1932

Abstract

The process of mitophagy, in which mitochondria are selectively turned over at the autophagolysosome, plays a central role in both eliminating dysfunctional mitochondria and reducing mitochondrial mass as an adaptive response to key physiological stresses, such as hypoxia, nutrient deprivation, and DNA damage. Defects in mitophagy have been linked to altered mitochondrial metabolism, production of excess reactive oxygen species and ferroptosis, heightened inflammasome activation, altered cell fate decisions, and senescence, among other cellular consequences. Consequently, functional mitophagy contributes to proper tissue differentiation and repair and metabolic homeostasis, limiting inflammatory responses and modulating tumor progression and metastasis. This review examines the major pathways that control mitophagy, including PINK1-dependent mitophagy and BNIP3/NIX-dependent mitophagy. It also discusses the cellular signaling mechanisms used to sense mitochondrial dysfunction to activate mitophagy and how defective mitophagy results in deregulated tumor cell growth and cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030419-033405
2020-03-04
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/4/1/annurev-cancerbio-030419-033405.html?itemId=/content/journals/10.1146/annurev-cancerbio-030419-033405&mimeType=html&fmt=ahah

Literature Cited

  1. Agnihotri S, Golbourn B, Huang X, Remke M, Younger S et al. 2016. PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma. Cancer Res 76:4708–19
    [Google Scholar]
  2. Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R et al. 2005. Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin. Cancer Res. 11:3094–101
    [Google Scholar]
  3. Bruick RK. 2000. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. PNAS 97:9082–87
    [Google Scholar]
  4. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R et al. 2003. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–q27. PNAS 100:5956–61
    [Google Scholar]
  5. Chen Q, Sun L, Chen ZJ 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17:1142–49
    [Google Scholar]
  6. Cho HM, Ryu JR, Jo Y, Seo TW, Choi YN et al. 2019. Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol. Cell 73:364–76.e8
    [Google Scholar]
  7. Chourasia AH, Tracy K, Frankenberger C, Boland ML, Sharifi MN et al. 2015. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep 16:1145–63
    [Google Scholar]
  8. Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R et al. 2016. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 35:724–42
    [Google Scholar]
  9. D'Amico D, Sorrentino V, Auwerx J 2017. Cytosolic proteostasis networks of the mitochondrial stress response. Trends Biochem. Sci. 42:712–25
    [Google Scholar]
  10. de Almeida MJ, Luchsinger LL, Corrigan DJ, Williams LJ, Snoeck HW 2017. Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 21:725–29.e4
    [Google Scholar]
  11. Ding WX, Ni HM, Li M, Liao Y, Chen X et al. 2010. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J. Biol. Chem. 285:27879–90
    [Google Scholar]
  12. Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP et al. 2007. Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. PNAS 104:6794–99
    [Google Scholar]
  13. Domenech E, Maestre C, Esteban-Martinez L, Partida D, Pascual R et al. 2015. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat. Cell Biol. 17:1304–16
    [Google Scholar]
  14. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–61
    [Google Scholar]
  15. Erkan M, Kleef J, Esposito I, Giese T, Ketterer K et al. 2005. Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24:4421–32
    [Google Scholar]
  16. Esteban-Martinez L, Sierra-Filardi E, McGreal RS, Salazar-Roa M, Marino G et al. 2017. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J 36:1688–706
    [Google Scholar]
  17. Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K et al. 2016. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab 24:566–81
    [Google Scholar]
  18. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T et al. 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157:882–96
    [Google Scholar]
  19. Fei P, Wang W, Kim SH, Wang S, Burns TF et al. 2005. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6:597–609
    [Google Scholar]
  20. Feng X, Liu X, Zhang W, Xiao W 2011. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J 30:3397–415
    [Google Scholar]
  21. Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K et al. 2008. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27:6002–11
    [Google Scholar]
  22. Gao F, Chen D, Si J, Hu Q, Qin Z et al. 2015. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet. 24:2528–38
    [Google Scholar]
  23. Gao M, Yi J, Zhu J, Minikes AM, Monian P et al. 2019. Role of mitochondria in ferroptosis. Mol. Cell 73:354–63.e3
    [Google Scholar]
  24. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119–31
    [Google Scholar]
  25. Gerhart-Hines Z, Dominy JE Jr., Blattler SM, Jedrychowski MP, Banks AS et al. 2011. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol. Cell 44:851–63
    [Google Scholar]
  26. Glick D, Zhang W, Beaton M, Marsboom G, Gruber M et al. 2012. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell Biol. 32:2570–84
    [Google Scholar]
  27. Gomes LC, Di Benedetto G, Scorrano L 2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13:589–98
    [Google Scholar]
  28. Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E et al. 2014. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat. Genet. 46:588–94
    [Google Scholar]
  29. Guha M, Srinivasan S, Raman P, Jiang Y, Kaufman BA et al. 2018. Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochim. Biophys. Acta Mol. Basis Dis. 1864:1060–71
    [Google Scholar]
  30. Gui X, Yang H, Li T, Tan X, Shi P et al. 2019. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567:262–66
    [Google Scholar]
  31. Gupte R, Liu Z, Kraus WL 2017. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–26
    [Google Scholar]
  32. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ et al. 2010. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–63
    [Google Scholar]
  33. Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB 2012. Microtubule-associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287:19094–104
    [Google Scholar]
  34. Harper JW, Ordureau A, Heo JM 2018. Building and decoding ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell Biol. 19:93–108
    [Google Scholar]
  35. He N, Fan W, Henriquez B, Yu RT, Atkins AR et al. 2017. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. PNAS 114:12542–47
    [Google Scholar]
  36. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper J 2015. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60:7–20
    [Google Scholar]
  37. Herzig S, Shaw RJ. 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19:121–35
    [Google Scholar]
  38. Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J et al. 2017. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543:205–10
    [Google Scholar]
  39. Hosios AM, Vander Heiden MG 2018. The redox requirements of proliferating mammalian cells. J. Biol. Chem. 293:7490–98
    [Google Scholar]
  40. Humpton TJ, Alagesan B, DeNicola G, Lu D, Yordanov GN et al. 2019. NIX-mediated mitophagy promotes pancreatic cancer. Cancer Discov 9:1268–87
    [Google Scholar]
  41. Ito K, Suda T. 2014. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15:243–56
    [Google Scholar]
  42. Ito K, Turcotte R, Cui J, Zimmerman SE, Pinho S et al. 2016. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354:1156–60
    [Google Scholar]
  43. Jin G, Xu C, Zhang X, Long J, Rezaeian AH et al. 2018. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat. Immunol. 19:29–40
    [Google Scholar]
  44. Kalas W, Swiderek E, Rapak A, Kopij M, Rak JW, Strzadala L 2011. H-ras up-regulates expression of BNIP3. Anticancer Res 31:2869–75
    [Google Scholar]
  45. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL et al. 2015. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57:537–51
    [Google Scholar]
  46. Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M et al. 2005. Two transcriptional mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 24:3846–58
    [Google Scholar]
  47. Katajisto P, Dohla J, Chaffer CL, Pentinmikko N, Marjanovic N et al. 2015. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–43
    [Google Scholar]
  48. Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ et al. 2011. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J. Clin. Investig. 121:3701–12
    [Google Scholar]
  49. Kim S, Sieburth D. 2018. Sphingosine kinase activates the mitochondrial unfolded protein response and is targeted to mitochondria by stress. Cell Rep 24:2932–45.e4
    [Google Scholar]
  50. Kimmelman AC, White E. 2017. Autophagy and tumor metabolism. Cell Metab 25:1037–43
    [Google Scholar]
  51. Koop EA, van Laar T, van Wichen DF, de Weger RA, van der Wall E, van Diest PJ 2009. Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features. BMC Cancer 9:175–82
    [Google Scholar]
  52. Kottakis F, Nicolay BN, Roumane A, Karnik R, Gu H et al. 2016. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539:390–95
    [Google Scholar]
  53. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–14
    [Google Scholar]
  54. Le Guerroue F, Eck F, Jung J, Starzetz T, Mittelbronn M et al. 2017. Autophagosomal content profiling reveals an LC3C-dependent piecemeal mitophagy pathway. Mol. Cell 68:786–96.e6
    [Google Scholar]
  55. Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J et al. 2019. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 568:254–58
    [Google Scholar]
  56. Lee JM, Wagner M, Xiao R, Kim KH, Lazar MA, Moore DD 2014. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516:112–15
    [Google Scholar]
  57. Lee SB, Kim JJ, Nam HJ, Gao B, Yin P et al. 2015. Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol. Cell 60:21–34
    [Google Scholar]
  58. Lee YK, Lee HY, Hanna RA, Gustafsson AB 2011. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 301:H1924–31
    [Google Scholar]
  59. Li C, Zhang Y, Cheng X, Yuan H, Zhu S et al. 2018. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev. Cell 46:441–55e8
    [Google Scholar]
  60. Li Y, Wang Y, Kim E, Beemiller P, Wang CY et al. 2007. Bnip3 mediates the hypoxia-induced inhibition on mTOR by interacting with Rheb. J. Biol. Chem 282 35803–13
    [Google Scholar]
  61. Liesa M, Shirihai OS. 2013. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506
    [Google Scholar]
  62. Liu J, Zhang C, Zhao Y, Yue X, Wu H et al. 2017. Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression. Nat. Commun. 8:1823
    [Google Scholar]
  63. Liu K, Lee J, Kim JY, Wang L, Tian Y et al. 2017. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol. Cell 68:281–92
    [Google Scholar]
  64. Liu Z, Chen P, Gao H, Gu Y, Yang J et al. 2014. Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression. Cancer Cell 26:106–20
    [Google Scholar]
  65. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R et al. 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–71
    [Google Scholar]
  66. Manka D, Spicer Z, Millhorn DE 2005. Bcl-2/adenovirus E1B 19 kDa interacting protein-3 knockdown enables growth of breast cancer metastases in the lung, liver and bone. Cancer Res 65:11689–93
    [Google Scholar]
  67. Martinez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H et al. 2016. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell 61:199–209
    [Google Scholar]
  68. Masand R, Paulo E, Wu D, Wang Y, Swaney DL et al. 2018. Proteome imbalance of mitochondrial electron transport chain in brown adipocytes leads to metabolic benefits. Cell Metab 27:616–29.e4
    [Google Scholar]
  69. Matilainen O, Quiros PM, Auwerx J 2017. Mitochondria and epigenetics—crosstalk in homeostasis and stress. Trends Cell Biol 27:453–63
    [Google Scholar]
  70. Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C et al. 2013. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 17:719–30
    [Google Scholar]
  71. Mishra P, Chan DC. 2014. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15:634–46
    [Google Scholar]
  72. Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A et al. 2012. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 487:380–84
    [Google Scholar]
  73. Moore AS, Holzbaur EL. 2016. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. PNAS 113:E3349–58
    [Google Scholar]
  74. Moscat J, Karin M, Diaz-Meco MT 2016. p62 in cancer: signaling adaptor beyond autophagy. Cell 167:606–9
    [Google Scholar]
  75. Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y et al. 2005. Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin. Cancer Res. 11:1021–27
    [Google Scholar]
  76. Nakada D, Saunders TL, Morrison SJ 2010. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–58
    [Google Scholar]
  77. Ney PA. 2015. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim. Biophys. Acta Mol. Cell Res. 1853:2775–83
    [Google Scholar]
  78. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P et al. 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51
    [Google Scholar]
  79. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL et al. 2017. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8:15691
    [Google Scholar]
  80. Ohi N, Tokunaga A, Tsunoda H, Nakano K, Haraguchi K et al. 1999. A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ 6:314–25
    [Google Scholar]
  81. Okami J, Simeone DM, Logsdon CD 2004. Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64:5338–46
    [Google Scholar]
  82. Orvedahl A, Sumpter R Jr., Xiao G, Ng A, Zou Z et al. 2011. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480:113–17
    [Google Scholar]
  83. Pagliarini DJ, Rutter J. 2013. Hallmarks of a new era in mitochondrial biochemistry. Genes Dev 27:2615–27
    [Google Scholar]
  84. Palikaras K, Lionaki E, Tavernarakis N 2015. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. . Nature 521:525–28
    [Google Scholar]
  85. Pei S, Minhajuddin M, Adane B, Khan N, Stevens BM et al. 2018. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell 23:86–100.e6
    [Google Scholar]
  86. Ploumi C, Daskalaki I, Tavernarakis N 2017. Mitochondrial biogenesis and clearance: a balancing act. FEBS J 284:183–95
    [Google Scholar]
  87. Quiros PM, Prado MA, Zamboni N, D'Amico D, Williams RW et al. 2017. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216:2027–45
    [Google Scholar]
  88. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J 2011. Tubular network formation protects mitochondrial from autophagosomal degradation during nutrient starvation. PNAS 108:10190–95
    [Google Scholar]
  89. Rojansky R, Cha MY, Chan DC 2016. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5:e17896
    [Google Scholar]
  90. Sandoval H, Thiagarajan P, Dasgupta SK, Scumacker A, Prchal JT et al. 2008. Essential role for Nix in autophagic maturation of red cells. Nature 454:232–35
    [Google Scholar]
  91. Schwarten M, Mohrluder J, Ma P, Stoldt M, Thielman Y et al. 2009. Nix binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5:690–98
    [Google Scholar]
  92. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W et al. 2007. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. PNAS 104:19500–5
    [Google Scholar]
  93. Sekine S, Wang C, Sideris DP, Bunker E, Zhang Z, Youle RJ 2019. Reciprocal roles of Tom7 and OMA1 during mitochondrial import and activation of PINK1. Mol. Cell 73:1028–43.e5
    [Google Scholar]
  94. Sena LA, Chandel NS. 2012. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48:158–67
    [Google Scholar]
  95. Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ et al. 2015. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57:521–36
    [Google Scholar]
  96. Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F et al. 2008. Antagonism of E2F-1 regulated Bnip3 transcription by NF-κB is essential for basal cell survival. PNAS 105:20734–39
    [Google Scholar]
  97. Shibue T, Weinberg RA. 2017. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14:611–29
    [Google Scholar]
  98. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–14
    [Google Scholar]
  99. Smith AG, Macleod KF. 2019. Autophagy, cancer stem cells and drug resistance. J. Pathol. 247:708–18
    [Google Scholar]
  100. Sowter HM, Ferguson M, Pym C, Watson P, Fox SB et al. 2003. Expression of the cell death genes BNip3 and Nix in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade. J. Pathol. 201:573–80
    [Google Scholar]
  101. Sulistijo ES, MacKenzie KR. 2009. Structural basis for dimerization of the BNIP3 transmembrane domain. Biochemistry 48:5106–20
    [Google Scholar]
  102. Sumpter R Jr., Sirasanagandla S, Fernandez AF, Wei Y, Dong X et al. 2016. Fanconi anemia proteins function in mitophagy and immunity. Cell 165:867–81
    [Google Scholar]
  103. Toyama EQ, Herzig S, Courchet J, Lewis TL Jr., Loson OC et al. 2016. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–81
    [Google Scholar]
  104. Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF 2007. BNIP3 is a RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell. Biol. 27:6229–42
    [Google Scholar]
  105. Valentin-Vega YA, Maclean KH, Tait-Mulder J, Milasta S, Steeves M et al. 2012. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119:1490–500
    [Google Scholar]
  106. Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T et al. 2000. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell Biol. 20:5454–68
    [Google Scholar]
  107. Vannini N, Campos V, Girotra M, Trachsel V, Rojas-Sutterlin S et al. 2019. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell 24:405–18.e7
    [Google Scholar]
  108. Vannini N, Girotra M, Naveiras O, Nikitin G, Campos V et al. 2016. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat. Commun. 7:13125
    [Google Scholar]
  109. Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L 2018. Cytosolic DNA sensing in organismal tumor control. Cancer Cell 34:361–78
    [Google Scholar]
  110. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E et al. 2010. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat. Genet. 42:77–82
    [Google Scholar]
  111. Villa E, Proics E, Rubio-Patino C, Obba S, Zunino B et al. 2017. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep 20:2846–59
    [Google Scholar]
  112. Vyas S, Zaganjor E, Haigis MC 2016. Mitochondria and cancer. Cell 166:555–66
    [Google Scholar]
  113. Whelan KA, Chandramouleeswaran PM, Tanaka K, Natsuizaka M, Guha M et al. 2017. Autophagy supports generation of cells with high CD44 expression via modulation of oxidative stress and Parkin-mediated mitochondrial clearance. Oncogene 36:4843–58
    [Google Scholar]
  114. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA et al. 2016. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–14
    [Google Scholar]
  115. Wong YC, Holzbaur EL. 2014. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. PNAS 111:E4439–48
    [Google Scholar]
  116. Yang C, Hashimoto M, Lin QXX, Tan DQ, Suda T 2019. Sphingosine-1-phosphate signaling modulates terminal erythroid differentiation through the regulation of mitophagy. Exp. Hematol. 72:47–59.e1
    [Google Scholar]
  117. Yang K, Blanco DB, Neale G, Vogel P, Avila J et al. 2017. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 548:602–6
    [Google Scholar]
  118. Yu JJ, Nagasu H, Murakami T, Hoang H, Broderick L et al. 2014. Inflammasome activation leads to caspase-1 dependent mitochondrial damage and block of mitophagy. PNAS 111:15514–19
    [Google Scholar]
  119. Yun J, Puri R, Yang H, Lizzio MA, Wu C et al. 2014. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. eLife 3:e01958
    [Google Scholar]
  120. Zhang C, Lin M, Wu R, Wang X, Yang BG et al. 2011. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. PNAS 108:16259–64
    [Google Scholar]
  121. Zhang T, Xue L, Li L, Tang C, Wan Z et al. 2016. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J. Biol. Chem. 291:21616–29
    [Google Scholar]
  122. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S et al. 2018. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560:198–203
    [Google Scholar]
  123. Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S et al. 2016. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:896–910
    [Google Scholar]
  124. Zhou R, Yazdi AS, Menu P, Tschopp J 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–25
    [Google Scholar]
  125. Zong WX, Rabinowitz JD, White E 2016. Mitochondria and cancer. Mol. Cell 61:667–76
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030419-033405
Loading
/content/journals/10.1146/annurev-cancerbio-030419-033405
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error