1932

Abstract

Cellular senescence is a state of stable proliferative arrest triggered by various stimuli, including oncogenic and other cellular stress. Senescent cells are highly metabolically active and have diverse and profound nonautonomous effects through the senescence-associated secretory phenotype (SASP). It has become increasingly evident that senescent cells can have tumour suppressive or pro-oncogenic effects on adjacent cancer cells and other players in the tumor microenvironment such as the stroma, vasculature, and immune system. Thus, the last decade or so has witnessed a huge leap forward in our understanding of the biology of senescence, promoting it from an autonomous tumor suppressor to a complex, dynamic, and interactive phenotype. It is perhaps not a coincidence that the concept of the “hallmarks of cancer” has also evolved during this period, with the latest iteration (Hanahan & Weinberg 2011) focusing more on the microenvironment. Here, we suggest that cellular senescence could underpin the biology of many of the hallmarks of cancer, making it the true power behind the throne.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030617-050352
2018-03-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/2/1/annurev-cancerbio-030617-050352.html?itemId=/content/journals/10.1146/annurev-cancerbio-030617-050352&mimeType=html&fmt=ahah

Literature Cited

  1. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P. et al. 2013. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15:8978–90 [Google Scholar]
  2. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A. et al. 2008. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:61006–18 [Google Scholar]
  3. Aird KM, Iwasaki O, Kossenkov AV, Tanizawa H, Fatkhutdinov N. et al. 2016. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J. Cell Biol. 215:3325–34 [Google Scholar]
  4. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. 1996. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. PNAS 93:2413742–47 [Google Scholar]
  5. Aster JC, Pear WS, Blacklow SC. 2017. The varied roles of Notch in cancer. Annu. Rev. Pathol. 12:1245–75 [Google Scholar]
  6. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ. et al. 2017. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:1132–47.e16 [Google Scholar]
  7. Bae NS, Baumann P. 2007. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol. Cell 26:3323–34 [Google Scholar]
  8. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ. et al. 2016. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:7589184–89 [Google Scholar]
  9. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG. et al. 2011. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:7372232–36 [Google Scholar]
  10. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D. et al. 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:7119633–37 [Google Scholar]
  11. Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S, Nelson PS. 2006. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res 66:2794–802 [Google Scholar]
  12. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA. et al. 2011. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:4571–83 [Google Scholar]
  13. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AHFM. et al. 2005. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:7051660–65 [Google Scholar]
  14. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:6549552–57 [Google Scholar]
  15. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J. et al. 2013. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152:1–2340–51 [Google Scholar]
  16. Chang J, Wang Y, Shao L, Laberge R-M, Demaria M. et al. 2016. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22:178–83 [Google Scholar]
  17. Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA. et al. 2005. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:7051725–30 [Google Scholar]
  18. Chiche A, Le Roux I, von Joest M, Sakai H, Aguín SB. et al. 2017. Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell 20:3407–14.e4 [Google Scholar]
  19. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI. 2006. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443:7108214–17 [Google Scholar]
  20. Collado M, Blasco MA, Serrano M. 2007. Cellular senescence in cancer and aging. Cell 130:2223–33 [Google Scholar]
  21. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ. et al. 2005. Tumour biology: senescence in premalignant tumours. Nature 436:7051642 [Google Scholar]
  22. Collado M, Serrano M. 2010. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10:151–57 [Google Scholar]
  23. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5:99–118 [Google Scholar]
  24. Coppé J-P, Kauser K, Campisi J, Beauséjour CM. 2006. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281:4029568–74 [Google Scholar]
  25. Coppé J-P, Patil CK, Rodier F, Sun Y, Muñoz DP. et al. 2008. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol 6:122853–68 [Google Scholar]
  26. Coppé J-P, Rodier F, Patil CK, Freund A, Desprez P-Y, Campisi J. 2011. Tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem. 286:4236396–403 [Google Scholar]
  27. Cosme-Blanco W, Shen M-F, Lazar AJF, Pathak S, Lozano G. et al. 2007. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 8:5497–503 [Google Scholar]
  28. Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT. et al. 2006. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:6459–72 [Google Scholar]
  29. Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420:6917860–67 [Google Scholar]
  30. Czabotar PE, Lessene G, Strasser A, Adams JM. 2014. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15:149–63 [Google Scholar]
  31. d'Adda di Fagagna F. 2008. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8:7512–22 [Google Scholar]
  32. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P. et al. 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:6963194–98 [Google Scholar]
  33. Demaria M, O'Leary MN, Chang J, Shao L, Liu S. et al. 2017. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov 7:2165–76 [Google Scholar]
  34. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W. et al. 2014. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31:6722–33 [Google Scholar]
  35. Denchi LE, Attwooll C, Pasini D, Helin K. 2005. Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol. Cell. Biol. 25:7266072 [Google Scholar]
  36. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P. et al. 2006. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:7119638–42 [Google Scholar]
  37. Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S. et al. 2014. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515:7525134–37 [Google Scholar]
  38. Dörr JR, Yu Y, Milanovic M, Beuster G, Zasada C. et al. 2013. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501:7467421–25 [Google Scholar]
  39. Dou Z, Xu C, Donahue G, Shimi T, Pan J-A. et al. 2015. Autophagy mediates degradation of nuclear lamina. Nature 527:7576105–9 [Google Scholar]
  40. Eggert T, Wolter K, Ji J, Ma C, Yevsa T. et al. 2016. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30:4533–47 [Google Scholar]
  41. Feldser DM, Greider CW. 2007. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11:5461–69 [Google Scholar]
  42. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM. et al. 2015. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 16:125–35 [Google Scholar]
  43. Freund A, Patil CK, Campisi J. 2011. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30:81536–48 [Google Scholar]
  44. Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D. et al. 2012. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14:4355–65 [Google Scholar]
  45. Fumagalli M, Rossiello F, Mondello C, d'Adda di Fagagna F. 2014. Stable cellular senescence is associated with persistent DDR activation. PLOS ONE 9:10e110969 [Google Scholar]
  46. Galbiati A, Beauséjour C, d'Adda di Fagagna F. 2017. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues. Aging Cell 16:2422–27 [Google Scholar]
  47. Gil J, Peters G. 2006. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol. 7:9667–77 [Google Scholar]
  48. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T. et al. 2006. Cellular senescence in naevi and immortalisation in melanoma: a role for p16?. Br. J. Cancer 95:4496–505 [Google Scholar]
  49. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:157–70 [Google Scholar]
  50. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:5646–74 [Google Scholar]
  51. Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:6274458–60 [Google Scholar]
  52. Hayflick L. 1965. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37:614–36 [Google Scholar]
  53. Hemann MT, Strong MA, Hao LY, Greider CW. 2001. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77 [Google Scholar]
  54. Herbig U, Jobling WA, Chen BPC, Chen DJ, Sedivy JM. 2004. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14:4501–13 [Google Scholar]
  55. Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S. et al. 2015. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17:91205–17 [Google Scholar]
  56. Hewitt G, Jurk D, Marques FDM, Correia-Melo C, Hardy T. et al. 2012. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3:708 [Google Scholar]
  57. Hoare M, Ito Y, Kang T-W, Weekes MP, Matheson NJ. et al. 2016. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18:9979–92 [Google Scholar]
  58. Jackson JG, Pant V, Li Q, Chang LL, Quintás-Cardama A. et al. 2012. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell 21:6793–806 [Google Scholar]
  59. Johmura Y, Nakanishi M. 2016. Multiple facets of p53 in senescence induction and maintenance. Cancer Sci 107:111550–55 [Google Scholar]
  60. Jun J-I, Lau LF. 2010. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12:7676–85 [Google Scholar]
  61. Kanehira M, Fujiwara T, Nakajima S, Okitsu Y, Onishi Y. et al. 2016. An lysophosphatidic acid receptors 1 and 3 axis governs cellular senescence of mesenchymal stromal cells and promotes growth and vascularization of multiple myeloma. Stem Cells 35:3739–53 [Google Scholar]
  62. Kang C, Xu Q, Martin TD, Li MZ, Demaria M. et al. 2015. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:6255aaa5612 [Google Scholar]
  63. Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T. et al. 2011. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:7374547–51 [Google Scholar]
  64. Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA. et al. 2013. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498:7452109–12 [Google Scholar]
  65. Karlseder J, Smogorzewska A, de Lange T. 2002. Senescence induced by altered telomere state, not telomere loss. Science 295:55642446–49 [Google Scholar]
  66. Kaur A, Webster MR, Marchbank K, Behera R, Ndoye A. et al. 2016. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:7598250–54 [Google Scholar]
  67. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD. et al. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science 266:51932011–15 [Google Scholar]
  68. Kirschner K, Samarajiwa SA, Cairns JM, Menon S, Pérez-Mancera PA. et al. 2015. Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53. PLOS Genet 11:3e1005053 [Google Scholar]
  69. Kortlever RM, Higgins PJ, Bernards R. 2006. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8:8877–84 [Google Scholar]
  70. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J. et al. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134:4657–67 [Google Scholar]
  71. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. 2001. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. PNAS 98:2112072–77 [Google Scholar]
  72. Kruse J-P, Gu W. 2009. Modes of p53 regulation. Cell 137:4609–22 [Google Scholar]
  73. Kuilman T, Michaloglou C, Vredeveld LCW, Douma S, van Doorn R. et al. 2008. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:61019–31 [Google Scholar]
  74. Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A. et al. 2015. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17:81049–61 [Google Scholar]
  75. LaPak KM, Burd CE. 2014. The molecular balancing act of p16INK4a in cancer and aging. Mol. Cancer Res. 12:2167–83 [Google Scholar]
  76. Levine AJ, Oren M. 2009. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9:10749–58 [Google Scholar]
  77. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW. 1998. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:193008–19 [Google Scholar]
  78. Lu C, Thompson CB. 2012. Metabolic regulation of epigenetics. Cell Metab 16:19–17 [Google Scholar]
  79. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S. et al. 2012. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:7390474–78 [Google Scholar]
  80. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF. et al. 2013. Non-cell-autonomous tumor suppression by p53. Cell 153:2449–60 [Google Scholar]
  81. Mallette FA, Gaumont-Leclerc M-F, Ferbeyre G. 2007. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 21:143–48 [Google Scholar]
  82. Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T. et al. 2005. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:7051720–24 [Google Scholar]
  83. Mosteiro L, Pantoja C, Alcazar N, Marión RM, Chondronasiou D. et al. 2016. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354:6315aaf4445 [Google Scholar]
  84. Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J. et al. 2013. Programmed cell senescence during mammalian embryonic development. Cell 155:51104–18 [Google Scholar]
  85. Narita M, Lowe SW. 2005. Senescence comes of age. Nat. Med. 11:920–22 [Google Scholar]
  86. Narita M, Young ARJ, Arakawa S, Samarajiwa SA, Nakashima T. et al. 2011. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332:6032966–70 [Google Scholar]
  87. O'Leary B, Finn RS, Turner NC. 2016. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13:7417–30 [Google Scholar]
  88. Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F. et al. 2016. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167:71719–33.e12 [Google Scholar]
  89. Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. 2009. Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. PNAS 106:4017031–36 [Google Scholar]
  90. Oubaha M, Miloudi K, Dejda A, Guber V, Mawambo G. et al. 2016. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci. Transl. Med. 8:362362ra144 [Google Scholar]
  91. Pagès F, Galon J, Dieu-Nosjean M-C, Tartour E, Sautès-Fridman C, Fridman W-H. 2010. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:81093–102 [Google Scholar]
  92. Parrinello S, Coppé J-P, Krtolica A, Campisi J. 2005. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 118:485–96 [Google Scholar]
  93. Parry AJ, Narita M. 2016. Old cells, new tricks: chromatin structure in senescence. Mamm. Genome 27:7–8320–31 [Google Scholar]
  94. Pérez-Mancera PA, Young ARJ, Narita M. 2014. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14:8547–58 [Google Scholar]
  95. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M. et al. 2003. High frequency of BRAF mutations in nevi. Nat. Genet. 33:119–20 [Google Scholar]
  96. Pribluda A, Elyada E, Wiener Z, Hamza H, Goldstein RE. et al. 2013. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24:242–56 [Google Scholar]
  97. Procopio M-G, Laszlo C, Al Labban D, Kim DE, Bordignon P. et al. 2015. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17:91193–1204 [Google Scholar]
  98. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC. et al. 2017. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31:172–83 [Google Scholar]
  99. Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP. et al. 2009. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11:8973–79 [Google Scholar]
  100. Rodier F, Muñoz DP, Teachenor R, Chu V, Le O. et al. 2011. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci. 124:68–81 [Google Scholar]
  101. Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ. et al. 1999. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:5701–12 [Google Scholar]
  102. Rufini A, Tucci P, Celardo I, Melino G. 2013. Senescence and aging: the critical roles of p53. Oncogene 32:435129–43 [Google Scholar]
  103. Ruhland MK, Loza AJ, Capietto A-H, Luo X, Knolhoff BL. et al. 2016. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7:11762 [Google Scholar]
  104. Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T. et al. 2013. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27:161800–8 [Google Scholar]
  105. Salama R, Sadaie M, Hoare M, Narita M. 2014. Cellular senescence and its effector programs. Genes Dev 28:299–114 [Google Scholar]
  106. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E. et al. 2002. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:3335–46 [Google Scholar]
  107. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D. et al. 2010. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 141:4717–27 [Google Scholar]
  108. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:5593–602 [Google Scholar]
  109. Shay JW, Pereira-Smith OM, Wright WE. 1991. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196:133–39 [Google Scholar]
  110. Shay JW, Wright WE. 2000. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1:72–76 [Google Scholar]
  111. Shay JW, Wright WE. 2011. Role of telomeres and telomerase in cancer. Semin. Cancer Biol. 21:6349–53 [Google Scholar]
  112. Stanton SE, Adams S, Disis ML. 2016. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol 2:101354–60 [Google Scholar]
  113. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC. et al. 2013. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–30 [Google Scholar]
  114. Takai H, Smogorzewska A, de Lange T. 2003. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13:171549–56 [Google Scholar]
  115. Tasdemir N, Banito A, Roe J-S, Alonso-Curbelo D, Camiolo M. et al. 2016. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov 6:6612–29 [Google Scholar]
  116. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP. 2002. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:61876–83 [Google Scholar]
  117. Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M. et al. 2014. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep 9:175–89 [Google Scholar]
  118. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F. et al. 2012. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:7390479–83 [Google Scholar]
  119. Turner NC, Ro J, André F, Loi S, Verma S. et al. 2015. Palbociclib in hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 373:3209–19 [Google Scholar]
  120. van Steensel B, Smogorzewska A, de Lange T. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92:3401–13 [Google Scholar]
  121. Vizioli MG, Possik PA, Tarantino E, Meissl K, Borrello MG. et al. 2011. Evidence of oncogene-induced senescence in thyroid carcinogenesis. Endocr. Relat. Cancer 18:6743–57 [Google Scholar]
  122. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. 2008. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:3363–74 [Google Scholar]
  123. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR. 2010. Role for IGFBP7 in senescence induction by BRAF. Cell 141:5746–47 [Google Scholar]
  124. Webster MR, Kugel CH, Weeraratna AT. 2015. The Wnts of change: how Wnts regulate phenotype switching in melanoma. Biochim. Biophys. Acta 1856:2244–51 [Google Scholar]
  125. Wu C-H, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW. 2007. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. PNAS 104:3213028–33 [Google Scholar]
  126. Xue W, Zender L, Miething C, Dickins RA, Hernando E. et al. 2007. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:7128656–60 [Google Scholar]
  127. Yamakoshi K, Takahashi A, Hirota F, Nakayama R, Ishimaru N. et al. 2009. Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J. Cell Biol. 186:3393–407 [Google Scholar]
  128. Yevsa T, Kang T-W, Zender L. 2012. Immune surveillance of pre-cancerous senescent hepatocytes limits hepatocellular carcinoma development. Oncoimmunology 1:3398–99 [Google Scholar]
  129. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y. et al. 2016. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7:11190 [Google Scholar]
  130. Yoshida A, Lee EK, Diehl JA. 2016. Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6. Cancer Res 76:102990–3002 [Google Scholar]
  131. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S. et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:745697–101 [Google Scholar]
  132. Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M. et al. 2009. Autophagy mediates the mitotic senescence transition. Genes Dev 23:7798–803 [Google Scholar]
  133. Zheng L, Cardaci S, Jerby L, MacKenzie ED, Sciacovelli M. et al. 2015. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6:6001 [Google Scholar]
  134. Zhu J, Woods D, McMahon M, Bishop JM. 1998. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:192997–3007 [Google Scholar]
  135. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H. et al. 2015. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:4644–58 [Google Scholar]
  136. Zhuang D, Mannava S, Grachtchouk V, Tang W-H, Patil S. et al. 2008. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:526623–34 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030617-050352
Loading
/content/journals/10.1146/annurev-cancerbio-030617-050352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error