1932

Abstract

T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061521-082114
2023-04-11
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/7/1/annurev-cancerbio-061521-082114.html?itemId=/content/journals/10.1146/annurev-cancerbio-061521-082114&mimeType=html&fmt=ahah

Literature Cited

  1. Afanasiev OK, Yelistratova L, Miller N, Nagase K, Paulson K et al. 2013. Merkel polyomavirus-specific T cells fluctuate with Merkel cell carcinoma burden and express therapeutically targetable PD-1 and Tim-3 exhaustion markers. Clin. Cancer Res. 19:5351–60
    [Google Scholar]
  2. Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R et al. 2015. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523:352–56
    [Google Scholar]
  3. Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M et al. 2019. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574:696–701
    [Google Scholar]
  4. Andersen MH, Fensterle J, Ugurel S, Reker S, Houben R et al. 2004. Immunogenicity of constitutively active V599EBRaf. Cancer Res 64:5456–60
    [Google Scholar]
  5. Anderson KG, Oda SK, Bates BM, Burnett MG, Rodgers Suarez M et al. 2022. Engineering adoptive T cell therapy to co-opt Fas ligand-mediated death signaling in ovarian cancer enhances therapeutic efficacy. J. Immunother. Cancer 10:e003959
    [Google Scholar]
  6. Anderson KG, Stromnes IM, Greenberg PD. 2017. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31:311–25
    [Google Scholar]
  7. Ankri C, Shamalov K, Horovitz-Fried M, Mauer S, Cohen CJ. 2013. Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity. J. Immunol. 191:4121–29
    [Google Scholar]
  8. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D et al. 2018. Comprehensive characterization of cancer driver genes and mutations. Cell 173:371–85.e18
    [Google Scholar]
  9. Bear AS, Blanchard T, Cesare J, Ford MJ, Richman LP et al. 2021. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat. Commun. 12:4365
    [Google Scholar]
  10. Biernacki MA, Foster KA, Woodward KB, Coon ME, Cummings C et al. 2020. CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. J. Clin. Investig. 130:5127–41
    [Google Scholar]
  11. Blake N, Haigh T, Shaka'a G, Croom-Carter D, Rickinson A. 2000. The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J. Immunol. 165:7078–87
    [Google Scholar]
  12. Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M et al. 2019. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365:599–604
    [Google Scholar]
  13. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A et al. 2019. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36:385–401.e8
    [Google Scholar]
  14. Bushara O, Krogh K, Weinberg SE, Finkelman BS, Sun L et al. 2022. Human immunodeficiency virus infection promotes human papillomavirus-mediated anal squamous carcinogenesis: an immunologic and pathobiologic review. Pathobiology 89:1–12
    [Google Scholar]
  15. Cafri G, Yossef R, Pasetto A, Deniger DC, Lu YC et al. 2019. Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat. Commun. 10:449
    [Google Scholar]
  16. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V et al. 2013. Identification of a Titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Sci. Transl. Med. 5:197ra03
    [Google Scholar]
  17. Carbone DP, Ciernik IF, Kelley MJ, Smith MC, Nadaf S et al. 2005. Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J. Clin. Oncol. 23:5099–107
    [Google Scholar]
  18. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J et al. 2015. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–8
    [Google Scholar]
  19. Castle JC, Uduman M, Pabla S, Stein RB, Buell JS. 2019. Mutation-derived neoantigens for cancer immunotherapy. Front. Immunol. 10:1856
    [Google Scholar]
  20. Chaft JE, Litvak A, Arcila ME, Patel P, D'Angelo SP et al. 2014. Phase II study of the GI-4000 KRAS vaccine after curative therapy in patients with stage I-III lung adenocarcinoma harboring a KRAS G12C, G12D, or G12V mutation. Clin. Lung Cancer 15:405–10
    [Google Scholar]
  21. Chandran SS, Klebanoff CA. 2019. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290:127–47
    [Google Scholar]
  22. Chandran SS, Ma J, Klatt MG, Dundar F, Bandlamudi C et al. 2022. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat. Med. 28:946–57
    [Google Scholar]
  23. Chapuis AG, Afanasiev OK, Iyer JG, Paulson KG, Parvathaneni U et al. 2014. Regression of metastatic Merkel cell carcinoma following transfer of polyomavirus-specific T cells and therapies capable of re-inducing HLA class-I. Cancer Immunol. Res. 2:27–36
    [Google Scholar]
  24. Cheever MA, Chen W, Disis ML, Takahashi M, Peace DJ. 1993. T-cell immunity to oncogenic proteins including mutated RAS and chimeric BCR-ABL. Ann. N.Y. Acad. Sci. 690:101–12
    [Google Scholar]
  25. Chen DS, Mellman I. 2013. Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10
    [Google Scholar]
  26. Cho HI, Kim UH, Shin AR, Won JN, Lee HJ et al. 2018. A novel Epstein–Barr virus-latent membrane protein-1-specific T-cell receptor for TCR gene therapy. Br. J. Cancer 118:534–45
    [Google Scholar]
  27. Choi J, Goulding SP, Conn BP, McGann CD, Dietze JL et al. 2021. Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. Cell Rep. Methods 1:100084
    [Google Scholar]
  28. Coulie PG, Lehmann F, Lethe B, Herman J, Lurquin C et al. 1995. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. PNAS 92:7976–80
    [Google Scholar]
  29. Deniger DC, Pasetto A, Robbins PF, Gartner JJ, Prickett TD et al. 2018. T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin. Cancer Res. 24:5562–73
    [Google Scholar]
  30. Doran SL, Stevanovic S, Adhikary S, Gartner JJ, Jia L et al. 2019. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase I/II study. J. Clin. Oncol. 37:2759–68
    [Google Scholar]
  31. Douglass J, Hsiue EH, Mog BJ, Hwang MS, DiNapoli SR et al. 2021. Bispecific antibodies targeting mutant RAS neoantigens. Sci. Immunol. 6:57abd5515
    [Google Scholar]
  32. Drolet M, Benard E, Boily MC, Ali H, Baandrup L et al. 2015. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect. Dis. 15:565–80
    [Google Scholar]
  33. Dumbrava EE, Johnson ML, Tolcher AW, Shapiro G, Thompson JA et al. 2022. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. J. Clin. Oncol. 40:163003 (Abstr.)
    [Google Scholar]
  34. Feng H, Shuda M, Chang Y, Moore PS 2008. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–100
    [Google Scholar]
  35. Gavvovidis I, Leisegang M, Willimsky G, Miller N, Nghiem P, Blankenstein T. 2018. Targeting Merkel cell carcinoma by engineered T cells specific to T-antigens of Merkel cell polyomavirus. Clin. Cancer Res. 24:3644–55
    [Google Scholar]
  36. Gjertsen MK, Bakka A, Breivik J, Saeterdal I, Solheim BG et al. 1995. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346:1399–400
    [Google Scholar]
  37. Gjertsen MK, Buanes T, Rosseland AR, Bakka A, Gladhaug I et al. 2001. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int. J. Cancer 92:441–50
    [Google Scholar]
  38. Gonzalez-Galarza FF, McCabe A, Melo Dos Santos EJ, Jones AR, Middleton D 2021. A snapshot of human leukocyte antigen (HLA) diversity using data from the Allele Frequency Net Database. Hum. Immunol. 82:496–504
    [Google Scholar]
  39. Goodman AM, Castro A, Pyke RM, Okamura R, Kato S et al. 2020. MHC-I genotype and tumor mutational burden predict response to immunotherapy. Genome Med 12:45
    [Google Scholar]
  40. Greenberg PD, Cheever MA, Fefer A. 1981. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2 lymphocytes. J. Exp. Med. 154:952–63
    [Google Scholar]
  41. Greenberg PD, Kern DE, Cheever MA. 1985. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2 T cells. Tumor eradication does not require participation of cytotoxic T cells. J. Exp. Med. 161:1122–34
    [Google Scholar]
  42. Hallin J, Bowcut V, Calinisan A, Briere DM, Hargis L et al. 2022. Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat. Med. 28:2171–82
    [Google Scholar]
  43. Hanada KI, Yu Z, Chappell GR, Park AS, Restifo NP. 2019. An effective mouse model for adoptive cancer immunotherapy targeting neoantigens. JCI Insight 4:e124405
    [Google Scholar]
  44. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  45. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK et al. 1996. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat. Med. 2:551–55
    [Google Scholar]
  46. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A et al. 2010. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115:925–35
    [Google Scholar]
  47. Hogquist KA, Jameson SC. 2014. The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat. Immunol. 15:815–23
    [Google Scholar]
  48. Hollingsworth RE, Jansen K. 2019. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 4:7
    [Google Scholar]
  49. Hsiue EH, Wright KM, Douglass J, Hwang MS, Mog BJ et al. 2021. Targeting a neoantigen derived from a common TP53 mutation. Science 371:6533abc8697
    [Google Scholar]
  50. Hu J, Cao J, Topatana W, Juengpanich S, Li S et al. 2021. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J. Hematol. Oncol. 14:157
    [Google Scholar]
  51. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ et al. 2008. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358:2698–703
    [Google Scholar]
  52. Inderberg EM, Walchli S, Myhre MR, Trachsel S, Almasbak H et al. 2017. T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces in vivo tumor growth. OncoImmunology 6:e1302631
    [Google Scholar]
  53. Iyer JG, Afanasiev OK, McClurkan C, Paulson K, Nagase K et al. 2011. Merkel cell polyomavirus-specific CD8+ and CD4+ T-cell responses identified in Merkel cell carcinomas and blood. Clin. Cancer Res. 17:6671–80
    [Google Scholar]
  54. Jacoby K, Moot R, Lu W, Nguyen D, Sennino B et al. 2019. Highly efficient, non-viral precision genome engineering for the generation of personalized neoepitope-specific adoptive T cell therapies. Cancer Res 79:Suppl. 134783 (Abstr.)
    [Google Scholar]
  55. Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS et al. 2018. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep 23:270–81.e3
    [Google Scholar]
  56. Jing L, Ott M, Church CD, Kulikauskas RM, Ibrani D et al. 2020. Prevalent and diverse intratumoral oncoprotein-specific CD8+ T cells within polyomavirus-driven Merkel cell carcinomas. Cancer Immunol. Res. 8:648–59
    [Google Scholar]
  57. John LB, Devaud C, Duong CP, Yong CS, Beavis PA et al. 2013. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19:5636–46
    [Google Scholar]
  58. Kalbasi A, Ribas A. 2020. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20:25–39
    [Google Scholar]
  59. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM et al. 2009. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361:1838–47
    [Google Scholar]
  60. Kim SP, Vale NR, Zacharakis N, Krishna S, Yu Z et al. 2022. Adoptive cell therapy with autologous tumor-infiltrating lymphocytes and T cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol. Res. 10:8932–946
    [Google Scholar]
  61. Kotsiou E, Hou TZ, Robinson J, Varsani S, Oakes T et al. 2020. Next generation clonal neoantigen targeting T cells, generated using the PELEUS bioinformatics platform and the VELOS manufacturing method show superior reactivity and phenotypic characteristics than classical TIL products. Cancer Res 80:Suppl. 16875 (Abstr.)
    [Google Scholar]
  62. Kuball J, Hauptrock B, Malina V, Antunes E, Voss RH et al. 2009. Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J. Exp. Med. 206:463–75
    [Google Scholar]
  63. Kubuschok B, Neumann F, Breit R, Sester M, Schormann C et al. 2006. Naturally occurring T-cell response against mutated p21 ras oncoprotein in pancreatic cancer. Clin. Cancer Res. 12:1365–72
    [Google Scholar]
  64. Lahman MC, Schmitt TM, Paulson KG, Vigneron N, Buenrostro D et al. 2022. Targeting an alternate Wilms’ tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci. Transl. Med. 14:eabg8070
    [Google Scholar]
  65. Laumont CM, Vincent K, Hesnard L, Audemard E, Bonneil E et al. 2018. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10:470aau5516
    [Google Scholar]
  66. Leen AM, Sukumaran S, Watanabe N, Mohammed S, Keirnan J et al. 2014. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol. Ther. 22:1211–20
    [Google Scholar]
  67. Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C et al. 2022. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386:2112–19
    [Google Scholar]
  68. Leisegang M, Kammertoens T, Uckert W, Blankenstein T. 2016. Targeting human melanoma neoantigens by T cell receptor gene therapy. J. Clin. Investig. 126:854–58
    [Google Scholar]
  69. Leko V, Rosenberg SA. 2020. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38:454–72
    [Google Scholar]
  70. Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A et al. 2005. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. PNAS 102:16013–18
    [Google Scholar]
  71. Lo W, Parkhurst M, Robbins PF, Tran E, Lu YC et al. 2019. Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol. Res. 7:534–43
    [Google Scholar]
  72. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD et al. 2017. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551:517–20
    [Google Scholar]
  73. Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B et al. 2017. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 49:358–66
    [Google Scholar]
  74. Malekzadeh P, Pasetto A, Robbins PF, Parkhurst MR, Paria BC et al. 2019. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Investig. 129:1109–14
    [Google Scholar]
  75. Malekzadeh P, Yossef R, Cafri G, Paria BC, Lowery FJ et al. 2020. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. 26:1267–76
    [Google Scholar]
  76. Martinov T, Perret R, Mureli S, McCurdy C, Vazquez A et al. 2022. Preclinical development of safe and effective T cell receptors specific for mutant KRAS G12V and G12D peptides. Mol. Ther 30:Suppl. 455 (Abstr.)
    [Google Scholar]
  77. McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. 2015. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7:283ra54
    [Google Scholar]
  78. McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–69
    [Google Scholar]
  79. Mesri EA, Feitelson MA, Munger K. 2014. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 15:266–82
    [Google Scholar]
  80. Mishto M, Mansurkhodzhaev A, Ying G, Bitra A, Cordfunke RA et al. 2019. An in silico-in vitro pipeline identifying an HLA-A*02:01+ KRAS G12V+ spliced epitope candidate for a broad tumor-immune response in cancer patients. Front. Immunol. 10:2572
    [Google Scholar]
  81. Moore AR, Rosenberg SC, McCormick F, Malek S. 2020. RAS-targeted therapies: Is the undruggable drugged?. Nat. Rev. Drug. Discov. 19:533–52
    [Google Scholar]
  82. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF et al. 2013. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36:133–51
    [Google Scholar]
  83. Munz C. 2020. Redirecting T cells against Epstein-Barr virus infection and associated oncogenesis. Cells 9:61400
    [Google Scholar]
  84. Muscarella P, Bekaii-Saab T, McIntyre K, Rosemurgy A, Ross SB et al. 2021. A phase 2 randomized placebo-controlled adjuvant trial of GI-4000, a recombinant yeast expressing mutated RAS proteins in patients with resected pancreas cancer. J. Pancreat. Cancer 7:8–19
    [Google Scholar]
  85. Nagarsheth NB, Norberg SM, Sinkoe AL, Adhikary S, Meyer TJ et al. 2021. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27:419–25
    [Google Scholar]
  86. Nielsen JS, Sedgwick CG, Shahid A, Zong Z, Brumme ZL et al. 2016. Toward personalized lymphoma immunotherapy: identification of common driver mutations recognized by patient CD8+ T cells. Clin. Cancer Res. 22:2226–36
    [Google Scholar]
  87. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K et al. 2003. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–17
    [Google Scholar]
  88. Noguchi Y, Chen YT, Old LJ. 1994. A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. PNAS 91:3171–75
    [Google Scholar]
  89. Norbury LC, Clark RE, Christmas SE. 2000. b3a2 BCR-ABL fusion peptides as targets for cytotoxic T cells in chronic myeloid leukaemia. Br. J. Haematol. 109:616–21
    [Google Scholar]
  90. Oda SK, Anderson KG, Ravikumar P, Bonson P, Garcia NM et al. 2020. A Fas-4–1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. J. Exp. Med. 217:12e20191166
    [Google Scholar]
  91. Oda SK, Daman AW, Garcia NM, Wagener F, Schmitt TM et al. 2017. A CD200R-CD28 fusion protein appropriates an inhibitory signal to enhance T-cell function and therapy of murine leukemia. Blood 130:2410–19
    [Google Scholar]
  92. Orentas RJ, Roskopf SJ, Nolan GP, Nishimura MI. 2001. Retroviral transduction of a T cell receptor specific for an Epstein-Barr virus-encoded peptide. Clin. Immunol. 98:220–28
    [Google Scholar]
  93. Ostrem JML, Shokat KM. 2022. Targeting KRAS G12C with covalent inhibitors. Annu. Rev. Cancer Biol. 6:49–64
    [Google Scholar]
  94. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J et al. 2017. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:217–21
    [Google Scholar]
  95. Pai CS, Huang JT, Lu X, Simons DM, Park C et al. 2019. Clonal deletion of tumor-specific T cells by interferon-gamma confers therapeutic resistance to combination immune checkpoint blockade. Immunity 50:477–92.e8
    [Google Scholar]
  96. Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ et al. 2019. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov 9:1022–35
    [Google Scholar]
  97. Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD et al. 2018. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat. Commun. 9:3868
    [Google Scholar]
  98. Peace DJ, Chen W, Nelson H, Cheever MA. 1991. T cell recognition of transforming proteins encoded by mutated ras proto-oncogenes. J. Immunol. 146:2059–65
    [Google Scholar]
  99. Pearlman AH, Hwang MS, Konig MF, Hsiue EH, Douglass J et al. 2021. Targeting public neoantigens for cancer immunotherapy. Nat. Cancer 2:487–97
    [Google Scholar]
  100. Platten M, Bunse L, Wick A, Bunse T, Le Cornet L et al. 2021. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature 592:463–68
    [Google Scholar]
  101. Prinzing B, Zebley CC, Petersen CT, Fan Y, Anido AA et al. 2021. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13:eabh0272
    [Google Scholar]
  102. Prior IA, Hood FE, Hartley JL. 2020. The frequency of Ras mutations in cancer. Cancer Res 80:2969–74
    [Google Scholar]
  103. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. 1999. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–19
    [Google Scholar]
  104. Rath JA, Bajwa G, Carreres B, Hoyer E, Gruber I et al. 2020. Single-cell transcriptomics identifies multiple pathways underlying antitumor function of TCR- and CD8αβ-engineered human CD4+ T cells. Sci. Adv. 6:eaaz7809
    [Google Scholar]
  105. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. 2017. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23:2255–66
    [Google Scholar]
  106. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ et al. 2017. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171:934–49.e16
    [Google Scholar]
  107. Ribas A, Wolchok JD. 2018. Cancer immunotherapy using checkpoint blockade. Science 359:1350–55
    [Google Scholar]
  108. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. 1992. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–41
    [Google Scholar]
  109. Rive CM, Yung E, Hughes CS, Brown SD, Sharma G et al. 2020. Recombinant T cell receptors specific for HLA-A*02:01-restricted neoepitopes containing KRAS codon 12 hotspot mutations. bioRxiv . https://doi.org/10.1101/2020.06.15.149021
    [Crossref]
  110. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V et al. 2015. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 348:124–28
    [Google Scholar]
  111. Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J et al. 2010. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2:47ra64
    [Google Scholar]
  112. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW et al. 1998. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–55
    [Google Scholar]
  113. Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J et al. 2018. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:405–9
    [Google Scholar]
  114. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P et al. 2017. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–26
    [Google Scholar]
  115. Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ et al. 2021. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J. Clin. Oncol. 39:1584–94
    [Google Scholar]
  116. Schaft N, Lankiewicz B, Drexhage J, Berrevoets C, Moss DJ et al. 2006. T cell re-targeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNγ production. Int. Immunol. 18:591–601
    [Google Scholar]
  117. Schober K, Muller TR, Busch DH. 2020. Orthotopic T-cell receptor replacement—an “enabler” for TCR-based therapies. Cells 9:61367
    [Google Scholar]
  118. Schober K, Muller TR, Gokmen F, Grassmann S, Effenberger M et al. 2019. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3:974–84
    [Google Scholar]
  119. Schreiber RD, Old LJ, Smyth MJ. 2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–70
    [Google Scholar]
  120. Schumacher TN, Bunse L, Pusch S, Sahm F, Wiestler B et al. 2014. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–27
    [Google Scholar]
  121. Schumacher TN, Schreiber RD. 2015. Neoantigens in cancer immunotherapy. Science 348:69–74
    [Google Scholar]
  122. Shakiba M, Zumbo P, Espinosa-Carrasco G, Menocal L, Dundar F et al. 2022. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J. Exp. Med. 219:2e20201966
    [Google Scholar]
  123. Sing AP, Ambinder RF, Hong DJ, Jensen M, Batten W et al. 1997. Isolation of Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes that lyse Reed-Sternberg cells: implications for immune-mediated therapy of EBV+ Hodgkin's disease. Blood 89:1978–86
    [Google Scholar]
  124. Smith C, Khanna R. 2017. Adoptive cellular immunotherapy for virus-associated cancers: a new paradigm in personalized medicine. Immunol. Cell Biol. 95:364–71
    [Google Scholar]
  125. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99
    [Google Scholar]
  126. Spurgeon ME, Lambert PF. 2013. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology 435:118–30
    [Google Scholar]
  127. Stevanovic S, Draper LM, Langhan MM, Campbell TE, Kwong ML et al. 2015. Complete regression of metastatic cervical cancer after treatment with human papillomavirus–targeted tumor-infiltrating T cells. J. Clin. Oncol. 33:1543–50
    [Google Scholar]
  128. Stevanovic S, Pasetto A, Helman SR, Gartner JJ, Prickett TD et al. 2017. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356:200–5
    [Google Scholar]
  129. Stromnes IM, Schmitt TM, Hulbert A, Brockenbrough JS, Nguyen H et al. 2015. T cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma. Cancer Cell 28:638–52
    [Google Scholar]
  130. Sun K, Jia K, Lv H, Wang SQ, Wu Y et al. 2020. EBV-positive gastric cancer: current knowledge and future perspectives. Front. Oncol. 10:583463
    [Google Scholar]
  131. Tang Q, Su Z, Gu W, Rustgi AK. 2020. Mutant p53 on the path to metastasis. Trends Cancer 6:62–73
    [Google Scholar]
  132. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. 1995. Targeting p53 as a general tumor antigen. PNAS 92:11993–97
    [Google Scholar]
  133. Tilkin AF, Lubin R, Soussi T, Lazar V, Janin N et al. 1995. Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur. J. Immunol. 25:1765–69
    [Google Scholar]
  134. Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ et al. 2016. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375:2255–62
    [Google Scholar]
  135. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC et al. 2014. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–45
    [Google Scholar]
  136. Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M et al. 2015. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial. Lancet 386:2078–88
    [Google Scholar]
  137. Upadhaya S, Yu JX, Shah M, Correa D, Partridge T, Campbell J. 2021. The clinical pipeline for cancer cell therapies. Nat. Rev. Drug. Discov. 20:503–4
    [Google Scholar]
  138. van der Lee DI, Reijmers RM, Honders MW, Hagedoorn RS, de Jong RC et al. 2019. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J. Clin. Investig. 129:774–85
    [Google Scholar]
  139. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M et al. 2013. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31:e439–42
    [Google Scholar]
  140. Veatch JR, Akkiraju A, Darwanto A, Garrity S, Hallet D et al. 2022a. ATTAC-MCC: phase I/II study of autologous CD8+ and CD4+ transgenic T cells expressing a high affinity MCPyV-specific TCR combined with checkpoint inhibitors and class I MHC-upregulation in patients with metastatic MCC refractory to PD-1 axis blockade. J. Clin. Oncol. 40:Suppl. 16TPS9596 (Abstr.)
    [Google Scholar]
  141. Veatch JR, Jesernig BL, Kargl J, Fitzgibbon M, Lee SM et al. 2019. Endogenous CD4+ T cells recognize neoantigens in lung cancer patients, including recurrent oncogenic KRAS and ERBB2 (Her2) driver mutations. Cancer Immunol. Res. 7:910–22
    [Google Scholar]
  142. Veatch JR, Lee SM, Fitzgibbon M, Chow IT, Jesernig B et al. 2018. Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J. Clin. Investig. 128:1563–68
    [Google Scholar]
  143. Veatch JR, Lee SM, Shasha C, Singhi N, Szeto JL et al. 2022b. Neoantigen-specific CD4+ T cells in human melanoma have diverse differentiation states and correlate with CD8+ T cell, macrophage, and B cell function. Cancer Cell 40:393–409.e9
    [Google Scholar]
  144. Veatch JR, Paulson K, Asano Y, Martin L, Lee B et al. 2022c. Merkel polyoma virus specific T-cell receptor transgenic T-cell therapy in PD-1 inhibitor refractory Merkel cell carcinoma. J. Clin. Oncol. 40:Suppl. 169549 (Abstr.)
    [Google Scholar]
  145. Verdon DJ, Jenkins MR. 2021. Identification and targeting of mutant peptide neoantigens in cancer immunotherapy. Cancers 13:164245
    [Google Scholar]
  146. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD et al. 2015. The Immune Epitope Database (IEDB) 3.0. Nucleic Acids Res 43:D405–12
    [Google Scholar]
  147. Wang Q, Douglass J, Hwang MS, Hsiue EH, Mog BJ et al. 2019. Direct detection and quantification of neoantigens. Cancer Immunol. Res. 7:1748–54
    [Google Scholar]
  148. Wang QJ, Yu Z, Griffith K, Hanada K, Restifo NP, Yang JC. 2016. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol. Res. 4:204–14
    [Google Scholar]
  149. Ward JP, Gubin MM, Schreiber RD. 2016. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv. Immunol. 130:25–74
    [Google Scholar]
  150. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C et al. 1995. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–84
    [Google Scholar]
  151. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC et al. 2018. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24:724–30
    [Google Scholar]
  152. Zheng Y, Parsonage G, Zhuang X, Machado LR, James CH et al. 2015. Human leukocyte antigen (HLA) A*1101-restricted Epstein-Barr virus–specific T-cell receptor gene transfer to target nasopharyngeal carcinoma. Cancer Immunol. Res. 3:1138–47
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061521-082114
Loading
/content/journals/10.1146/annurev-cancerbio-061521-082114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error