1932

Abstract

The mixed lineage leukemia () gene is involved in numerous chromosomal translocations that result in acute myeloid and acute lymphoid leukemias. The MLL protein belongs to a family of six methyltransferases in mammals that can methylate histone H3 on lysine 4 (H3K4). The methyltransferase activities of MLL and the other family members, SETD1A, SETD1B, MLL2, MLL3 and MLL4, depend on their participation within macromolecular complexes called COMPASS (complex of proteins associated with Set1). Functional diversity within the COMPASS family includes the propensity to mono-, di-, or trimethylate H3K4 and to regulate promoters or enhancers. Recent cancer genome sequencing and animal studies have identified MLL3 and MLL4 as cancer drivers in a wide variety of hematologic and solid tumors. MLL3 and MLL4 implement monomethylation of H3K4 at enhancer regions, whereas another enzyme in MLL3 and MLL4 COMPASS, UTX, which is also frequently mutated in multiple types of cancer, demethylates H3K27me3, a modification associated with transcription repression by the Polycomb group of proteins. Here, we review the different roles for the COMPASS family in cancer and suggest directions for future research toward elucidating the cellular pathways disregulated due to altered COMPASS functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-050216-034333
2017-03-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/1/1/annurev-cancerbio-050216-034333.html?itemId=/content/journals/10.1146/annurev-cancerbio-050216-034333&mimeType=html&fmt=ahah

Literature Cited

  1. Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K. et al. 2010. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLOS Biol 8:e1000453 [Google Scholar]
  2. Ardehali MB, Mei A, Zobeck KL, Caron M, Lis JT, Kusch T. 2011. Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J 30:2817–28 [Google Scholar]
  3. Bach C, Mueller D, Buhl S, Garcia-Cuellar MP, Slany RK. 2009. Alterations of the CxxC domain preclude oncogenic activation of mixed-lineage leukemia 2. Oncogene 28:815–23 [Google Scholar]
  4. Bitoun E, Oliver PL, Davies KE. 2007. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum. Mol. Genet. 16:92–106 [Google Scholar]
  5. Bledau AS, Schmidt K, Neumann K, Hill U, Ciotta G. et al. 2014. The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development 141:1022–35 [Google Scholar]
  6. Burgold T, Voituron N, Caganova M, Tripathi PP, Menuet C. et al. 2012. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep 2:1244–58 [Google Scholar]
  7. Cai SF, Chen CW, Armstrong SA. 2015. Drugging chromatin in cancer: recent advances and novel approaches. Mol. Cell 60:561–70 [Google Scholar]
  8. Cancer Genome Atlas Res. Netw. 2014. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–22 [Google Scholar]
  9. Weinstein JN, Collisson EA, Mills GB, Shaw KR. Cancer Genome Atlas Res. Netw. et al. 2013. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet 45:1113–20 [Google Scholar]
  10. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO. et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–4 [Google Scholar]
  11. Chang PY, Hom RA, Musselman CA, Zhu L, Kuo A. et al. 2010. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J. Mol. Biol. 400:137–44 [Google Scholar]
  12. Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N. et al. 2014. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25:652–65 [Google Scholar]
  13. Cho YW, Hong T, Hong S, Guo H, Yu H. et al. 2007. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J. Biol. Chem. 282:20395–406 [Google Scholar]
  14. Choi YJ, Oh HR, Choi MR, Gwak M, An CH. et al. 2014. Frameshift mutation of a histone methylation-related gene SETD1B and its regional heterogeneity in gastric and colorectal cancers with high microsatellite instability. Hum. Pathol. 45:1674–81 [Google Scholar]
  15. Clouaire T, Webb S, Skene P, Illingworth R, Kerr A. et al. 2012. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 26:1714–28 [Google Scholar]
  16. Corral J, Lavenir I, Impey H, Warren AJ, Forster A. et al. 1996. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 85:853–61 [Google Scholar]
  17. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW. et al. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. PNAS 107:21931–36 [Google Scholar]
  18. Eissenberg JC, Shilatifard A. 2010. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 339:240–49 [Google Scholar]
  19. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B. et al. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6:pl1 [Google Scholar]
  20. Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L. et al. 2009. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2:5 [Google Scholar]
  21. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM. et al. 2012. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–43 [Google Scholar]
  22. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S. et al. 2013. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 121:1604–11 [Google Scholar]
  23. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70 [Google Scholar]
  24. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  25. Hannibal MC, Buckingham KJ, Ng SB, Ming JE, Beck AE. et al. 2011. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am. J. Med. Genet. A 155A1511–16 [Google Scholar]
  26. He N, Liu M, Hsu J, Xue Y, Chou S. et al. 2010. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol. Cell 38:428–38 [Google Scholar]
  27. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW. et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39:311–18 [Google Scholar]
  28. Helming KC, Wang X, Wilson BG, Vazquez F, Haswell JR. et al. 2014. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20:251–54 [Google Scholar]
  29. Herz HM, Hu D, Shilatifard A. 2014. Enhancer malfunction in cancer. Mol. Cell 53:859–66 [Google Scholar]
  30. Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH. et al. 2012. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26:2604–20 [Google Scholar]
  31. Hu D, Gao X, Morgan MA, Herz HM, Smith ER, Shilatifard A. 2013. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33:4745–54 [Google Scholar]
  32. Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS. et al. 2004. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13:587–97 [Google Scholar]
  33. Ingham PW, Whittle R. 1980. Trithorax: a new homoeotic mutation of Drosophila melanogaster causing transformations of abdominal and thoracic imaginal segments. Mol. Gen. Genet. 179:607–14 [Google Scholar]
  34. Issaeva I, Zonis Y, Rozovskaia T, Orlovsky K, Croce CM. et al. 2007. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cell. Biol. 27:1889–903 [Google Scholar]
  35. Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J. et al. 2002. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J. Biol. Chem. 277:10753–55 [Google Scholar]
  36. Ladopoulos V, Hofemeister H, Hoogenkamp M, Riggs AD, Stewart AF, Bonifer C. 2013. The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter. Mol. Cell. Biol. 33:1383–93 [Google Scholar]
  37. Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M. et al. 2012. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am. J. Hum. Genet. 90:119–24 [Google Scholar]
  38. Lee J, Kim DH, Lee S, Yang QH, Lee DK. et al. 2009. A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4. PNAS 106:8513–18 [Google Scholar]
  39. Lee JE, Wang C, Xu S, Cho YW, Wang L. et al. 2013. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2:e01503 [Google Scholar]
  40. Lee JH, Skalnik DG. 2005. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280:41725–31 [Google Scholar]
  41. Lee JH, Skalnik DG. 2008. Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol. Cell. Biol. 28:609–18 [Google Scholar]
  42. Lee MG, Villa R, Trojer P, Norman J, Yan KP. et al. 2007. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–50 [Google Scholar]
  43. Lee S, Lee J, Lee SK, Lee JW. 2008. Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors. Mol. Endocrinol. 22:1312–19 [Google Scholar]
  44. Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S. et al. 2010. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol. Cell 37:429–37 [Google Scholar]
  45. Malik R, Khan AP, Asangani IA, Cieslik M, Prensner JR. et al. 2015. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21:344–52 [Google Scholar]
  46. Manna S, Kim JK, Bauge C, Cam M, Zhao Y. et al. 2015. Histone H3 Lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat. Commun. 6:8152 [Google Scholar]
  47. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J. et al. 2009. New insights to the MLL recombinome of acute leukemias. Leukemia 23:1490–99 [Google Scholar]
  48. Micale L, Augello B, Maffeo C, Selicorni A, Zucchetti F. et al. 2014. Molecular analysis, pathogenic mechanisms, and readthrough therapy on a large cohort of Kabuki syndrome patients. Hum. Mutat. 35:841–50 [Google Scholar]
  49. Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P. et al. 2001. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. PNAS 98:12902–7 [Google Scholar]
  50. Mishra BP, Zaffuto KM, Artinger EL, Org T, Mikkola HK. et al. 2014. The histone methyltransferase activity of MLL1 is dispensable for hematopoiesis and leukemogenesis. Cell Rep 7:1239–47 [Google Scholar]
  51. Mo R, Rao SM, Zhu YJ. 2006. Identification of the MLL2 complex as a coactivator for estrogen receptor alpha. J. Biol. Chem. 281:15714–20 [Google Scholar]
  52. Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J. et al. 2011. The COMPASS family of H3K4 methylases in Drosophila. Mol. Cell. Biol. 31:4310–18 [Google Scholar]
  53. Mohan M, Herz HM, Takahashi YH, Lin C, Lai KC. et al. 2010a. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24:574–89 [Google Scholar]
  54. Mohan M, Lin C, Guest E, Shilatifard A. 2010b. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat. Rev. Cancer 10:721–28 [Google Scholar]
  55. Morales Torres C, Laugesen A, Helin K. 2013. Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells. PLOS ONE 8:e60020 [Google Scholar]
  56. Morgan MA, Shilatifard A. 2015. Chromatin signatures of cancer. Genes Dev 29:238–49 [Google Scholar]
  57. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S. et al. 2007. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110:4445–54 [Google Scholar]
  58. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ. et al. 2010. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42:790–93 [Google Scholar]
  59. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S. et al. 2014. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514:513–17 [Google Scholar]
  60. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y. et al. 2005. hDOT1L links histone methylation to leukemogenesis. Cell 121:167–78 [Google Scholar]
  61. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y. 2006. Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat. Cell Biol. 8:1017–24 [Google Scholar]
  62. Okosun J, Bodor C, Wang J, Araf S, Yang CY. et al. 2014. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46:176–81 [Google Scholar]
  63. Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y. et al. 2015. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 21:1199–208 [Google Scholar]
  64. Patel SR, Kim D, Levitan I, Dressler GR. 2007. The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev. Cell 13:580–92 [Google Scholar]
  65. Piunti A, Shilatifard A. 2016. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352:aad9780 [Google Scholar]
  66. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–83 [Google Scholar]
  67. Rickels R, Hu D, Collings CK, Woodfin AR, Piunti A. et al. 2016. An evolutionary conserved epigenetic mark of polycomb response elements implemented by Trx/MLL/COMPASS. Mol. Cell 63:318–28 [Google Scholar]
  68. Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M. et al. 2001. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20:7137–48 [Google Scholar]
  69. Roma D, Palma P, Capolino R, Figa-Talamanca L, Diomedi-Camassei F. et al. 2015. Spinal ependymoma in a patient with Kabuki syndrome: a case report. BMC Med. Genet 1680 [Google Scholar]
  70. Rowley JD. 1998. The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32:495–519 [Google Scholar]
  71. Saigo K, Yoshido K, Ikeda R, Sakamoto Y, Murakami Y. et al. 2008. Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum. Mutat. 29:703–8 [Google Scholar]
  72. Salz T, Deng C, Pampo C, Siemann D, Qiu Y. et al. 2015. Histone methyltransferase hSETD1A is a novel regulator of metastasis in breast cancer. Mol. Cancer Res. 13:461–69 [Google Scholar]
  73. Santos MA, Faryabi RB, Ergen AV, Day AM, Malhowski A. et al. 2014. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier. Nature 514:107–11 [Google Scholar]
  74. Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R. et al. 2006. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38:700–5 [Google Scholar]
  75. Sedkov Y, Benes JJ, Berger JR, Riker KM, Tillib S. et al. 1999. Molecular genetic analysis of the Drosophila trithorax-related gene which encodes a novel SET domain protein. Mech. Dev. 82:171–79 [Google Scholar]
  76. Sedkov Y, Cho E, Petruk S, Cherbas L, Smith ST. et al. 2003. Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 426:78–83 [Google Scholar]
  77. Shilatifard A. 1998. Factors regulating the transcriptional elongation activity of RNA polymerase II. FASEB J 12:1437–46 [Google Scholar]
  78. Shilatifard A. 2012. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81:65–95 [Google Scholar]
  79. Shilatifard A, Conaway RC, Conaway JW. 2003. The RNA polymerase II elongation complex. Annu. Rev. Biochem. 72:693–715 [Google Scholar]
  80. Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW. 1996. An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271:1873–76 [Google Scholar]
  81. Shpargel KB, Sengoku T, Yokoyama S, Magnuson T. 2012. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLOS Genet 8:e1002964 [Google Scholar]
  82. Sierra J, Yoshida T, Joazeiro CA, Jones KA. 2006. The APC tumor suppressor counteracts β-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20:586–600 [Google Scholar]
  83. Smith E, Lin C, Shilatifard A. 2011. The super elongation complex (SEC) and MLL in development and disease. Genes Dev 25:661–72 [Google Scholar]
  84. Smith E, Shilatifard A. 2014. Enhancer biology and enhanceropathies. Nat. Struct. Mol. Biol. 21:210–19 [Google Scholar]
  85. Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y. et al. 2010. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol. Cell 38:439–51 [Google Scholar]
  86. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M. et al. 2008. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol. Cell. Biol. 28:2825–39 [Google Scholar]
  87. Tanabe S, Zeleznik-Le NJ, Kobayashi H, Vignon C, Espinosa R 3rd. et al. 1996. Analysis of the t(6;11)(q27;q23) in leukemia shows a consistent breakpoint in AF6 in three patients and in the ML-2 cell line. Genes Chromosomes Cancer 15:206–16 [Google Scholar]
  88. Thiel AT, Blessington P, Zou T, Feather D, Wu X. et al. 2010. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17:148–59 [Google Scholar]
  89. Thieme S, Gyarfas T, Richter C, Ozhan G, Fu J. et al. 2013. The histone demethylase UTX regulates stem cell migration and hematopoiesis. Blood 121:2462–73 [Google Scholar]
  90. van Leeuwen F, Gafken PR, Gottschling DE. 2002. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109:745–56 [Google Scholar]
  91. Wang P, Lin C, Smith ER, Guo H, Sanderson BW. et al. 2009. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol. Cell. Biol. 29:6074–85 [Google Scholar]
  92. Wang QF, Wu G, Mi S, He F, Wu J. et al. 2011. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 117:6895–905 [Google Scholar]
  93. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W. et al. 2010. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327:1650–53 [Google Scholar]
  94. Warren EH, Gavin MA, Simpson E, Chandler P, Page DC. et al. 2000. The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen. J. Immunol. 164:2807–14 [Google Scholar]
  95. Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S. et al. 2012. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. PNAS 109:13004–9 [Google Scholar]
  96. Wood A, Schneider J, Dover J, Johnston M, Shilatifard A. 2003. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278:34739–42 [Google Scholar]
  97. Wood A, Shukla A, Schneider J, Lee JS, Stanton JD. et al. 2007. Ctk complex-mediated regulation of histone methylation by COMPASS. Mol. Cell. Biol. 27:709–20 [Google Scholar]
  98. Wu M, Wang PF, Lee JS, Martin-Brown S, Florens L. et al. 2008. Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28:7337–44 [Google Scholar]
  99. Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML. 2010. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17:198–212 [Google Scholar]
  100. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ. 1995. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378:505–8 [Google Scholar]
  101. Zhang J, Dominguez-Sola D, Hussein S, Lee JE, Holmes AB. et al. 2015. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21:1190–98 [Google Scholar]
  102. Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M. et al. 2015. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525:206–11 [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-050216-034333
Loading
/content/journals/10.1146/annurev-cancerbio-050216-034333
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error