134. 
    Pais JE, Schilke B, Craig EA 2011. Reevaluation of the role of the Pam18:Pam16 interaction in translocation of proteins by the mitochondrial Hsp70-based import motor. Mol. Biol. Cell 22:244740–49
    [Google Scholar]
  135. 135. 
    Palikaras K, Lionaki E, Tavernarakis N 2018. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20:91013–22
    [Google Scholar]
  136. 136. 
    Park CB, Larsson N-G. 2011. Mitochondrial DNA mutations in disease and aging. J. Cell Biol. 193:5809–18
    [Google Scholar]
  137. 137. 
    Parker R. 2012. RNA degradation in Saccharomyces cerevisae. . Genetics 191:3671–702
    [Google Scholar]
  138. 138. 
    Patel A, Malinovska L, Saha S, Wang J, Alberti S et al. 2017. ATP as a biological hydrotrope. Science 356:6339753–56
    [Google Scholar]
  139. 139. 
    Pearce SF, Rebelo-Guiomar P, D'Souza AR, Powell CA, Van Haute L, Minczuk M 2017. Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem. Sci. 42:8625–39
    [Google Scholar]
  140. 140. 
    Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM 2014. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516:7531414–17
    [Google Scholar]
  141. 141. 
    Pfanner N, Warscheid B, Wiedemann N 2019. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20:5267–84
    [Google Scholar]
  142. 142. 
    Plun-Favreau H, Burchell VS, Holmström KM, Yao Z, Deas E et al. 2012. HtrA2 deficiency causes mitochondrial uncoupling through the F1F0-ATP synthase and consequent ATP depletion. Cell Death Dis 3:e335
    [Google Scholar]
  143. 143. 
    Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S et al. 2007. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat. Cell Biol. 9:111243–52
    [Google Scholar]
  144. 144. 
    Potting C, Wilmes C, Engmann T, Osman C, Langer T 2010. Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J 29:172888–98
    [Google Scholar]
  145. 145. 
    Pryde KR, Taanman JW, Schapira AH 2016. A LON-ClpP proteolytic axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Rep 17:2522–31
    [Google Scholar]
  146. 146. 
    Quirós PM, Langer T, López-Otín C 2015. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16:6345–59
    [Google Scholar]
  147. 147. 
    Rampello AJ, Glynn SE. 2017. Identification of a degradation signal sequence within substrates of the mitochondrial i-AAA protease. J. Mol. Biol. 429:6873–85
    [Google Scholar]
  148. 148. 
    Rehling P, Model K, Brandner K, Kovermann P, Sickmann A et al. 2003. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299:56131747–51
    [Google Scholar]
  149. 149. 
    Richman TR, Spahr H, Ermer JA, Davies SMK, Viola HM et al. 2016. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat. Commun. 7:11884
    [Google Scholar]
  150. 150. 
    Rödel G, Fox TD. 1987. The yeast nuclear gene CBS1 is required for translation of mitochondrial mRNAs bearing the cob 5′ untranslated leader. MGG Mol. Gen. Genet. 206:145–50
    [Google Scholar]
  151. 151. 
    Rorbach J, Minczuk M. 2012. The post-transcriptional life of mammalian mitochondrial RNA. Biochem. J. 444:357–73
    [Google Scholar]
  152. 152. 
    Rorbach J, Nicholls TJJ, Minczuk M 2011. PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res 39:177750–63
    [Google Scholar]
  153. 153. 
    Rospert S, Looser R, Dubaquie Y, Matouschek A, Glick BS, Schatz G 1996. Hsp60-independent protein folding in the matrix of yeast mitochondria. EMBO J 15:4764–74
    [Google Scholar]
  154. 154. 
    Rottgers K, Zufall N, Guiard B, Voos W 2002. The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J. Biol. Chem. 277:4845829–37
    [Google Scholar]
  155. 155. 
    Rowley N, Prip-Buus C, Westermann B, Brown C, Schwarz E et al. 1994. Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77:2249–59
    [Google Scholar]
  156. 156. 
    Ruan L, Zhang X, Li R 2018. Recent insights into the cellular and molecular determinants of aging. J. Cell Sci. 131:3jcs210831
    [Google Scholar]
  157. 157. 
    Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y et al. 2017. Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543:7645443–46
    [Google Scholar]
  158. 158. 
    Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S et al. 2008. Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLOS ONE 3:6e2293
    [Google Scholar]
  159. 159. 
    Santo-Domingo J, Demaurex N. 2012. The renaissance of mitochondrial pH. J. Gen. Physiol. 139:6415–23
    [Google Scholar]
  160. 160. 
    Sauer RT, Baker TA. 2011. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80:587–612
    [Google Scholar]
  161. 161. 
    Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP et al. 2011. Regulation of mitochondrial protein import by cytosolic kinases. Cell 144:2227–39
    [Google Scholar]
  162. 162. 
    Schmitt M, Neupert W, Langer T 1996. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 134:61375–86
    [Google Scholar]
  163. 163. 
    Sciacovelli M, Guzzo G, Morello V, Frezza C, Zheng L et al. 2013. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab 17:6988–99
    [Google Scholar]
  164. 164. 
    Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T 2003. An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J. Biol. Chem. 278:5252953–63
    [Google Scholar]
  165. 165. 
    Shah IM, Wolf RE. 2006. Sequence requirements for Lon-dependent degradation of the Escherichia coli transcription activator SoxS: identification of the SoxS residues critical to proteolysis and specific inhibition of in vitro degradation by a peptide comprised of the N-terminal 21 amino acid residues. J. Mol. Biol. 357:3718–31
    [Google Scholar]
  166. 166. 
    Shanmughapriya S, Rajan S, Hoffman NE, Higgins AM, Tomar D et al. 2015. SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol. Cell 60:147–62
    [Google Scholar]
  167. 167. 
    Shi H, Rampello AJ, Glynn SE 2016. Engineered AAA+ proteases reveal principles of proteolysis at the mitochondrial inner membrane. Nat. Commun. 7:113301
    [Google Scholar]
  168. 168. 
    Shorter J, Southworth DR. 2019. Spiraling in control: structures and mechanisms of the Hsp104 disaggregase. Cold Spring Harb. Perspect. Biol. 11:a034033
    [Google Scholar]
  169. 169. 
    Shpilka T, Haynes CM. 2018. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19:2109–20
    [Google Scholar]
  170. 170. 
    Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL 1998. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67:581–608
    [Google Scholar]
  171. 171. 
    Snowdon C, Johnston M. 2016. A novel role for yeast casein kinases in glucose sensing and signaling. Mol. Biol. Cell 27:213369–75
    [Google Scholar]
  172. 172. 
    Song W-H, Yi Y-J, Sutovsky M, Meyers S, Sutovsky P 2016. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. PNAS 113:36E5261–70
    [Google Scholar]
  173. 173. 
    Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H et al. 2017. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552:7684187–93
    [Google Scholar]
  174. 174. 
    Soubannier V, McLelland G-L, Zunino R, Braschi E, Rippstein P et al. 2012. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr. Biol. 22:2135–41
    [Google Scholar]
  175. 175. 
    Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:56022390–92
    [Google Scholar]
  176. 176. 
    Stefani M. 2004. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta Mol. Basis Dis. 1739:15–25
    [Google Scholar]
  177. 177. 
    Sung N, Lee J, Kim J-H, Chang C, Joachimiak A et al. 2016. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate. PNAS 113:112952–57
    [Google Scholar]
  178. 178. 
    Taskin AA, Kücükköse C, Burger N, Mossmann D, Meisinger C, Vögtle F-N 2017. The novel mitochondrial matrix protease Ste23 is required for efficient presequence degradation and processing. Mol. Biol. Cell 28:8997–1002
    [Google Scholar]
  179. 179. 
    Temperley RJ, Seneca SH, Tonska K, Bartnik E, Bindoff LA et al. 2003. Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Hum. Mol. Genet. 12:182341–48
    [Google Scholar]
  180. 180. 
    Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM 2010. Human mitochondrial mRNAs—like members of all families, similar but different. Biochim. Biophys. Acta Bioenerg. 1797:6–71081–85
    [Google Scholar]
  181. 181. 
    Tomecki R, Dmochowska A, Gewartowski K, Dziembowski A, Stepien PP 2004. Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucleic Acids Res 32:206001–14
    [Google Scholar]
  182. 182. 
    Tu YT, Barrientos A. 2015. The human mitochondrial DEAD-Box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep 10:6854–64
    [Google Scholar]
  183. 183. 
    Ugarte N, Petropoulos I, Friguet B 2010. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid. Redox Signal. 13:4539–49
    [Google Scholar]
  184. 184. 
    Vande Walle L, Lamkanfi M, Vandenabeele P 2008. The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 15:453–60
    [Google Scholar]
  185. 185. 
    Vögtle F-N, Brändl B, Larson A, Pendziwiat M, Friederich MW et al. 2018. Mutations in PMPCB encoding the catalytic subunit of the mitochondrial presequence protease cause neurodegeneration in early childhood. Am. J. Hum. Genet. 102:4557–73
    [Google Scholar]
  186. 186. 
    Vogtle F-N, Prinz C, Kellermann J, Lottspeich F, Pfanner N, Meisinger C 2011. Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 22:132135–43
    [Google Scholar]
  187. 187. 
    Vogtle F-N, Wortelkamp S, Zahedi RP, Becker D, Leidhold C et al. 2009. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:2428–39
    [Google Scholar]
  188. 188. 
    Voisine C, Craig EA, Zufall N, von Ahsen O, Pfanner N, Voos W 1999. The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell 97:5565–74
    [Google Scholar]
  189. 189. 
    Voos W. 2013. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta 1833. 2:388–99
    [Google Scholar]
  190. 190. 
    Wagner GR, Bhatt DP, O'Connell TM, Thompson JW, Dubois LG et al. 2017. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab 25:4823–37.e8
    [Google Scholar]
  191. 191. 
    Wagner GR, Payne RM. 2013. Widespread and enzyme-independent Nϵ-acetylation and Nϵ-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288:4029036–45
    [Google Scholar]
  192. 192. 
    Wallace EWJ, Kear-Scott JL, Pilipenko EV, Pan T, Budnik BA et al. 2015. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162:1286–98
    [Google Scholar]
  193. 193. 
    Wang JD, Michelitsch MD, Weissman JS 1998. GroEL-GroES-mediated protein folding requires an intact central cavity. PNAS 95:2112163–68
    [Google Scholar]
  194. 194. 
    Wang P, Deng J, Dong J, Liu J, Bigio EH et al. 2019. TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLOS Genet 15:5e1007947
    [Google Scholar]
  195. 195. 
    Wang Q, Zhang Y, Yang C, Xiong H, Lin Y et al. 2010. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:59681004–7
    [Google Scholar]
  196. 196. 
    Wang W, Wang L, Lu J, Siedlak SL, Fujioka H et al. 2016. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22:8869–78
    [Google Scholar]
  197. 197. 
    Wang X, Chen XJ. 2015. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 524:7566481–84
    [Google Scholar]
  198. 198. 
    Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM 2006. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol. Cell 21:1123–33
    [Google Scholar]
  199. 199. 
    Weidberg H, Amon A. 2019. MitoCPR: a surveillance pathway that protects mitochondria in response to protein import stress. Science 360:6385 In press
    [Google Scholar]
  200. 200. 
    Weinhaupl K, Lindau C, Hessel A, Wang Y, Schutze C et al. 2018. Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell 175:51365–79.e25
    [Google Scholar]
  201. 201. 
    Weisiger RA, Fridovich I. 1973. Superoxide dismutase: organelle specificity. J. Biol. Chem. 248:103582–92
    [Google Scholar]
  202. 202. 
    Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B et al. 2009. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat. Genet. 41:7833–37
    [Google Scholar]
  203. 203. 
    West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:7548553–57
    [Google Scholar]
  204. 204. 
    Westermann B, Gaume B, Herrmann JM, Neupert W, Schwarz E 1996. Role of the mitochondrial DnaJ homolog Mdj1p as a chaperone for mitochondrially synthesized and imported proteins. Mol. Cell. Biol. 16:127063–71
    [Google Scholar]
  205. 205. 
    Wiedemann N, Pfanner N. 2017. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86:685–714
    [Google Scholar]
  206. 206. 
    Wilkening A, Rüb C, Sylvester M, Voos W 2018. Analysis of heat-induced protein aggregation in human mitochondria. J. Biol. Chem. 293:2911537–52
    [Google Scholar]
  207. 207. 
    Williams CC, Jan CH, Weissman JS 2014. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:6210748–51
    [Google Scholar]
  208. 208. 
    Witte C, Jensen RE, Yaffe MP, Schatz G 1988. MAS1, a gene essential for yeast mitochondrial assembly, encodes a subunit of the mitochondrial processing protease. EMBO J 7:51439–47
    [Google Scholar]
  209. 209. 
    Wrobel L, Topf U, Bragoszewski P, Wiese S, Sztolsztener ME et al. 2015. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524:7566485–88
    [Google Scholar]
  210. 210. 
    Wu X, Li L, Jiang H 2016. Doa1 targets ubiquitinated substrates for mitochondria-associated degradation. J. Cell Biol. 213:149–63
    [Google Scholar]
  211. 211. 
    Wydro M, Bobrowicz A, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM 2010. Targeting of the cytosolic poly(A) binding protein PABPC1 to mitochondria causes mitochondrial translation inhibition. Nucleic Acids Res 38:113732–42
    [Google Scholar]
  212. 212. 
    Xu S, Peng G, Wang Y, Fang S, Karbowski M 2011. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 22:3291–300
    [Google Scholar]
  213. 213. 
    Yamamoto H, Fukui K, Takahashi H, Kitamura S, Shiota T et al. 2009. Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284:4631635–46
    [Google Scholar]
  214. 214. 
    Yamano K, Yatsukawa Y-I, Esaki M, Hobbs AEA, Jensen RE, Endo T 2008. Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283:73799–807
    [Google Scholar]
  215. 215. 
    Yano M, Terada K, Mori M 2004. Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity. J. Biol. Chem. 279:1110808–13
    [Google Scholar]
  216. 216. 
    Yoshida S, Tsutsumi S, Muhlebach G, Sourbier C, Lee M-J et al. 2013. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. PNAS 110:17E1604–12
    [Google Scholar]
  217. 217. 
    Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:19–14
    [Google Scholar]
  218. 218. 
    Young JC, Hoogenraad NJ, Hartl FU 2003. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:141–50
    [Google Scholar]
  219. 219. 
    Zeng X, Neupert W, Tzagoloff A 2007. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol. Biol. Cell 18:2617–26
    [Google Scholar]
  220. 220. 
    Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z et al. 2014. Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159:3530–42
    [Google Scholar]
  221. 221. 
    Zurita Rendón O, Fredrickson EK, Howard CJ, Van Vranken J, Fogarty S et al. 2018. Vms1p is a release factor for the ribosome-associated quality control complex. Nat. Commun. 9:12197
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-121219-081604
Loading
/content/journals/10.1146/annurev-biophys-121219-081604
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error