1932

Abstract

The war on cancer that began some 40 years ago with the discovery of oncogenes is starting to be won. We feel fortunate to have contributed to several advances. Here we recall how molecular biology became our scientific passion, how we met from opposite ends of the earth, and how our 50-year odyssey has taken us from gene expression through immunogenetics to exploring the molecular basis of cancer and cell death. We describe the scientific discoveries that motivated us and remarkable scientists who influenced us. We sketch our studies that clarified the role of chromosome translocations in cancer and established the value of genetically engineered mouse models of tumorigenesis. Finally, we outline how our findings with many talented close colleagues on cell death regulation stimulated the development of remarkable new anticancer agents called BH3 mimetics, which are encouraging hope that many more malignancies will become controllable and even curable.

[Erratum, Closure]

An erratum has been published for this article:
Author Note: A Joint Odyssey into Cancer Genetics
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030518-055543
2019-03-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/3/1/annurev-cancerbio-030518-055543.html?itemId=/content/journals/10.1146/annurev-cancerbio-030518-055543&mimeType=html&fmt=ahah

Literature Cited

  1. Adams JM. 1968. On the release of the formyl group from nascent protein. J. Mol. Biol. 33:571–89 [Google Scholar]
  2. Adams JM, Capecchi MR. 1966. N-formylmethionyl-sRNA as the initiator of protein synthesis. PNAS 55:147–55 [Google Scholar]
  3. Adams JM, Cory S. 1970. Untranslated nucleotide sequence at the 5′-end of R17 bacteriophage RNA. Nature 227:570–74 [Google Scholar]
  4. Adams JM, Cory S. 1975. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255:28–33 [Google Scholar]
  5. Adams JM, Cory S. 1991. Transgenic models of tumor development. Science 254:1161–67 [Google Scholar]
  6. Adams JM, Cory S. 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–26 [Google Scholar]
  7. Adams JM, Cory S. 2018. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ 25:27–36 [Google Scholar]
  8. Adams JM, Cory S, Spahr PF. 1972a. Nucleotide sequences of fragments of R17 bacteriophage RNA from the region immediately preceding the coat-protein cistron. Eur. J. Biochem. 29:469–79 [Google Scholar]
  9. Adams JM, Gerondakis S, Webb E, Corcoran LM, Cory S. 1983. Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytomas and is rearranged similarly in human Burkitt lymphomas. PNAS 80:1982–86 [Google Scholar]
  10. Adams JM, Gerondakis S, Webb E, Mitchell J, Bernard O, Cory S. 1982. Transcriptionally active DNA region that rearranges frequently in murine lymphoid tumors. PNAS 79:6966–70 [Google Scholar]
  11. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS. et al. 1985. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318:533–38 [Google Scholar]
  12. Adams JM, Jeppeson PGN, Sanger F, Barrell BG. 1969. A nucleotide sequence from the coat protein cistron of R17 bacteriophage RNA. Nature 223:1009–14 [Google Scholar]
  13. Adams JM, Kemp D, Bernard O, Webb E, Gough N. et al. 1981. Organisation and expression of murine immunoglobulin genes. Immunol. Rev. 59:5–32 [Google Scholar]
  14. Adams JM, Spahr PF, Cory S. 1972b. Nucleotide sequence from the 5′ end to the first cistron of R17 bacteriophage ribonucleic acid. Biochemistry 11:976–88 [Google Scholar]
  15. Alexander WS, Adams JM, Cory S. 1989a. Oncogene cooperation in lymphocyte transformation: malignant conversion of Eμ-myc transgenic pre-B cells in vitro is enhanced by v-H-ras or v-raf but not v-abl. Mol. Cell Biol 9:67–73 [Google Scholar]
  16. Alexander WS, Bernard O, Cory S, Adams JM. 1989b. Lymphomagenesis in Eμ-myc transgenic mice can involve ras mutations. Oncogene 4:575–81 [Google Scholar]
  17. Allen JD, Adams JM. 1993. Enforced expression of Hlx homeobox gene prompts myeloid cell maturation and altered adherence properties of T cells. Blood 81:3242–51 [Google Scholar]
  18. Allen JD, Lints T, Jenkins NA, Copeland NG, Strasser A. et al. 1991. Novel murine homeobox gene on chromosome 1 expressed in specific hematopoietic lineages and during embryogenesis. Genes Dev 5:509–20 [Google Scholar]
  19. Askew DS, Ashmun RA, Simmons BC, Cleveland JL. 1991. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6:1915–22 [Google Scholar]
  20. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW. et al. 1985. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906 [Google Scholar]
  21. Bernard O, Cory S, Gerondakis S, Webb E, Adams JM. 1983. Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO J 2:2375–83 [Google Scholar]
  22. Boatright KM, Salvesen GS. 2003. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15:725–31 [Google Scholar]
  23. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM. 1994. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 13:2124–30 [Google Scholar]
  24. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor–induced cell death. Cell 85:803–15 [Google Scholar]
  25. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW. et al. 1999. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286:1735–38 [Google Scholar]
  26. Bouillet P, Purton JF, Godfrey DI, Zhang L-C, Coultas L. et al. 2002. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–26 [Google Scholar]
  27. Bowtell DD, Cory S, Johnson GR, Gonda TJ. 1988. Comparison of expression in hemopoietic cells by retroviral vectors carrying two genes. J. Virol. 62:2464–73 [Google Scholar]
  28. Bowtell DDL, Johnson GR, Kelso A, Cory S. 1987. Expression of genes transferred to haemopoietic stem cells by recombinant retroviruses. Mol. Biol. Med. 4:229–50 [Google Scholar]
  29. Brouwer JM, Westphal D, Dewson G, Robin AY, Uren RT. et al. 2014. Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Mol. Cell 55:938–46 [Google Scholar]
  30. Brownlee GG. 2014. Fred Sanger, Double Nobel Laureate: A Biography Cambridge, UK: Cambridge Univ. Press
  31. Calame K, Kim S, Lalley P, Hill R, Davis M, Hood L. 1982. Molecular cloning of translocations involving chromosome 15 and the immunoglobulin Cα gene from chromosome 12 in two murine plasmacytomas. PNAS 79:6994–98 [Google Scholar]
  32. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI. et al. 2005. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17:393–403 [Google Scholar]
  33. Cleary ML, Sklar J. 1985. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. PNAS 82:7439–43 [Google Scholar]
  34. Cook WD, McCaw BJ, Herring CD, John DL, Foote SJ. et al. 2004. PU.1 is a suppressor of myeloid leukemia, inactivated in mice by gene deletion and mutation of its DNA-binding domain. Blood 104:3437–44 [Google Scholar]
  35. Cook WD, Metcalf D, Nicola NA, Burgess AW, Walker F. 1985. Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41:677–83 [Google Scholar]
  36. Corcoran LM, Adams JM, Dunn AR, Cory S. 1984. Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37:113–22 [Google Scholar]
  37. Corcoran LM, Cory S, Adams JM. 1985. Transposition of the immunoglobulin heavy chain enhancer to the myc oncogene in a murine plasmacytoma. Cell 40:71–79 [Google Scholar]
  38. Cory S, Adams JM. 1975. The modified 5′-terminal sequences in messenger RNA of mouse myeloma cells. J. Mol. Biol. 99:519–47 [Google Scholar]
  39. Cory S, Adams JM. 1977. A very large repeating unit of mouse DNA containing the 18S, 28S and 5.8S rRNA genes. Cell 11:795–805 [Google Scholar]
  40. Cory S, Adams JM. 1980. Deletions are associated with somatic rearrangement of immunoglobulin heavy chain genes. Cell 19:37–51 [Google Scholar]
  41. Cory S, Adams JM. 2002. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2:647–56 [Google Scholar]
  42. Cory S, Adams JM, Gerondakis S, Miller JFAP, Gamble J. et al. 1983a. Fusion of DNA region to murine immunoglobulin heavy chain locus corresponds to plasmacytoma-associated chromosome translocation. EMBO J 2:213–16 [Google Scholar]
  43. Cory S, Adams JM, Kemp DJ. 1980a. Somatic rearrangements forming active immunoglobulin μ genes in B and T lymphoid cell lines. PNAS 77:4943–47 [Google Scholar]
  44. Cory S, Adams JM, Spahr PF, Rensing U. 1972. Nucleotide sequence of 51 nucleotides at the 3′-end of R17 RNA. J. Mol. Biol. 63:41–56 [Google Scholar]
  45. Cory S, Gerondakis S, Adams JM. 1983b. Interchromosomal recombination of the cellular oncogene c-myc with the immunoglobulin heavy chain locus in murine plasmacytomas is a reciprocal exchange. EMBO J 2:697–703 [Google Scholar]
  46. Cory S, Graham M, Webb E, Corcoran LM, Adams JM. 1985. Variant (6;15) translocations in murine plasmacytomas involve a chromosome 15 locus at least 72 kb from the c-myc oncogene. EMBO J 4:675–81 [Google Scholar]
  47. Cory S, Jackson J, Adams JM. 1980b. Deletions in the constant region locus can account for switches in immunoglobulin heavy chain expression. Nature 285:450–55 [Google Scholar]
  48. Cory S, Marcker KA, Dube SK, Clark BFC. 1968. Primary structure of a methionine transfer RNA from Escherichia coli. Nature 220:1039–40 [Google Scholar]
  49. Cory S, Roberts A, Colman PM, Adams JM. 2016. Targeting BCL-2-like proteins to kill cancer cells. Trends Cancer 2:443–60 [Google Scholar]
  50. Cory S, Tyler BM, Adams JM. 1981. Sets of Vκ genes homologous for ten cloned Vκ sequences: implications for the number of germline Vκ genes. J. Mol. Appl. Genet 1:103–16 [Google Scholar]
  51. Cory S, Vaux DL, Strasser A, Harris AW, Adams JM. 1999. Insights from Bcl-2 and Myc: Malignancy involves abrogation of apoptosis as well as sustained proliferation. Cancer Res 59:s1685–92 [Google Scholar]
  52. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C. et al. 2013. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152:519–31 [Google Scholar]
  53. Davids MS, Roberts AW, Seymour JF, Pagel JM, Kahl BS. et al. 2017. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-Hodgkin lymphoma. J. Clin. Oncol. 35:826–33 [Google Scholar]
  54. Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM. et al. 2008. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol. Cell 30:369–80 [Google Scholar]
  55. Dreyer WJ, Bennett JC. 1965. The molecular basis of antibody formation: a paradox. PNAS 54:864–69 [Google Scholar]
  56. Dube SK, Marcker KA, Clark BFC, Cory S. 1968. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature 218:232–33 [Google Scholar]
  57. Egle A, Harris AW, Bath ML, O'Reilly L, Cory S. 2004. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103:2276–83 [Google Scholar]
  58. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H. et al. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–28 [Google Scholar]
  59. Finch J. 2008. A Nobel Fellow On Every Floor: A History of the Medical Research Council Laboratory of Molecular Biology Cambridge, UK: Med. Res. Counc. Lab. Mol. Biol
  60. Frommer A. 1957. Europe on 5 Dollars a Day New York: Wiley
  61. Gerondakis S, Cory S, Adams JM. 1984. Translocation of the myc cellular oncogene to the immunoglobulin heavy chain locus in murine plasmacytomas is an imprecise reciprocal exchange. Cell 36:973–82 [Google Scholar]
  62. Graham M, Adams JM. 1986. Chromosome 8 breakpoint far 3′ of c-myc in a Burkitt lymphoma 2;8 variant translocation is homologous to the mouse pvt-1 locus. EMBO J 5:2845–51 [Google Scholar]
  63. Graham M, Adams JM, Cory S. 1985. Murine T lymphomas with retroviral inserts in the chromosome 15 locus for plasmacytoma variant translocations. Nature 314:740–43 [Google Scholar]
  64. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70 [Google Scholar]
  65. Hariharan I, Adams JM, Cory S. 1988. Bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res 3:8912–19 [Google Scholar]
  66. Harris AW, Langdon WY, Alexander WS, Hariharan IK, Rosenbaum H. et al. 1988a. Transgenic mouse models for hematopoietic tumorigenesis. Curr. Top. Microbiol. Immunol. 141:82–93 [Google Scholar]
  67. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM. 1988b. The Eμ-myc transgenic mouse: a model for high-incidence spontaneous lymphoma and leukemia of early B cells. J. Exp. Med. 167:353–71 [Google Scholar]
  68. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM. 1991. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eμ-myc transgenic mice. Cell 65:753–63 [Google Scholar]
  69. Haupt Y, Harris AW, Adams JM. 1992. Retroviral infection accelerates T lymphomagenesis in Eμ-N-ras transgenic mice by activating c-myc and N-myc. Oncogene 7:981–86 [Google Scholar]
  70. Hayward WS, Neel BG, Astrin SM. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–80 [Google Scholar]
  71. Hengartner MO, Horvitz HR. 1994. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76:665–76 [Google Scholar]
  72. Hentsch B, Lyons I, Li R, Hartley L, Lints TJ. et al. 1996. Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev 10:70–79 [Google Scholar]
  73. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M. et al. 1965. Structure of a ribonucleic acid. Science 147:1462–65 [Google Scholar]
  74. Horvitz HR. 1999. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59:s1701–6 [Google Scholar]
  75. Hozumi N, Tonegawa S. 1976. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. PNAS 73:3628–32 [Google Scholar]
  76. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S-I. et al. 1991. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 65:233–43 [Google Scholar]
  77. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. 1999a. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–68 [Google Scholar]
  78. Jacobs JJL, Scheijen B, Voncken J-W, Kieboom K, Berns A, van Lohuizen M. 1999b. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13:2678–90 [Google Scholar]
  79. Johnson GR, Gonda TJ, Metcalf D, Hariharan IK, Cory S. 1989. A lethal myeloproliferative syndrome in mice transplanted with bone marrow cells infected with a retrovirus expressing granulcyte-macrophage colony stimulating factor. EMBO J 8:244148 [Google Scholar]
  80. Kemp DJ, Cory S, Adams JM. 1979. Cloned pairs of variable region genes for immunoglobulin heavy chains isolated from a clone library of the entire mouse genome. PNAS 76:4627–31 [Google Scholar]
  81. Klein G. 1983. Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell 32:311–15 [Google Scholar]
  82. Klein G, Klein E. 1989. How one thing has led to another. Annu. Rev. Immunol. 7:1–33 [Google Scholar]
  83. Klinken SP, Alexander WS, Adams JM. 1988. Hemopoietic lineage switch: v-raf oncogene converts Eμ-myc transgenic B cells into macrophages. Cell 53:857–67 [Google Scholar]
  84. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–36 [Google Scholar]
  85. Kongsuwan K, Allen J, Adams JM. 1989. Expression of Hox-2.4 homeobox gene directed by proviral insertion in a myeloid leukemia. Nucleic Acids Res 17:1881–92 [Google Scholar]
  86. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL. et al. 2016. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538:477–82 [Google Scholar]
  87. Langdon WY, Harris AW, Cory S, Adams JM. 1986. The c-myc oncogene perturbs B lymphocyte development in Eμ-myc transgenic mice. Cell 47:11–18 [Google Scholar]
  88. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M. et al. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–89 [Google Scholar]
  89. Lindeman GJ, Adams JM, Cory S, Harris AW. 1994. B-lymphoid to granulocytic switch during hematopoiesis in a transgenic mouse strain. Immunity 1:517–27 [Google Scholar]
  90. Lindsten T, Ross AJ, King A, Zong W, Rathmell JC. et al. 2000. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6:1389–99 [Google Scholar]
  91. Mann R, Mulligan RC, Baltimore D. 1983. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–59 [Google Scholar]
  92. Marcker K, Sanger F. 1964. N-formyl-methionyl-S-RNA. J. Mol. Biol. 8:835–40 [Google Scholar]
  93. Marcu KB, Harris LJ, Stanton LW, Erikson J, Watt R, Croce CM. 1983. Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia. PNAS 80:519–23 [Google Scholar]
  94. McDonnell TJ, Korsmeyer SJ. 1991. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349:254–56 [Google Scholar]
  95. Metz T, Harris AW, Adams JM. 1995. Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes. Cell 82:29–36 [Google Scholar]
  96. Montero J, Letai A. 2018. Why do BCL-2 inhibitors work and where should we use them in the clinic?. Cell Death Differ 25:56–64 [Google Scholar]
  97. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A. et al. 1996. FLICE, a novel FADD homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/Apo-1) death-inducing signaling complex. Cell 85:817–27 [Google Scholar]
  98. Nirenberg MW, Matthaei JH. 1961. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. PNAS 47:1588–602 [Google Scholar]
  99. O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM. et al. 1998. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17:384–95 [Google Scholar]
  100. Oehm A, Behrmann I, Falk W, Pawlita M, Maier G. et al. 1992. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. J. Biol. Chem. 267:10709–15 [Google Scholar]
  101. Ogilvy S, Elefanty AG, Visvader J, Bath ML, Harris AW, Adams JM. 1998. Transcriptional regulation of vav, a gene expressed throughout the hematopoietic compartment. Blood 91:419–30 [Google Scholar]
  102. Ogilvy S, Metcalf D, Gibson L, Bath ML, Harris AW, Adams JM. 1999. Promoter elements of vav drive transgene expression in vivo throughout the hematopoietic compartment. Blood 94:1855–63 [Google Scholar]
  103. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ. et al. 2005. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–81 [Google Scholar]
  104. Oltvai ZN, Milliman CL, Korsmeyer SJ. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–19 [Google Scholar]
  105. Perkins A, Kongsuwan K, Visvader J, Adams JM, Cory S. 1990. Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. PNAS 87:8398–402 [Google Scholar]
  106. Perkins AC, Cory S. 1993. Conditional immortalization of mouse myelomonocytic, megakaryocytic and mast cell progenitors by the Hox-2.4 homeobox gene. EMBO J 12:3835–46 [Google Scholar]
  107. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD. et al. 2016. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374:311–22 [Google Scholar]
  108. Rosenbaum H, Harris AW, Bath ML, McNeall J, Webb E. et al. 1990. An Eμ-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO J 9:897–905 [Google Scholar]
  109. Rosenbaum H, Webb E, Adams JM, Cory S, Harris AW. 1989. N-myc transgene promotes B lymphoid proliferation, elicits lymphomas and reveals cross-regulation with c-myc. EMBO J 8:749–55 [Google Scholar]
  110. Sanger F, Brownlee GG, Barrell BG. 1965. A two-dimensional fractionation procedure for radioactive nucleotides. J. Mol. Biol. 13:373–98 [Google Scholar]
  111. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. PNAS 74:5463–67 [Google Scholar]
  112. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE. et al. 1997. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–86 [Google Scholar]
  113. Seymour JF, Ma S, Brander DM, Choi MY, Barrientos J. et al. 2017. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol 18:230–40 [Google Scholar]
  114. Shen-Ong GL, Keath EJ, Piccoli SP, Cole MD. 1982. Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 31:443–52 [Google Scholar]
  115. Shih C, Shilo BZ, Goldfarb MP, Dannenberg A, Weinberg RA. 1979. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. PNAS 76:5714–18 [Google Scholar]
  116. Smith DP, Bath ML, Harris AW, Cory S. 2005. T-cell lymphomas mask slower developing B-lymphoid and myeloid tumors in transgenic mice with broad hematopoietic expression of MYC. Oncogene 24:3544–53 [Google Scholar]
  117. Smith DP, Bath ML, Metcalf D, Harris AW, Cory S. 2006. MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood 108:653–61 [Google Scholar]
  118. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND. et al. 2013. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19:202–8 [Google Scholar]
  119. Southern EM. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–17 [Google Scholar]
  120. Stehelin D, Varmus HE, Bishop JM, Vogt PK. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–73 [Google Scholar]
  121. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF. et al. 2016. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 17:768–78 [Google Scholar]
  122. Strasser A, Cory S, Adams JM. 2011. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 30:3667–83 [Google Scholar]
  123. Strasser A, Elefanty AG, Harris AW, Cory S. 1996. Progenitor tumours from Eμ-bcl-2-myc transgenic mice have lymphomyeloid differentiation potential and reveal developmental differences in cell survival. EMBO J 15:3823–34 [Google Scholar]
  124. Strasser A, Harris AW, Bath ML, Cory S. 1990a. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348:331–33 [Google Scholar]
  125. Strasser A, Harris AW, Cory S. 1991a. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67:889–99 [Google Scholar]
  126. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM. et al. 1991b. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 88:866165 [Google Scholar]
  127. Strasser A, Harris AW, Cory S. 1993. Eμ-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 8:1–9 [Google Scholar]
  128. Strasser A, Harris AW, Huang DCS, Krammer PH, Cory S. 1995. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14:6136–47 [Google Scholar]
  129. Strasser A, Harris AW, Jacks T, Cory S. 1994a. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 79:329–39 [Google Scholar]
  130. Strasser A, Harris AW, Vaux DL, Webb E, Bath ML. et al. 1990b. Abnormalities of the immune system induced by dysregulated bcl-2 expression in transgenic mice. Curr. Top. Microbiol. Immunol. 166:175–81 [Google Scholar]
  131. Strasser A, Harris AW, von Boehmer H, Cory S. 1994b. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene. PNAS 91:1376–80 [Google Scholar]
  132. Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S. et al. 2018. Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N. Engl. J. Med. 378:1211–23 [Google Scholar]
  133. Taub R, Kirsch I, Morton C, Lenoir G, Swan D. et al. 1982. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. PNAS 79:7837–41 [Google Scholar]
  134. Teh TC, Nguyen NY, Moujalled DM, Segal D, Pomilio G. et al. 2017. Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia 32:303–12 [Google Scholar]
  135. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD. et al. 1992. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356:768–74 [Google Scholar]
  136. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. 1984. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–99 [Google Scholar]
  137. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L. et al. 2006. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–99 [Google Scholar]
  138. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A. 1991. Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging. Cell 65:737–52 [Google Scholar]
  139. Vandenberg CJ, Cory S. 2013. ABT-199, a new Bcl-2-specific BH3 mimetic, has in vivo efficacy against aggressive Myc-driven mouse lymphomas without provoking thrombocytopenia. Blood 121:2285–88 [Google Scholar]
  140. Vaux DL, Cory S, Adams JM. 1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–42 [Google Scholar]
  141. Vaux DL, Weissman IL, Kim SK. 1992. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258:195557 [Google Scholar]
  142. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G. et al. 2003. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–38 [Google Scholar]
  143. Visvader J, Adams JM. 1993. Megakaryocytic differentiation induced in 416B myeloid cells by GATA-2 and GATA-3 transgenes or 5-azacytidine is tightly coupled to GATA-1 expression. Blood 82:1493–501 [Google Scholar]
  144. Visvader JE, Crossley M, Orkin SH, Adams JM. 1995. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol. Cell Biol. 15:634–41 [Google Scholar]
  145. Visvader JE, Elefanty AG, Strasser A, Adams JM. 1992. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J 11:4557–64 [Google Scholar]
  146. Willis SN, Chen L, Dewson G, Wei A, Naik E. et al. 2005. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–305 [Google Scholar]
  147. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L. et al. 2007. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–59 [Google Scholar]
  148. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. 1993. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75:641–52 [Google Scholar]
  149. Zachau HG, Dutting D, Feldmann H. 1966. The structures of two serine transfer ribonucleic acids. Hoppe Seylers Z. Physiol. Chem. 347:212–35 [Google Scholar]
  150. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. 1997. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of Caspase-3. Cell 90:405–13 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030518-055543
Loading
/content/journals/10.1146/annurev-cancerbio-030518-055543
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error