1932

Abstract

Domesticated retroelements contribute extensively as regulatory elements within host gene networks. Upon germline integration, retroelement mobilization is restricted through epigenetic silencing, mutational degradation, and innate immune defenses described as the viral mimicry response. Recent discoveries reveal how early events in tumorigenesis reactivate retroelements to facilitate onco-exaptation, replication stress, retrotransposition, mitotic errors, and sterile inflammation, which collectively disrupt genome integrity. The characterization of altered epigenetic homeostasis at retroelements in cancer cells also reveals new epigenetic targets whose inactivation can bolster responses to cancer therapies. Recent discoveries reviewed here frame reactivated retroelements as both drivers of tumorigenesis and therapy responses, where their reactivation by emerging epigenetic therapies can potentiate immune checkpoint blockade, cancer vaccines, and other standard therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030419-033525
2020-03-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/4/1/annurev-cancerbio-030419-033525.html?itemId=/content/journals/10.1146/annurev-cancerbio-030419-033525&mimeType=html&fmt=ahah

Literature Cited

  1. Adoue V, Binet B, Malbec A, Fourquet J, Romagnoli P et al. 2019. The histone methyltransferase SETDB1 controls T helper cell lineage integrity by repressing endogenous retroviruses. Immunity 50:629–44.e8
    [Google Scholar]
  2. Aguilera A, García-Muse T. 2012. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46:115–24
    [Google Scholar]
  3. Ahmad S, Mu X, Yang F, Greenwald E, Park JW et al. 2018. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172:797–810.e13
    [Google Scholar]
  4. Allis CD, Jenuwein T. 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17:487–500
    [Google Scholar]
  5. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES 2015. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 14:130–46
    [Google Scholar]
  6. Babaian A, Romanish MT, Gagnier L, Kuo LY, Karimi MM et al. 2015. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene 35:2542–46
    [Google Scholar]
  7. Baltimore D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–11
    [Google Scholar]
  8. Beck CR, Garcia-Perez JL, Badge RM, Moran JV 2011. LINE-1 elements in structural variation and disease. Annu. Rev. Genom. Hum. Genet. 12:187–215
    [Google Scholar]
  9. Belancio VP, Roy-Engel AM, Deininger PL 2010. All y'all need to know ‘bout retroelements in cancer. Semin. Cancer Biol. 20:200–10
    [Google Scholar]
  10. Bertoli C, Skotheim JM, de Bruin RAM 2013. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14:518–28
    [Google Scholar]
  11. Blaise S, de Parseval N, Benit L, Heidmann T 2003. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. PNAS 100:13013–18
    [Google Scholar]
  12. Boeke JD, Garfinkel DJ, Styles CA, Fink GR 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500
    [Google Scholar]
  13. Boller K, Janssen O, Schuldes H, Tönjes RR, Kurth R 1997. Characterization of the antibody response specific for the human endogenous retrovirus HTDV/HERV-K. J. Virol. 71:4581–88
    [Google Scholar]
  14. Bourc'his D, Bestor TH. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99
    [Google Scholar]
  15. Brocks D, Schmidt CR, Daskalakis M, Jang HS, Shah NM et al. 2017. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49:1052–60
    [Google Scholar]
  16. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH et al. 2003. Hot L1s account for the bulk of retrotransposition in the human population. PNAS 100:5280–85
    [Google Scholar]
  17. Cañadas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW et al. 2018. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24:1143–50
    [Google Scholar]
  18. Cherkasova E, Malinzak E, Rao S, Takahashi Y, Senchenko VN et al. 2011. Inactivation of the von Hippel-Lindau tumor suppressor leads to selective expression of a human endogenous retrovirus in kidney cancer. Oncogene 30:4697–706
    [Google Scholar]
  19. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C et al. 2015. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162:974–86
    [Google Scholar]
  20. Chuong EB, Elde NC, Feschotte C 2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083–87
    [Google Scholar]
  21. Chuong EB, Elde NC, Feschotte C 2017. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18:71–86
    [Google Scholar]
  22. Colum PW, Chaillet JR, Timothy HB 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20:116–17
    [Google Scholar]
  23. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J et al. 2014. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 7:1456–70
    [Google Scholar]
  24. Coschi CH, Ishak CA, Gallo D, Marshall A, Talluri S et al. 2014. Haploinsufficiency of an RB–E2F1–condensin II complex leads to aberrant replication and aneuploidy. Cancer Discov 4:840–53
    [Google Scholar]
  25. Cuellar TL, Herzner A-M, Zhang X, Goyal Y, Watanabe C et al. 2017. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J. Cell Biol. 216:3535–49
    [Google Scholar]
  26. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ et al. 2019. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
    [Google Scholar]
  27. Deniger DC, Pasetto A, Robbins PF, Gartner JJ, Prickett TD et al. 2018. T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin. Cancer Res. 24:5562–73
    [Google Scholar]
  28. Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH 1991. Isolation of an active human transposable element. Science 254:1805–8
    [Google Scholar]
  29. Doucet-O'Hare TT, Rodic N, Sharma R, Darbari I, Abril G et al. 2015. LINE-1 expression and retrotransposition in Barrett's esophagus and esophageal carcinoma. PNAS 112:E4894–900
    [Google Scholar]
  30. Dougherty RM, Di Stefano HS 1966. Lack of relationship between infection with avian leukosis virus and the presence of COFAL antigen in chick embryos. Virology 29:586–95
    [Google Scholar]
  31. Dougherty RM, Di Stefano HS, Roth FK 1967. Virus particles and viral antigens in chicken tissues free of infectious avian leukosis virus. PNAS 58:808–17
    [Google Scholar]
  32. Ewing AD, Gacita A, Wood LD, Ma F, Xing D et al. 2015. Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Res 25:1536–45
    [Google Scholar]
  33. Flasch DA, Macia Á, Sánchez L, Ljungman M, Heras SR et al. 2019. Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication. Cell 177:837–51
    [Google Scholar]
  34. Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S et al. 2008. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. PNAS 105:12979–84
    [Google Scholar]
  35. Garfinkel DJ, Boeke JD, Fink GR 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42:507–17
    [Google Scholar]
  36. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J et al. 2003. Induction of tumors in mice by genomic hypomethylation. Science 300:489–92
    [Google Scholar]
  37. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J et al. 2017. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471–75
    [Google Scholar]
  38. Guler GD, Tindell CA, Pitti R, Wilson C, Nichols K et al. 2017. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell 32:221–37.e13
    [Google Scholar]
  39. Hata K, Okano M, Lei H, Li E 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–93
    [Google Scholar]
  40. He Q, Kim H, Huang R, Lu W, Tang M et al. 2015. The Daxx/Atrx complex protects tandem repetitive elements during DNA hypomethylation by promoting H3K9 trimethylation. Cell Stem Cell 17:273–86
    [Google Scholar]
  41. Hirano T. 2016. Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–57
    [Google Scholar]
  42. Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A 2008. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–8
    [Google Scholar]
  43. Hur S. 2019. Double-stranded RNA sensors and modulators in innate immunity. Annu. Rev. Immunol. 37:349–75
    [Google Scholar]
  44. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M 1993. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–61
    [Google Scholar]
  45. Ishak CA, Classon M, De Carvalho DD 2018. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer 4:583–97
    [Google Scholar]
  46. Ishak CA, Coschi CH, Roes MV, Dick FA 2017. Disruption of CDK-resistant chromatin association by pRB causes DNA damage, mitotic errors, and reduces Condensin II recruitment. Cell Cycle 16:1430–39
    [Google Scholar]
  47. Ishak CA, Marshall AE, Passos DT, White CR, Kim SJ et al. 2016. An RB-EZH2 complex mediates silencing of repetitive DNA sequences. Mol. Cell 64:1074–87
    [Google Scholar]
  48. Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD et al. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516:24245
    [Google Scholar]
  49. Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC et al. 2019. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51:611–17
    [Google Scholar]
  50. Jin X, Ding D, Yan Y, Li H, Wang B et al. 2019. Phosphorylated RB promotes cancer immunity by inhibiting NF-κB activation and PD-L1 expression. Mol. Cell 73:22–35.e6
    [Google Scholar]
  51. Jones PA, Ohtani H, Chakravarthy A, De Carvalho DD 2019. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19:151–61
    [Google Scholar]
  52. Kapitonov VV, Jurka J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLOS Biol 3:e181
    [Google Scholar]
  53. Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D et al. 2011. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8:676–87
    [Google Scholar]
  54. Kassiotis G, Stoye JP. 2016. Immune responses to endogenous retroelements: taking the bad with the good. Nat. Rev. Immunol. 16:207–19
    [Google Scholar]
  55. Kazazian HH, Moran JV. 1998. The impact of L1 retrotransposons on the human genome. Nat. Genet. 19:19–24
    [Google Scholar]
  56. Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–66
    [Google Scholar]
  57. Kraus B, Fischer K, Büchner SM, Wels WS, Löwer R et al. 2013. Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system. PLOS ONE 8:e72756
    [Google Scholar]
  58. Kraus B, Fischer K, Sliva K, Schnierle BS 2014. Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system. Virol. J. 11:58
    [Google Scholar]
  59. Krishnamurthy J, Rabinovich BA, Mi T, Switzer KC, Olivares S et al. 2015. Genetic engineering of T cells to target HERV-K, an ancient retrovirus on melanoma. Clin. Cancer Res. 21:3241–51
    [Google Scholar]
  60. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M et al. 2010. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat. Med. 16:571–79
    [Google Scholar]
  61. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  62. Laumont CM, Daouda T, Laverdure J-P, Bonneil É, Caron-Lizotte O et al. 2016. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 7:10238
    [Google Scholar]
  63. Laumont CM, Vincent K, Hesnard L, Audemard É, Bonneil É et al. 2018. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10:eaau5516
    [Google Scholar]
  64. Leadem BR, Kagiampakis I, Wilson C, Cheung TK, Arnott D et al. 2018. A KDM5 inhibitor increases global H3K4 trimethylation occupancy and enhances the biological efficacy of 5-aza-2′-deoxycytidine. Cancer Res 78:1127–39
    [Google Scholar]
  65. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P et al. 2012. Landscape of somatic retrotransposition in human cancers. Science 337:967–71
    [Google Scholar]
  66. Levin HL, Moran JV. 2011. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12:615–27
    [Google Scholar]
  67. Li E, Bestor TH, Jaenisch R 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–26
    [Google Scholar]
  68. Liu M, Ohtani H, Zhou W, Ørskov AD, Charlet J et al. 2016. Vitamin C increases viral mimicry induced by 5-aza-2′-deoxycytidine. PNAS 113:10238–44
    [Google Scholar]
  69. Liu M, Thomas SL, DeWitt AK, Zhou W, Madaj ZB et al. 2018a. Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells. Cancer Res 78:5754–66
    [Google Scholar]
  70. Liu M, Zhang L, Li H, Hinoue T, Zhou W et al. 2018b. Integrative epigenetic analysis reveals therapeutic targets to the DNA methyltransferase inhibitor SGI‐110 in hepatocellular carcinoma. Hepatology 68:1412–28
    [Google Scholar]
  71. Lock FE, Babaian A, Zhang Y, Gagnier L, Kuah S et al. 2017. A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLOS ONE 12:e0180659
    [Google Scholar]
  72. Loo Yau H, Ettayebi I, De Carvalho DD 2019. The cancer epigenome: exploiting its vulnerabilities for immunotherapy. Trends Cell Biol 29:31–43
    [Google Scholar]
  73. Lu X, Sachs F, Ramsay L, Jacques P-É, Göke J et al. 2014. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21:423–25
    [Google Scholar]
  74. Mager DL, Stoye JP. 2015. Mammalian endogenous retroviruses. Mobile DNA III N Craig, M Chandler, M Gellert, A Lambowitz, P Rice, S Sandmeyer 1079–100 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  75. Malekzadeh P, Pasetto A, Robbins PF, Parkhurst MR, Paria BC et al. 2019. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Investig. 129:1109–14
    [Google Scholar]
  76. McClintock B. 1950. The origin and behavior of mutable loci in maize. PNAS 36:344–55
    [Google Scholar]
  77. Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J et al. 1992. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52:643–45
    [Google Scholar]
  78. Najafabadi HS, Mnaimneh S, Schmitges FW, Garton M, Lam KN et al. 2015. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat. Biotechnol. 33:555–62
    [Google Scholar]
  79. O'Leary B, Finn RS, Turner NC 2016. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13:417–30
    [Google Scholar]
  80. Otto T, Sicinski P. 2017. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17:93–115
    [Google Scholar]
  81. Percharde M, Lin C-J, Yin Y, Guan J, Peixoto GA et al. 2018. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174:391–405.e19
    [Google Scholar]
  82. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S et al. 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–37
    [Google Scholar]
  83. Pisanic TR, Asaka S, Lin S-F, Yen T-T, Sun H et al. 2018. Long interspersed nuclear element 1 retrotransposons become deregulated during the development of ovarian cancer precursor lesions. Am. J. Pathol. 189:513–20
    [Google Scholar]
  84. Raviram R, Rocha PP, Luo VM, Swanzey E, Miraldi ER et al. 2018. Analysis of 3D genomic interactions identifies candidate host genes that transposable elements potentially regulate. Genome Biol 19:216
    [Google Scholar]
  85. Rodic N, Sharma R, Sharma R, Zampella J, Dai L et al. 2014. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184:1280–86
    [Google Scholar]
  86. Rodic N, Steranka JP, Makohon-Moore A, Moyer A, Shen P et al. 2015. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat. Med. 21:1060–64
    [Google Scholar]
  87. Rogan PK, Pan J, Weissman SM 1987. L1 repeat elements in the human epsilon-G gamma-globin gene intergenic region: sequence analysis and concerted evolution within this family. Mol. Biol. Evol. 4:327–42
    [Google Scholar]
  88. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N 2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61
    [Google Scholar]
  89. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A et al. 2015. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162:961–73
    [Google Scholar]
  90. Rowe HM, Trono D. 2011. Dynamic control of endogenous retroviruses during development. Virology 411:273–87
    [Google Scholar]
  91. Sacha JB, Kim I-J, Chen L, Ullah JH, Goodwin DA et al. 2012. Vaccination with cancer- and HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. J. Immunol. 189:1467–79
    [Google Scholar]
  92. Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A et al. 2014. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56:580–94
    [Google Scholar]
  93. Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A et al. 2018. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174:549–63.e19
    [Google Scholar]
  94. Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS et al. 2019. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–85.e5
    [Google Scholar]
  95. Slotkin RK, Martienssen R. 2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8:272–85
    [Google Scholar]
  96. Stehelin D, Varmus HE, Bishop JM, Vogt PK 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–73
    [Google Scholar]
  97. Stone ML, Chiappinelli KB, Li H, Murphy LM, Travers ME et al. 2017. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. PNAS 114:E10981–90
    [Google Scholar]
  98. Strand M, Prolla TA, Liskay RM, Petes TD 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–76
    [Google Scholar]
  99. Sultana T, van Essen D, Siol O, Bailly-Bechet M, Philippe C et al. 2019. The landscape of L1 retrotransposons in the human genome is shaped by pre-insertion sequence biases and post-insertion selection. Mol. Cell 74:555–70.e7
    [Google Scholar]
  100. Takahashi Y, Harashima N, Kajigaya S, Yokoyama H, Cherkasova E et al. 2008. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Investig. 118:1099–109
    [Google Scholar]
  101. Tasselli L, Xi Y, Zheng W, Tennen RI, Odrowaz Z et al. 2016. SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nat. Struct. Mol. Biol. 23:434–40
    [Google Scholar]
  102. Taunton J, Hassig CA, Schreiber SL 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–11
    [Google Scholar]
  103. Temin HM, Mizutani S. 1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–13
    [Google Scholar]
  104. Thompson PJ, Macfarlan TS, Lorincz MC 2016. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell 62:766–76
    [Google Scholar]
  105. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S et al. 2011. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–96
    [Google Scholar]
  106. Treangen TJ, Salzberg SL. 2012. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13:36–46
    [Google Scholar]
  107. Walter M, Teissandier A, Perez-Palacios R, Bourc'his D 2016. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 5:e11418
    [Google Scholar]
  108. Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B et al. 2012. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J. Natl. Cancer Inst. 104:189–210
    [Google Scholar]
  109. Weiss RA. 2006. The discovery of endogenous retroviruses. Retrovirology 3:67
    [Google Scholar]
  110. Wolff EM, Byun H-M, Han HF, Sharma S, Nichols PW et al. 2010. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLOS Genet 6:e1000917
    [Google Scholar]
  111. Wylie A, Jones AE, D'Brot A, Lu W-J, Kurtz P et al. 2015. p53 genes function to restrain mobile elements. Genes Dev 30:64–77
    [Google Scholar]
  112. Yu P, Lübben W, Slomka H, Gebler J, Konert M et al. 2012. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37:867–79
    [Google Scholar]
  113. Zhang H, Pandey S, Travers M, Sun H, Morton G et al. 2018. Targeting CDK9 reactivates epigenetically silenced genes in cancer. Cell 175:1244–58.e26
    [Google Scholar]
  114. Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD et al. 2019a. Transposon molecular domestication and the evolution of the RAG recombinase. Nature 569:79–84
    [Google Scholar]
  115. Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD et al. 2019b. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51:1380–88
    [Google Scholar]
  116. Zhou F, Krishnamurthy J, Wei Y, Li M, Hunt K et al. 2015. Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology 4:e1047582
    [Google Scholar]
  117. Zhu Q, Hoong N, Aslanian A, Hara T, Benner C et al. 2018. Heterochromatin-encoded satellite RNAs induce breast cancer. Mol. Cell 70:842–53.e7
    [Google Scholar]
  118. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N et al. 2011. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–84
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030419-033525
Loading
/content/journals/10.1146/annurev-cancerbio-030419-033525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error