1932

Abstract

Ferroptosis is a nonapoptotic, iron-dependent form of cell death that can be activated in cancer cells by natural stimuli and synthetic agents. Three essential hallmarks define ferroptosis, namely: the loss of lipid peroxide repair capacity by the phospholipid hydroperoxidase GPX4, the availability of redox-active iron, and oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids. Several processes including RAS/MAPK signaling, amino acid and iron metabolism, ferritinophagy, epithelial-to-mesenchymal transition, cell adhesion, and mevalonate and phospholipid biosynthesis can modulate susceptibility to ferroptosis. Ferroptosis sensitivity is also governed by p53 and KEAP1/NRF2 activity, linking ferroptosis to the function of key tumor suppressor pathways. Together these findings highlight the role of ferroptosis as an emerging concept in cancer biology and an attractive target for precision cancer medicine discovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030518-055844
2019-03-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/3/1/annurev-cancerbio-030518-055844.html?itemId=/content/journals/10.1146/annurev-cancerbio-030518-055844&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams RP, Carroll WL, Woerpel KA 2016. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem. Biol. 11:51305–12
    [Google Scholar]
  2. Agmon E, Solon J, Bassereau P, Stockwell BR 2018. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci. Rep. 8:5155
    [Google Scholar]
  3. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL et al. 2017. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:7682639–43
    [Google Scholar]
  4. Anding AL, Baehrecke EH 2015. Autophagy in cell life and cell death. Curr. Top. Dev. Biol. 114:67–91
    [Google Scholar]
  5. Bailey HH, Mulcahy RT, Tutsch KD, Arzoomanian RZ, Alberti D et al. 1994. Phase I clinical trial of intravenous l-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione. J. Clin. Oncol. 12:1194–205
    [Google Scholar]
  6. Bailey HH, Ripple G, Tutsch KD, Arzoomanian RZ, Alberti D et al. 1997. Phase I study of continuous-infusion l-S,R-buthionine sulfoximine with intravenous melphalan. J. Natl. Cancer Inst. 89:231789–96
    [Google Scholar]
  7. Banjac A, Perisic T, Sato H, Seiler A, Bannai S et al. 2008. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27:111618–28
    [Google Scholar]
  8. Basuli D, Tesfay L, Deng Z, Paul B, Yamamoto Y et al. 2017. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 36:294089–99
    [Google Scholar]
  9. Brumatti G, Ma C, Lalaoui N, Nguyen N-Y, Navarro M et al. 2016. The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci. Transl. Med. 8:339339ra69
    [Google Scholar]
  10. Brown CW, Amante JJ, Goel HL, Mercurio AM 2017. The α6β4 integrin promotes resistance to ferroptosis. J. Cell Biol. 216:124287–97
    [Google Scholar]
  11. Brown CW, Amante JJ, Mercurio AM 2018. Cell clustering mediated by the adhesion protein PVRL4 is necessary for α6β4 integrin–promoted ferroptosis resistance in matrix-detached cells. J. Biol Chem. In press
  12. Bump EA, Yu NY, Brown JM 1982. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione. Science 217:4559544–45
    [Google Scholar]
  13. Calvert P, Yao KS, Hamilton TC, O'Dwyer PJ 1998. Clinical studies of reversal of drug resistance based on glutathione. Chem. Biol. Interact. 111–112:213–24
    [Google Scholar]
  14. Cao JY, Dixon SJ 2016. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73:11–122195–209
    [Google Scholar]
  15. Chen D, Tavana O, Chu B, Erber L, Chen Y et al. 2017. NRF2 is a major target of ARF in p53-independent tumor suppression. Mol. Cell 68:1224–32
    [Google Scholar]
  16. Chen W, Sun Z, Wang X-J, Jiang T, Huang Z et al. 2009. Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response. Mol. Cell 34:6663–73
    [Google Scholar]
  17. Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K et al. 2005. Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. PNAS 102:3110964–69
    [Google Scholar]
  18. Chio IIC, Jafarnejad SM, Ponz-Sarvise M, Park Y, Rivera K et al. 2016. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166:4963–76
    [Google Scholar]
  19. Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B et al. 2018. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602–19
    [Google Scholar]
  20. Coriat R, Nicco C, Chéreau C, Mir O, Alexandre J et al. 2012. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol. Cancer Ther. 11:102284–93
    [Google Scholar]
  21. Cramer SL, Saha A, Liu J, Tadi S, Tiziani S et al. 2017. Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23:1120–27
    [Google Scholar]
  22. Delbridge ARD, Valente LJ, Strasser A 2012. The role of the apoptotic machinery in tumor suppression. Cold Spring Harb. Perspect. Biol. 4:11a008789
    [Google Scholar]
  23. Demierre M-F, Higgins PDR, Gruber SB, Hawk E, Lippman SM 2005. Statins and cancer prevention. Nat. Rev. Cancer 5:12930–42
    [Google Scholar]
  24. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C et al. 2011. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:7354106–9
    [Google Scholar]
  25. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ et al. 2009. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:7239780–83
    [Google Scholar]
  26. Dixon SJ. 2017. Ferroptosis: bug or feature. Immunol. Rev. 277:1150–57
    [Google Scholar]
  27. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:51060–72
    [Google Scholar]
  28. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED et al. 2014. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3:e02523
    [Google Scholar]
  29. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B et al. 2015. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10:71604–9
    [Google Scholar]
  30. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S et al. 2017. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13:191–98
    [Google Scholar]
  31. Dolma S, Lessnick SL, Hahn WC, Stockwell BR 2003. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:3285–96
    [Google Scholar]
  32. Evan GI, Vousden KH 2001. Proliferation, cell cycle and apoptosis in cancer. Nature 411:6835342–48
    [Google Scholar]
  33. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA et al. 2014. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16:121180–91
    [Google Scholar]
  34. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541
    [Google Scholar]
  35. Gao M, Jiang X 2017. To eat or not to eat—the metabolic flavor of ferroptosis. Curr. Opin. Cell Biol. 51:58–64
    [Google Scholar]
  36. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X 2016. Ferroptosis is an autophagic cell death process. Cell Res 26:91021–32
    [Google Scholar]
  37. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X 2015. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59:2298–308
    [Google Scholar]
  38. Gascón S, Murenu E, Masserdotti G, Ortega F, Russo GL et al. 2016. Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:3396–409
    [Google Scholar]
  39. Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B et al. 2018. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 14:507–15
    [Google Scholar]
  40. Gaschler MM, Stockwell BR 2017. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 482:3419–25
    [Google Scholar]
  41. Giampazolias E, Zunino B, Dhayade S, Bock F, Cloix C et al. 2017. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19:91116–29
    [Google Scholar]
  42. Gout PW, Buckley AR, Simms CR, Bruchovsky N 2001. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc cystine transporter: a new action for an old drug. Leukemia 15:101633–40
    [Google Scholar]
  43. Green DR, Victor B 2012. The pantheon of the fallen: Why are there so many forms of cell death. Trends Cell Biol 22:11555–56
    [Google Scholar]
  44. Griffith OW, Meister A 1979. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J. Biol. Chem. 254:167558–60
    [Google Scholar]
  45. Hanahan D, Weinberg RA 2011. Hallmarks of cancer: the next generation. Cell 144:5646–74
    [Google Scholar]
  46. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK et al. 2017. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:7679247–50
    [Google Scholar]
  47. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C et al. 2015. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:2211–22
    [Google Scholar]
  48. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM et al. 2016. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22:3262–69
    [Google Scholar]
  49. Hou W, Xie Y, Song X, Sun X, Lotze MT et al. 2016. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:81425–28
    [Google Scholar]
  50. Inde Z, Dixon SJ 2018. The impact of non-genetic heterogeneity on cancer cell death. Crit. Rev. Biochem. Mol. Biol. 53:199–114
    [Google Scholar]
  51. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G et al. 2018. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172:3409–22
    [Google Scholar]
  52. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T et al. 2011. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc and thereby promotes tumor growth. Cancer Cell 19:3387–400
    [Google Scholar]
  53. Jaramillo MC, Zhang DD 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:202179–91
    [Google Scholar]
  54. Jennis M, Kung C-P, Basu S, Budina-Kolomets A, Leu JI-J et al. 2016. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:8918–30
    [Google Scholar]
  55. Jiang L, Kon N, Li T, Wang S-J, Su T et al. 2015. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:754557–62
    [Google Scholar]
  56. Johnstone RW, Ruefli AA, Lowe SW 2002. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:2153–64
    [Google Scholar]
  57. Kagan VE, Mao G, Qu F, Angeli JPF, Doll S et al. 2017. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13:181–90
    [Google Scholar]
  58. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:7575666–71
    [Google Scholar]
  59. Kerins MJ, Ooi A 2018. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid. Redox Signal. 29:1756–73
    [Google Scholar]
  60. Kim SE, Zhang L, Ma K, Riegman M, Chen F et al. 2016. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11:11977–85
    [Google Scholar]
  61. Koo G-B, Morgan MJ, Lee D-G, Kim W-J, Yoon J-H et al. 2015. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 25:6707–25
    [Google Scholar]
  62. Korsmeyer SJ. 1999. BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:7 Suppl1693s–700s
    [Google Scholar]
  63. Kruiswijk F, Labuschagne CF, Vousden KH 2015. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16:7393–405
    [Google Scholar]
  64. Lachaier E, Louandre C, Godin C, Saidak Z, Baert M et al. 2014. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 34:116417–22
    [Google Scholar]
  65. Larraufie M-H, Yang WS, Jiang E, Thomas AG, Slusher BS, Stockwell BR 2015. Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorg. Med. Chem. Lett. 25:214787–92
    [Google Scholar]
  66. Li T, Kon N, Jiang L, Tan M, Ludwig T et al. 2012. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:61269–83
    [Google Scholar]
  67. Lien EC, Lyssiotis CA, Juvekar A, Hu H, Asara JM et al. 2016. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nat. Cell Biol. 18:5572–78
    [Google Scholar]
  68. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C et al. 2014. Synchronized renal tubular cell death involves ferroptosis. PNAS 111:4716836–41
    [Google Scholar]
  69. Liu DS, Duong CP, Haupt S, Montgomery KG, House CM et al. 2017. Inhibiting the system xC/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 8:14844
    [Google Scholar]
  70. Louandre C, Ezzoukhry Z, Godin C, Barbare J-C, Mazière J-C et al. 2013. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer 133:71732–42
    [Google Scholar]
  71. Maddocks ODK, Berkers CR, Mason SM, Zheng L, Blyth K et al. 2013. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:7433542–46
    [Google Scholar]
  72. Magtanong L, Ko PJ, Dixon SJ 2016. Emerging roles for lipids in non-apoptotic cell death. Cell Death Differ 23:1099–109
    [Google Scholar]
  73. Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S et al. 2017. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem. 9:101025–33
    [Google Scholar]
  74. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC 2014. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:7498105–9
    [Google Scholar]
  75. Moosmann B, Behl C 2004. Selenoprotein synthesis and side-effects of statins. Lancet 363:9412892–94
    [Google Scholar]
  76. Ni Chonghaile T, Sarosiek KA, Vo T-T, Ryan JA, Tammareddi A et al. 2011. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334:60591129–33
    [Google Scholar]
  77. Poursaitidis I, Wang X, Crighton T, Labuschagne C, Mason D et al. 2017. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep 18:112547–56
    [Google Scholar]
  78. Qi X-F, Kim D-H, Yoon Y-S, Kim S-K, Cai D-Q et al. 2010. Involvement of oxidative stress in simvastatin-induced apoptosis of murine CT26 colon carcinoma cells. Toxicol. Lett. 199:3277–87
    [Google Scholar]
  79. Robe PA, Martin DH, Nguyen-Khac MT, Artesi M, Deprez M et al. 2009. Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer 9:1372
    [Google Scholar]
  80. Roh J-L, Kim EH, Jang H, Shin D 2017. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 11:254–62
    [Google Scholar]
  81. Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX et al. 2017. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23:111362–68
    [Google Scholar]
  82. Sarosiek KA, Fraser C, Muthalagu N, Bhola PD, Chang W et al. 2017. Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell 31:1142–56
    [Google Scholar]
  83. Sarosiek KA, Ni Chonghaile T, Letai A 2013. Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol 23:12612–19
    [Google Scholar]
  84. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M et al. 2005. Redox imbalance in cystine/glutamate transporter-deficient mice. J. Biol. Chem. 280:4537423–29
    [Google Scholar]
  85. Sato H, Tamba M, Ishii T, Bannai S 1999. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J. Biol. Chem. 274:1711455–58
    [Google Scholar]
  86. Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL et al. 2017. O2·− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 31:4487–88
    [Google Scholar]
  87. Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK et al. 2015. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 28:4441–55
    [Google Scholar]
  88. Schott C, Graab U, Cuvelier N, Hahn H, Fulda S 2015. Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death. Front. Oncol. 5:131
    [Google Scholar]
  89. Seiler A, Schneider M, Förster H, Roth S, Wirth EK et al. 2008. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:3237–48
    [Google Scholar]
  90. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F et al. 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:169–80
    [Google Scholar]
  91. Shimada K, Hayano M, Pagano NC, Stockwell BR 2016.a Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem. Biol. 23:2225–35
    [Google Scholar]
  92. Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M et al. 2016.b Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12:7497–503
    [Google Scholar]
  93. Shitara K, Doi T, Nagano O, Imamura CK, Ozeki T et al. 2017. Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer 20:2341–49
    [Google Scholar]
  94. Singh A, Venkannagari S, Oh KH, Zhang Y-Q, Rohde JM et al. 2016. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem. Biol. 11:113214–25
    [Google Scholar]
  95. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M et al. 2014. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136:124551–56
    [Google Scholar]
  96. Somfai-Relle S, Suzukake K, Vistica BP, Vistica DT 1984. Reduction in cellular glutathione by buthionine sulfoximine and sensitization of murine tumor cells resistant to l-phenylalanine mustard. Biochem. Pharmacol. 33:3485–90
    [Google Scholar]
  97. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M et al. 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:2273–85
    [Google Scholar]
  98. Sun X, Ou Z, Chen R, Niu X, Chen D et al. 2016. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:1173–84
    [Google Scholar]
  99. Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J et al. 2018. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22:3569–75
    [Google Scholar]
  100. Timmerman LA, Holton T, Yuneva M, Louie RJ, Padró M et al. 2013. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24:4450–65
    [Google Scholar]
  101. Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R et al. 2016. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J. 473:6769–77
    [Google Scholar]
  102. Torti SV, Torti FM 2013. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13:5342–55
    [Google Scholar]
  103. Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM et al. 2018. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33:5890–904
    [Google Scholar]
  104. Ursini F, Maiorino M, Gregolin C 1985. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839:162–70
    [Google Scholar]
  105. Villablanca JG, Volchenboum SL, Cho H, Kang MH, Cohn SL et al. 2016. A phase I new approaches to neuroblastoma therapy study of buthionine sulfoximine and melphalan with autologous stem cells for recurrent/refractory high-risk neuroblastoma. Pediatr. Blood Cancer 63:81349–56
    [Google Scholar]
  106. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM et al. 2017. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:7664453–57
    [Google Scholar]
  107. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S et al. 2003. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35:3238–45
    [Google Scholar]
  108. Wang GX, Tu H-C, Dong Y, Skanderup AJ, Wang Y et al. 2017. ΔNp63 inhibits oxidative stress-induced cell death, including ferroptosis, and cooperates with the BCL-2 family to promote clonogenic survival. Cell Rep 21:102926–39
    [Google Scholar]
  109. Wang S-J, Li D, Ou Y, Jiang L, Chen Y et al. 2016. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 17:2366–73
    [Google Scholar]
  110. Wang Y, Gao W, Shi X, Ding J, Liu W et al. 2017. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:766199–103
    [Google Scholar]
  111. Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR 2000. Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. J. Biol. Chem. 275:3628110–19
    [Google Scholar]
  112. Weiwer M, Bittker J, Lewis TA, Shimada K, Yang WS et al. 2012. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett. 22:41822–26
    [Google Scholar]
  113. Wenzel SE, Tyurina YY, Zhao J, St. Croix CM, Dar HH et al. 2017. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171:3628–41.e26
    [Google Scholar]
  114. Woo JH, Shimoni Y, Yang WS, Subramaniam P, Iyer A et al. 2015. Elucidating compound mechanism of action by network perturbation analysis. Cell 162:2441–51
    [Google Scholar]
  115. Xie Y, Zhu S, Song X, Sun X, Fan Y et al. 2017. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:71692–704
    [Google Scholar]
  116. Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS et al. 2007. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:7146864–68
    [Google Scholar]
  117. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR 2016. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. PNAS 113:34E4966–75
    [Google Scholar]
  118. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R et al. 2014. Regulation of ferroptotic cancer cell death by GPX4. Cell 156:1–2317–31
    [Google Scholar]
  119. Yang WS, Stockwell BR 2008. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15:3234–45
    [Google Scholar]
  120. Yang WS, Stockwell BR 2016. Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26:3165–76
    [Google Scholar]
  121. Yuan H, Li X, Zhang X, Kang R, Tang D 2016.a CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys. Res. Commun. 478:2838–44
    [Google Scholar]
  122. Yuan H, Li X, Zhang X, Kang R, Tang D 2016.b Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478:31338–43
    [Google Scholar]
  123. Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A et al. 2015. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:62661391–96
    [Google Scholar]
  124. Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M et al. 2017. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3:3232–43
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030518-055844
Loading
/content/journals/10.1146/annurev-cancerbio-030518-055844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error