1932

Abstract

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that initiates innate immune responses. DNA-bound cGAS produces cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING) to induce inflammatory cytokines and other immune mediators. cGAS detects DNA without sequence specificity and responds to both cytosolic foreign DNA from pathogens and self-DNA leaked into the cytosol due to genome instability or cellular damage. Because of the diverse sources of cytosolic DNA, the cGAS-STING pathway plays a critical role during infection, autoimmune diseases, and senescence. Moreover, cGAS detects tumor-derived DNA and stimulates endogenous antitumor immunity. Thus, the cGAS-STING pathway is a promising target for cancer immunotherapy. Here, we review the role of the cGAS-STING pathway in various diseases and highlight various approaches targeting the cGAS-STING pathway for cancer therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030518-055636
2019-03-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/3/1/annurev-cancerbio-030518-055636.html?itemId=/content/journals/10.1146/annurev-cancerbio-030518-055636&mimeType=html&fmt=ahah

Literature Cited

  1. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T et al. 2013. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530–34
    [Google Scholar]
  2. Ager CR, Reilley MJ, Nicholas C, Bartkowiak T, Jaiswal AR, Curran MA 2017. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol. Res. 5:676–84
    [Google Scholar]
  3. Ahn J, Gutman D, Saijo S, Barber GN 2012. STING manifests self DNA-dependent inflammatory disease. PNAS 109:19386–91
    [Google Scholar]
  4. Andreeva L, Hiller B, Kostrewa D, Lassig C, de Oliveira Mann CC et al. 2017. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549:394–98
    [Google Scholar]
  5. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N et al. 2015. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33:2780–88
    [Google Scholar]
  6. Anichini A, Molla A, Mortarini R, Tragni G, Bersani I et al. 1999. An expanded peripheral T cell population to a cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J. Exp. Med. 190:651–67
    [Google Scholar]
  7. Arandjelovic S, Ravichandran KS 2015. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16:907–17
    [Google Scholar]
  8. Babiker HM, Riaz IB, Husnain M, Borad MJ 2017. Oncolytic virotherapy including Rigvir and standard therapies in malignant melanoma. Oncolytic Virother 6:11–18
    [Google Scholar]
  9. Bahr O, Gross S, Harter PN, Kirches E, Mawrin C et al. 2017. ASA404, a vascular disrupting agent, as an experimental treatment approach for brain tumors. Oncol. Lett. 14:5443–51
    [Google Scholar]
  10. Baird JR, Feng Z, Xiao HD, Friedman D, Cottam B et al. 2017. STING expression and response to treatment with STING ligands in premalignant and malignant disease. PLOS ONE 12:e0187532
    [Google Scholar]
  11. Baird JR, Friedman D, Cottam B, Dubensky TW, Kanne DB et al. 2016. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res 76:50–61
    [Google Scholar]
  12. Balkwill F, Mantovani A 2001. Inflammation and cancer: Back to Virchow?. Lancet 357:539–45
    [Google Scholar]
  13. Bartsch K, Knittler K, Borowski C, Rudnik S, Damme M et al. 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum. Mol. Genet. 26:3960–72
    [Google Scholar]
  14. Begg AC, Stewart FA, Vens C 2011. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 11:239–53
    [Google Scholar]
  15. Bhatelia K, Singh A, Tomar D, Singh K, Sripada L et al. 2014. Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death. Biochim. Biophys. Acta 1842:144–53
    [Google Scholar]
  16. Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y et al. 2015. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349:1228–32
    [Google Scholar]
  17. Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y et al. 2004. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. PNAS 101:13832–37
    [Google Scholar]
  18. Bu Y, Liu F, Jia QA, Yu SN 2016. Decreased expression of TMEM173 predicts poor prognosis in patients with hepatocellular carcinoma. PLOS ONE 11:e0165681
    [Google Scholar]
  19. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN et al. 2011. The efficacy of radiotherapy relies upon induction of type I interferon–dependent innate and adaptive immunity. Cancer Res 71:2488–96
    [Google Scholar]
  20. Cai X, Chiu YH, Chen ZJ 2014. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54:289–96
    [Google Scholar]
  21. Campisi J, d'Adda di Fagagna F 2007. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8:729–40
    [Google Scholar]
  22. Cao D, Schiattarella GG, Villalobos E, Jiang N, May HI et al. 2018. Cytosolic DNA sensing promotes macrophage transformation and governs myocardial ischemic injury. Circulation 137:2613–34
    [Google Scholar]
  23. Carroll EC, Jin L, Mori A, Munoz-Wolf N, Oleszycka E et al. 2016. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44:597–608
    [Google Scholar]
  24. Chandra D, Quispe-Tintaya W, Jahangir A, Asafu-Adjei D, Ramos I et al. 2014. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol. Res. 2:901–10
    [Google Scholar]
  25. Chen Q, Sun L, Chen ZJ 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17:1142–49
    [Google Scholar]
  26. Chen YA, Shen YL, Hsia HY, Tiang YP, Sung TL, Chen LY 2017. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat. Struct. Mol. Biol. 24:1124–31
    [Google Scholar]
  27. Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM et al. 2017. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 36:1658–67
    [Google Scholar]
  28. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M et al. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332–37
    [Google Scholar]
  29. Collins AC, Cai H, Li T, Franco LH, Li XD et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:820–28
    [Google Scholar]
  30. Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M et al. 2013. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190:5216–25
    [Google Scholar]
  31. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE et al. 2015. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–30
    [Google Scholar]
  32. Cory L, Chu C 2014. ADXS-HPV: a therapeutic Listeria vaccination targeting cervical cancers expressing the HPV E7 antigen. Hum. Vaccines Immunother. 10:3190–95
    [Google Scholar]
  33. Crowl JT, Gray EE, Pestal K, Volkman HE, Stetson DB 2017. Intracellular nucleic acid detection in autoimmunity. Annu. Rev. Immunol. 35:313–36
    [Google Scholar]
  34. Curran E, Chen X, Corrales L, Kline DE, Dubensky TW et al. 2016. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep 15:2357–66
    [Google Scholar]
  35. Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N 2017. An overview on Vadimezan (DMXAA): the vascular disrupting agent. Chem. Biol. Drug Des. 91:996–1006
    [Google Scholar]
  36. Dahal LN, Dou L, Hussain K, Liu R, Earley A et al. 2017. STING activation reverses lymphoma-mediated resistance to antibody immunotherapy. Cancer Res 77:3619–31
    [Google Scholar]
  37. Dai P, Wang W, Yang N, Serna-Tamayo C, Ricca JM et al. 2017. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Sci. Immunol. 2:eaal1713
    [Google Scholar]
  38. Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J et al. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. PNAS 112:15408–13
    [Google Scholar]
  39. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS et al. 2005. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11:728–34
    [Google Scholar]
  40. Deng L, Liang H, Burnette B, Beckett M, Darga T et al. 2014.a Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 124:687–95
    [Google Scholar]
  41. Deng L, Liang H, Xu M, Yang X, Burnette B et al. 2014.b STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:843–52
    [Google Scholar]
  42. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP et al. 2011. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208:1989–2003
    [Google Scholar]
  43. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA et al. 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3:1355–61
    [Google Scholar]
  44. Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P et al. 2017. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:402–6
    [Google Scholar]
  45. Downey CM, Aghaei M, Schwendener RA, Jirik FR 2014. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2′3′-cGAMP, induces M2 macrophage repolarization. PLOS ONE 9:e99988
    [Google Scholar]
  46. Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R et al. 2005. A critical function for type I interferons in cancer immunoediting. Nat. Immunol. 6:722–29
    [Google Scholar]
  47. Ehnfors J, Kost-Alimova M, Persson NL, Bergsmedh A, Castro J et al. 2009. Horizontal transfer of tumor DNA to endothelial cells in vivo. Cell Death Differ 16:749–57
    [Google Scholar]
  48. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E et al. 2003. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491–96
    [Google Scholar]
  49. Foote JB, Kok M, Leatherman JM, Armstrong TD, Marcinkowski BC et al. 2017. A STING agonist given with OX40 receptor and PD-L1 modulators primes immunity and reduces tumor growth in tolerized mice. Cancer Immunol. Res. 5:468–79
    [Google Scholar]
  50. Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM et al. 2015. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7:283ra52
    [Google Scholar]
  51. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM et al. 2011. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208:2005–16
    [Google Scholar]
  52. Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F et al. 2017. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171:1110–24.e18
    [Google Scholar]
  53. Gall A, Treuting P, Elkon KB, Loo YM, Gale M et al. 2012. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36:120–31
    [Google Scholar]
  54. Gao D, Li T, Li XD, Chen X, Li QZ et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. PNAS 112:E5699–705
    [Google Scholar]
  55. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL et al. 2013.a Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153:1094–107
    [Google Scholar]
  56. Gao P, Ascano M, Zillinger T, Wang W, Dai P et al. 2013.b Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154:748–62
    [Google Scholar]
  57. Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X et al. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349:1232–36
    [Google Scholar]
  58. Gluck S, Guey B, Gulen MF, Wolter K, Kang TW et al. 2017. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19:1061–70
    [Google Scholar]
  59. Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC 2013. An abscopal response to radiation and ipilimumab in a patient with metastatic non–small cell lung cancer. Cancer Immunol. Res. 1:365–72
    [Google Scholar]
  60. Gray EE, Treuting PM, Woodward JJ, Stetson DB 2015. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutières syndrome. J. Immunol. 195:1939–43
    [Google Scholar]
  61. Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L et al. 2017. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8:427
    [Google Scholar]
  62. Han HD, Byeon Y, Jang JH, Jeon HN, Kim GH et al. 2016. In vivo stepwise immunomodulation using chitosan nanoparticles as a platform nanotechnology for cancer immunotherapy. Sci. Rep. 6:38348
    [Google Scholar]
  63. Hansen K, Prabakaran T, Laustsen A, Jorgensen SE, Rahbaek SH et al. 2014. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J 33:1654–66
    [Google Scholar]
  64. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–70
    [Google Scholar]
  65. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M et al. 2009. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69:3077–85
    [Google Scholar]
  66. Iracheta-Vellve A, Petrasek J, Gyongyosi B, Satishchandran A, Lowe P et al. 2016. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J. Biol. Chem. 291:26794–805
    [Google Scholar]
  67. Ishikawa H, Barber GN 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78
    [Google Scholar]
  68. Ishikawa H, Ma Z, Barber GN 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–92
    [Google Scholar]
  69. Katlinskaya YV, Katlinski KV, Yu Q, Ortiz A, Beiting DP et al. 2016. Suppression of type I interferon signaling overcomes oncogene-induced senescence and mediates melanoma development and progression. Cell Rep 15:171–80
    [Google Scholar]
  70. Katlinski KV, Gui J, Katlinskaya YV, Ortiz A, Chakraborty R et al. 2017. Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell 31:194–207
    [Google Scholar]
  71. Kawai T, Akira S 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21:317–317
    [Google Scholar]
  72. Kerur N, Fukuda S, Banerjee D, Kim Y, Fu D et al. 2018. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24:50–61
    [Google Scholar]
  73. King KR, Aguirre AD, Ye YX, Sun Y, Roh JD et al. 2017. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23:1481–87
    [Google Scholar]
  74. Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ et al. 2017. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198:1649–59
    [Google Scholar]
  75. Kranzusch PJ, Lee AS, Berger JM, Doudna JA 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep 3:1362–68
    [Google Scholar]
  76. Lara PN, Douillard JY, Nakagawa K, von Pawel J, McKeage MJ et al. 2011. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol. 29:2965–71
    [Google Scholar]
  77. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL et al. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373:23–34
    [Google Scholar]
  78. Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S et al. 2012. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin. Cancer Res. 18:858–68
    [Google Scholar]
  79. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T et al. 2015. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J. Clin. Oncol. 33:1325–33
    [Google Scholar]
  80. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D et al. 1999. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 5:677–85
    [Google Scholar]
  81. Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G et al. 2016. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res 76:2076–81
    [Google Scholar]
  82. Li L, Yin Q, Kuss P, Maliga Z, Millan JL et al. 2014. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10:1043–48
    [Google Scholar]
  83. Li T, Cheng H, Yuan H, Xu Q, Shu C et al. 2016. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci. Rep. 6:19049
    [Google Scholar]
  84. Li X, Shu C, Yi G, Chaton CT, Shelton CL et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:1019–31
    [Google Scholar]
  85. Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ 2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–94
    [Google Scholar]
  86. Lin YC, Lou PJ, Young TH 2014. Chitosan as an adjuvant-like substrate for dendritic cell culture to enhance antitumor effects. Biomaterials 35:8867–75
    [Google Scholar]
  87. Liu S, Cai X, Wu J, Cong Q, Chen X et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630
    [Google Scholar]
  88. Liu X, Pu Y, Cron K, Deng L, Kline J et al. 2015. CD47 blockade triggers T cell–mediated destruction of immunogenic tumors. Nat. Med. 21:1209–15
    [Google Scholar]
  89. Luo M, Wang H, Wang Z, Cai H, Lu Z et al. 2017. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12:648–54
    [Google Scholar]
  90. Ma Z, Damania B 2016. The cGAS-STING defense pathway and its counteraction by viruses. Cell Host Microbe 19:150–58
    [Google Scholar]
  91. Mackenzie KJ, Carroll P, Lettice L, Tarnauskaite Z, Reddy K et al. 2016. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 35:831–44
    [Google Scholar]
  92. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–65
    [Google Scholar]
  93. Miles BA, Monk BJ, Safran HP 2017. Mechanistic insights into ADXS11-001 human papillomavirus-associated cancer immunotherapy. Gynecol. Oncol. Res. Pract. 4:9
    [Google Scholar]
  94. Mole RH. 1953. Whole body irradiation—radiobiology or medicine?. Br. J. Radiol. 25:234–41
    [Google Scholar]
  95. Moore E, Clavijo PE, Davis R, Cash H, Van Waes C et al. 2016. Established T cell–inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway blockade. Cancer Immunol. Res. 4:1061–71
    [Google Scholar]
  96. Nakamura T, Miyabe H, Hyodo M, Sato Y, Hayakawa Y, Harashima H 2015. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J. Control Release 216:149–57
    [Google Scholar]
  97. Nishimura H, Nose M, Hiai H, Minato N, Honjo T 1999. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–51
    [Google Scholar]
  98. Ohkuri T, Ghosh A, Kosaka A, Zhu J, Ikeura M et al. 2014. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol. Res. 2:1199–208
    [Google Scholar]
  99. Ohkuri T, Kosaka A, Ishibashi K, Kumai T, Hirata Y et al. 2017. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother. 66:705–16
    [Google Scholar]
  100. Parkes EE, Walker SM, Taggart LE, McCabe N, Knight LA et al. 2017. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl. Cancer Inst. 109:dwj199
    [Google Scholar]
  101. Pokatayev V, Hasin N, Chon H, Cerritelli SM, Sakhuja K et al. 2016. RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS–STING innate immune-sensing pathway in mice. J. Exp. Med. 213:329–36
    [Google Scholar]
  102. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J et al. 2012. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366:925–31
    [Google Scholar]
  103. Postow MA, Callahan MK, Wolchok JD 2015. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33:1974–82
    [Google Scholar]
  104. Rewcastle GW, Atwell GJ, Li ZA, Baguley BC, Denny WA 1991. Potential antitumor agents. 61. Structure-activity relationships for in vivo colon 38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J. Med. Chem. 34:217–22
    [Google Scholar]
  105. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI et al. 2017. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170:1109–19.e10
    [Google Scholar]
  106. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T et al. 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. PNAS 106:20842–46
    [Google Scholar]
  107. Schneider WM, Chevillotte MD, Rice CM 2014. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32:513–45
    [Google Scholar]
  108. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–51
    [Google Scholar]
  109. Shen YJ, Le Bert N, Chitre AA, Koo CX, Nga XH et al. 2015. Genome-derived cytosolic DNA mediates type I interferon-dependent rejection of B cell lymphoma cells. Cell Rep 11:460–73
    [Google Scholar]
  110. Shi GN, Zhang CN, Xu R, Niu JF, Song HJ et al. 2017. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 113:191–202
    [Google Scholar]
  111. Siemann DW, Mercer E, Lepler S, Rojiani AM 2002. Vascular targeting agents enhance chemotherapeutic agent activities in solid tumor therapy. Int. J. Cancer 99:1–6
    [Google Scholar]
  112. Smith TT, Moffett HF, Stephan SB, Opel CF, Dumigan AG et al. 2017. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Investig. 127:2176–2176
    [Google Scholar]
  113. Song S, Peng P, Tang Z, Zhao J, Wu W et al. 2017. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci. Rep. 7:39858
    [Google Scholar]
  114. Starks H, Bruhn KW, Shen H, Barry RA, Dubensky TW et al. 2004. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J. Immunol. 173:420–27
    [Google Scholar]
  115. Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91
    [Google Scholar]
  116. Tanaka Y, Chen ZJ 2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal 5:ra20
    [Google Scholar]
  117. Tang CH, Zundell JA, Ranatunga S, Lin C, Nefedova Y et al. 2016. Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res 76:2137–52
    [Google Scholar]
  118. Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K et al. 2015. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur. J. Immunol. 45:1159–69
    [Google Scholar]
  119. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH 1995. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–47
    [Google Scholar]
  120. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE et al. 2015. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–77
    [Google Scholar]
  121. Valmori D, Scheibenbogen C, Dutoit V, Nagorsen D, Asemissen AM et al. 2002. Circulating Tumor-reactive CD8+ T cells in melanoma patients contain a CD45RA+CCR7 effector subset exerting ex vivo tumor-specific cytolytic activity. Cancer Res 62:1743–50
    [Google Scholar]
  122. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM et al. 2017. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8:15618
    [Google Scholar]
  123. Wang H, Hu S, Chen X, Shi H, Chen C et al. 2017. cGAS is essential for the antitumor effect of immune checkpoint blockade. PNAS 114:1637–42
    [Google Scholar]
  124. Wang LC, Thomsen L, Sutherland R, Reddy CB, Tijono SM et al. 2009. Neutrophil influx and chemokine production during the early phases of the antitumor response to the vascular disrupting agent DMXAA (ASA404). Neoplasia 11:793–803
    [Google Scholar]
  125. Wang Z, Celis E 2015. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol. Immunother. 64:1057–66
    [Google Scholar]
  126. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A et al. 1995. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–88
    [Google Scholar]
  127. Weiss JM, Guerin MV, Regnier F, Renault G, Galy-Fauroux I et al. 2017. The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. Oncoimmunology 6:e1346765
    [Google Scholar]
  128. Wilson DR, Sen R, Sunshine JC, Pardoll DM, Green JJ, Kim YJ 2017. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine 14:237–46
    [Google Scholar]
  129. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–42
    [Google Scholar]
  130. Wu J, Chen ZJ 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32:461–88
    [Google Scholar]
  131. Wu J, Sun L, Chen X, Du F, Shi H et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–30
    [Google Scholar]
  132. Xia T, Konno H, Ahn J, Barber GN 2016.a Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep 14:282–97
    [Google Scholar]
  133. Xia T, Konno H, Barber GN 2016.b Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res 76:6747–59
    [Google Scholar]
  134. Xu MM, Pu Y, Han D, Shi Y, Cao X et al. 2017. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 47:363–73.e5
    [Google Scholar]
  135. Yang H, Wang H, Ren J, Chen Q, Chen ZJ 2017. cGAS is essential for cellular senescence. PNAS 114:E4612–20
    [Google Scholar]
  136. Zhang H, Tang K, Zhang Y, Ma R, Ma J et al. 2015. Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling. Cancer Immunol. Res. 3:196–205
    [Google Scholar]
  137. Zhang X, Shi H, Wu J, Zhang X, Sun L et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51:226–35
    [Google Scholar]
  138. Zhang X, Wu J, Du F, Xu H, Sun L et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6:421–30
    [Google Scholar]
  139. Zhong B, Yang Y, Li S, Wang YY, Li Y et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–50
    [Google Scholar]
  140. Zwi LJ, Baguley BC, Gavin JB, Wilson WR 1994. Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents. Oncol. Res. 6:79–85
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030518-055636
Loading
/content/journals/10.1146/annurev-cancerbio-030518-055636
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error