1932

Abstract

Colorectal cancer (CRC) is associated with the presence of particular gut microbes, as observed in many metagenomic studies to date. However, in most cases, it remains difficult to disentangle their active contribution to CRC from just a bystander role. This review focuses on the mechanisms described to date by which the CRC-associated microbiota could contribute to CRC. Bacteria like , , or enterotoxigenic have been shown to induce mutagenesis, alter host epithelial signaling pathways, or reshape the tumor immune landscape in several experimental systems. The mechanistic roles of other bacteria, as well as newly identified fungi and viruses that are enriched in CRC, are only starting to be elucidated. Additionally, novel systems like organoids and organs-on-a-chip are emerging as powerful tools to study the direct effect of gut microbiota on healthy or tumor intestinal epithelium. Thus, the expanding knowledge of tumor-microbiota interactions holds promise for improved diagnosis and treatment of CRC.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-070120-095211
2022-04-11
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/6/1/annurev-cancerbio-070120-095211.html?itemId=/content/journals/10.1146/annurev-cancerbio-070120-095211&mimeType=html&fmt=ahah

Literature Cited

  1. Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G et al. 2016. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20:2215–25
    [Google Scholar]
  2. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:779394–101
    [Google Scholar]
  3. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S et al. 2013. Signatures of mutational processes in human cancer. Nature 500:7463415–21
    [Google Scholar]
  4. Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M et al. 2005. PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinform. 6:41
    [Google Scholar]
  5. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:6103120–23
    [Google Scholar]
  6. Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R et al. 2019. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 574:7777264–67
    [Google Scholar]
  7. Aymeric L, Donnadieu F, Mulet C, du Merle L, Nigro G et al. 2018. Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. PNAS 115:2E283–91
    [Google Scholar]
  8. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A et al. 2021. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371:6529602–9
    [Google Scholar]
  9. Basset C, Holton J, Bazeos A, Vaira D, Bloom S. 2004. Are Helicobacter species and enterotoxigenic Bacteroides fragilis involved in inflammatory bowel disease?. Dig. Dis. Sci. 49:91425–32
    [Google Scholar]
  10. Baxter NT, Ruffin MT, Rogers MAM, Schloss PD 2016. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med. 8:37
    [Google Scholar]
  11. Beaurivage C, Naumovska E, Chang YX, Elstak ED, Nicolas A et al. 2019. Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int. J. Mol. Sci. 20:225661
    [Google Scholar]
  12. Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A et al. 2018. Microfluidic organ-on-a-chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol. 5:4659–68
    [Google Scholar]
  13. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM et al. 2015. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60:2208–15
    [Google Scholar]
  14. Boot A, Ng AWT, Chong FT, Ho S-C, Yu W et al. 2020. Characterization of colibactin-associated mutational signature in an Asian oral squamous cell carcinoma and in other mucosal tumor types. Genome Res 30:6803–13
    [Google Scholar]
  15. Borowsky J, Haruki K, Lau MC, Dias Costa A, Väyrynen JP et al. 2021. Association of Fusobacterium nucleatum with specific T-cell subsets in the colorectal carcinoma microenvironment. Clin. Cancer Res. 27:102816–26
    [Google Scholar]
  16. Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D et al. 2018. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. mBio 9:2e02393-17
    [Google Scholar]
  17. Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J et al. 2013. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLOS ONE 8:2e56964
    [Google Scholar]
  18. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X et al. 2017. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:63691443–48
    [Google Scholar]
  19. Bund T, Nikitina E, Chakraborty D, Ernst C, Gunst K et al. 2021. Analysis of chronic inflammatory lesions of the colon for BMMF Rep antigen expression and CD68 macrophage interactions. PNAS 118:12e2025830118
    [Google Scholar]
  20. Carvalho MR, Barata D, Teixeira LM, Giselbrecht S, Reis RL et al. 2019. Colorectal tumor-on-a-chip system: a 3D tool for precision onco-nanomedicine. Sci. Adv. 5:5eaaw1317
    [Google Scholar]
  21. Casasanta MA, Yoo CC, Udayasuryan B, Sanders BE, Umaña A et al. 2020. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci. Signal. 13:641aba9157
    [Google Scholar]
  22. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M et al. 2012. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22:2299–306
    [Google Scholar]
  23. Chen H, Chen X-Z, Waterboer T, Castro FA, Brenner H. 2015. Viral infections and colorectal cancer: a systematic review of epidemiological studies. Int. J. Cancer 137:112–24
    [Google Scholar]
  24. Chung L, Orberg ET, Geis AL, Chan JL, Fu K et al. 2018. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23:2203–14.e5
    [Google Scholar]
  25. Clevers H. 2016. Modeling development and disease with organoids. Cell 165:71586–97
    [Google Scholar]
  26. Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH et al. 2019. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut 68:4654–62
    [Google Scholar]
  27. Consoli MLD, Silva RS da, Nicoli JR, Bruña-Romero O, Silva RG da et al. 2016. Randomized clinical trial: impact of oral administration of Saccharomyces boulardii on gene expression of intestinal cytokines in patients undergoing colon resection. J. Parenter. Enteral Nutr. 40:81114–21
    [Google Scholar]
  28. Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J et al. 2014. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63:121932–42
    [Google Scholar]
  29. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P 2010. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. PNAS 107:2511537–42
    [Google Scholar]
  30. Dahlman S, Avellaneda-Franco L, Barr JJ. 2021. Phages to shape the gut microbiota?. Curr. Opin. Biotechnol. 68:89–95
    [Google Scholar]
  31. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin J-M et al. 2021. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371:6529595–602
    [Google Scholar]
  32. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM 2020. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Global Health 8:2e180–90
    [Google Scholar]
  33. Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R et al. 2018. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:6375592–97
    [Google Scholar]
  34. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Welch JLM et al. 2014. Microbiota organization is a distinct feature of proximal colorectal cancers. PNAS 111:5118321–26
    [Google Scholar]
  35. Deng Q, Wang C, Yu K, Wang Y, Yang Q et al. 2020. Streptococcus bovis contributes to the development of colorectal cancer via recruiting CD11b+TLR-4+ cells. Med. Sci. Monit. 26:e921886
    [Google Scholar]
  36. Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A et al. 2020. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat. Med. 26:71063–69
    [Google Scholar]
  37. Emlet C, Ruffin M, Lamendella R. 2020. Enteric virome and carcinogenesis in the gut. Dig. Dis. Sci. 65:3852–64
    [Google Scholar]
  38. Engevik MA, Danhof HA, Ruan W, Engevik AC, Chang-Graham AL et al. 2021. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio 12:2e02706-20
    [Google Scholar]
  39. Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G 2018. Colibactin: more than a new bacterial toxin. Toxins 10:4151
    [Google Scholar]
  40. Flemer B, Lynch DB, Brown JMR, Jeffery IB, Ryan FJ et al. 2017. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66:4633–43
    [Google Scholar]
  41. Fu T, Coulter S, Yoshihara E, Oh TG, Fang S et al. 2019. FXR regulates intestinal cancer stem cell proliferation. Cell 176:51098–112.e18
    [Google Scholar]
  42. Gao R, Kong C, Li H, Huang L, Qu X et al. 2017. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur. J. Clin. Microbiol. Infect. Dis. 36:122457–68
    [Google Scholar]
  43. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N et al. 2017. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357:63561156–60
    [Google Scholar]
  44. Gianotti L, Morelli L, Galbiati F, Rocchetti S, Coppola S et al. 2010. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J. Gastroenterol. 16:2167–75
    [Google Scholar]
  45. Gogokhia L, Buhrke K, Bell R, Hoffman B, Brown DG et al. 2019. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25:2285–99.e8
    [Google Scholar]
  46. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC et al. 2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:637197–103
    [Google Scholar]
  47. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J et al. 2015. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:2344–55
    [Google Scholar]
  48. Hallen-Adams HE, Suhr MJ 2017. Fungi in the healthy human gastrointestinal tract. Virulence 8:3352–58
    [Google Scholar]
  49. Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y et al. 2018. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol. Res. 6:111327–36
    [Google Scholar]
  50. Hannigan GD, Duhaime MB, Ruffin MT, Koumpouras CC, Schloss PD. 2018. Diagnostic potential and interactive dynamics of the colorectal cancer virome. mBio 9:6e02248-18
    [Google Scholar]
  51. He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW et al. 2019. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68:2289–300
    [Google Scholar]
  52. Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. 2019. The microbiome, cancer, and cancer therapy. Nat. Med. 25:3377–88
    [Google Scholar]
  53. Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H et al. 2017. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol. 4:e000145
    [Google Scholar]
  54. Hinman SS, Wang Y, Allbritton NL 2019. Photopatterned membranes and chemical gradients enable scalable phenotypic organization of primary human colon epithelial models. Anal. Chem. 91:2315240–47
    [Google Scholar]
  55. Iftekhar A, Berger H, Bouznad N, Heuberger J, Boccellato F et al. 2021. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat. Commun. 12:1003
    [Google Scholar]
  56. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N et al. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:6161967–70
    [Google Scholar]
  57. Jain U, Heul AMV, Xiong S, Gregory MH, Demers EG et al. 2021. Debaryomyces is enriched in Crohn's disease intestinal tissue and impairs healing in mice. Science 371:65341154–59
    [Google Scholar]
  58. Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW et al. 2019. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3:7520–31
    [Google Scholar]
  59. Jia W, Xie G, Jia W 2018. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Rev. Gastroenterol. Hepatol 15:2111–28
    [Google Scholar]
  60. Kim HJ, Huh D, Hamilton G, Ingber DE 2012. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:122165–74
    [Google Scholar]
  61. Kim HJ, Li H, Collins JJ, Ingber DE 2016. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. PNAS 113:1E7–15
    [Google Scholar]
  62. Kim OY, Park HT, Dinh NTH, Choi SJ, Lee J et al. 2017. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 8:626
    [Google Scholar]
  63. Kim R, Attayek PJ, Wang Y, Furtado KL, Tamayo R et al. 2019. An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication 12:015006
    [Google Scholar]
  64. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:2207–15
    [Google Scholar]
  65. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F et al. 2012. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:2292–98
    [Google Scholar]
  66. Kumar R, Herold JL, Schady D, Davis J, Kopetz S et al. 2017. Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLOS Pathog. 13:7e1006440
    [Google Scholar]
  67. Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA et al. 2019. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574:7779532–37
    [Google Scholar]
  68. Li Z-R, Li J, Cai W, Lai JYH, McKinnie SMK et al. 2019. Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nat. Chem. 11:10880–89
    [Google Scholar]
  69. Liu Q-Q, Li C-M, Fu L-N, Wang H-L, Tan J et al. 2020. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes 12:11788900
    [Google Scholar]
  70. Long X, Wong CC, Tong L, Chu ESH, Ho Szeto C et al. 2019. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nature Microbiol 4:122319–30
    [Google Scholar]
  71. Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K et al. 2020. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369:65101481–89
    [Google Scholar]
  72. Massimino L, Lovisa S, Antonio Lamparelli L, Danese S, Ungaro F 2021. Gut eukaryotic virome in colorectal carcinogenesis: Is that a trigger?. Comput. Struct. Biotechnol. J. 19:16–28
    [Google Scholar]
  73. McCauley HA, Wells JM. 2017. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144:6958–62
    [Google Scholar]
  74. McQuade JL, Daniel CR, Helmink BA, Wargo JA. 2019. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20:2e77–91
    [Google Scholar]
  75. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y et al. 2016. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65:121973–80
    [Google Scholar]
  76. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M et al. 2015. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1:5653–61
    [Google Scholar]
  77. Mu W, Jia Y, Chen X, Li H, Wang Z, Cheng B 2020. Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front. Cell. Infect. Microbiol. 10:584798
    [Google Scholar]
  78. Múnera JO, Sundaram N, Rankin SA, Hill D, Watson C et al. 2017. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 21:151–64.e6
    [Google Scholar]
  79. Nakatsu G, Li X, Zhou H, Sheng J, Wong SH et al. 2015. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6:8727
    [Google Scholar]
  80. Nakatsu G, Zhou H, Wu WKK, Wong SH, Coker OO et al. 2018. Alterations in enteric virome are associated with colorectal cancer and survival outcomes. Gastroenterology 155:2529–41.e5
    [Google Scholar]
  81. Naumovska E, Aalderink G, Wong Valencia C, Kosim K, Nicolas A et al. 2020. Direct on-chip differentiation of intestinal tubules from induced pluripotent stem cells. Int. J. Mol. Sci. 21:144964
    [Google Scholar]
  82. Nguyen LH, Ma W, Wang DD, Cao Y, Mallick H et al. 2020. Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology 158:51313–25
    [Google Scholar]
  83. Nikolaev M, Mitrofanova O, Broguiere N, Geraldo S, Dutta D et al. 2020. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585:7826574–78
    [Google Scholar]
  84. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY et al. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:3447–60
    [Google Scholar]
  85. Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E et al. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:5788848–51
    [Google Scholar]
  86. Park IJ, Lee J-H, Kye B-H, Oh H-K, Cho YB et al. 2020. Effects of probiotics on the symptoms and surgical outcomes after anterior resection of colon cancer (POSTCARE): a randomized, double-blind, placebo-controlled trial. J. Clin. Med. 9:72181
    [Google Scholar]
  87. Patterson L, Allen J, Posey I, Shaw JJP, Costa-Pinheiro P et al. 2020. Glucosylceramide production maintains colon integrity in response to Bacteroides fragilis toxin-induced colon epithelial cell signaling. FASEB J. 34:1215922–45
    [Google Scholar]
  88. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM et al. 2020. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli. Nature 580:7802269–73
    [Google Scholar]
  89. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S et al. 2020. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579:7800567–74
    [Google Scholar]
  90. Prindiville TP, Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva J. 2000. Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg. Infect. Dis. 6:2171–74
    [Google Scholar]
  91. Puschhof J, Pleguezuelos-Manzano C, Clevers H 2021. Organoids and organs-on-chips: insights into human gut-microbe interactions. Cell Host Microbe 29:6867–78
    [Google Scholar]
  92. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC et al. 2010. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:7304334–38
    [Google Scholar]
  93. Richard ML, Liguori G, Lamas B, Brandi G, da Costa G et al. 2018. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes 9:2131–42
    [Google Scholar]
  94. Richard ML, Sokol H. 2019. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16:6331–45
    [Google Scholar]
  95. Routy B, Chatelier EL, Derosa L, Duong CPM, Alou MT et al. 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:637191–97
    [Google Scholar]
  96. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:2195–206
    [Google Scholar]
  97. Sack RB, Albert MJ, Alam K, Neogi PK, Akbar MS. 1994. Isolation of enterotoxigenic Bacteroides fragilis from Bangladeshi children with diarrhea: a controlled study. J. Clin. Microbiol. 32:4960–63
    [Google Scholar]
  98. Sasaki N, Miyamoto K, Maslowski KM, Ohno H, Kanai T, Sato T 2020. Development of a scalable coculture system for gut anaerobes and human colon epithelium. Gastroenterology 159:1388–90.e5
    [Google Scholar]
  99. Sato T, Stange DE, Ferrante M, Vries RGJ, van Es JH et al. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:51762–72
    [Google Scholar]
  100. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:7244262–65
    [Google Scholar]
  101. Sears CL, Geis AL, Housseau F. 2014. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J. Clin. Investig. 124:104166–72
    [Google Scholar]
  102. Sears CL, Islam S, Saha A, Arjumand M, Alam NH et al. 2008. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrhea. Clin. Infect. Dis. 47:6797–803
    [Google Scholar]
  103. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. 2021. The microbiome and human cancer. Science 371:6536eabc4552
    [Google Scholar]
  104. Serna G, Ruiz-Pace F, Hernando J, Alonso L, Fasani R et al. 2020. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann. Oncol. 31:101366–75
    [Google Scholar]
  105. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM et al. 2019. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26:4527–41.e5
    [Google Scholar]
  106. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:7332105–9
    [Google Scholar]
  107. Steinway SN, Saleh J, Koo B-K, Delacour D, Kim D-H 2020. Human microphysiological models of intestinal tissue and gut microbiome. Front. Bioeng. Biotechnol. 8:725
    [Google Scholar]
  108. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I et al. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71:3209–49
    [Google Scholar]
  109. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W et al. 2019. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565:7741600–5
    [Google Scholar]
  110. Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE et al. 2017. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10:2421–33
    [Google Scholar]
  111. Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F et al. 2019. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25:4667–78
    [Google Scholar]
  112. Turkington CJR, Varadan AC, Grenier SF, Grasis JA. 2021. The viral Janus: viruses as aetiological agents and treatment options in colorectal cancer. Front. Cell. Infect. Microbiol. 10:601573
    [Google Scholar]
  113. Vaga S, Lee S, Ji B, Andreasson A, Talley NJ et al. 2020. Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Sci. Rep. 10:14977
    [Google Scholar]
  114. Veglia F, Perego M, Gabrilovich D. 2018. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19:2108–19
    [Google Scholar]
  115. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:62641079–84
    [Google Scholar]
  116. Virgin HW. 2014. The virome in mammalian physiology and disease. Cell 157:1142–50
    [Google Scholar]
  117. Virgin HW, Wherry EJ, Ahmed R 2009. Redefining chronic viral infection. Cell 138:130–50
    [Google Scholar]
  118. Volpe MR, Wilson MR, Brotherton CA, Winter ES, Johnson SE, Balskus EP 2019. In vitro characterization of the colibactin-activating peptidase ClbP enables design of a fluorogenic activity probe. ACS Chem. Biol. 14:92095
    [Google Scholar]
  119. White MK, Pagano JS, Khalili K. 2014. Viruses and human cancers: a long road of discovery of molecular paradigms. Clin. Microbiol. Rev. 27:3463–81
    [Google Scholar]
  120. Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD et al. 2019. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363:6428eaar7785
    [Google Scholar]
  121. Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A et al. 2019. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25:4679–89
    [Google Scholar]
  122. Workman MJ, Gleeson JP, Troisi EJ, Estrada HQ, Kerns SJ et al. 2017. Enhanced utilization of induced pluripotent stem cell-derived human intestinal organoids using microengineered chips. Cell. Mol. Gastroenterol. Hepatol. 5:4669–77.e2
    [Google Scholar]
  123. Wu N, Yang X, Zhang R, Li J, Xiao X et al. 2013. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 66:2462–70
    [Google Scholar]
  124. Wu S, Morin PJ, Maouyo D, Sears CL 2003. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124:2392–400
    [Google Scholar]
  125. Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15:91016–22
    [Google Scholar]
  126. Wu S, Rhee K-J, Zhang M, Franco A, Sears CL. 2007. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and γ-secretase-dependent E-cadherin cleavage. J. Cell Sci. 120:111944–52
    [Google Scholar]
  127. Xue M, Kim CS, Healy AR, Wernke KM, Wang Z et al. 2019. Structure elucidation of colibactin and its DNA cross-links. Science 365:6457eaax2685
    [Google Scholar]
  128. Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T et al. 2019. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25:6968–76
    [Google Scholar]
  129. Yan Y, Drew DA, Markowitz A, Lloyd-Price J, Abu-Ali G et al. 2020. Structure of the mucosal and stool microbiome in Lynch syndrome. Cell Host Microbe 27:4585–600.e4
    [Google Scholar]
  130. Yang Y, Weng W, Peng J, Hong L, Yang L et al. 2017. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor−κB, and up-regulating expression of microRNA-21. Gastroenterology 152:4851–66.e24
    [Google Scholar]
  131. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:745697–101
    [Google Scholar]
  132. Young C, Wood HM, Fuentes Balaguer A, Bottomley D, Gallop N et al. 2021a. Microbiome analysis of more than 2,000 NHS Bowel Cancer Screening Programme samples shows the potential to improve screening accuracy. Clin. Cancer Res. 27:2246–54
    [Google Scholar]
  133. Young C, Wood HM, Seshadri RA, Van Nang P, Vaccaro C et al. 2021b. The colorectal cancer-associated faecal microbiome of developing countries resembles that of developed countries. Genome Med. 13:27
    [Google Scholar]
  134. Yu C, Zhou B, Xia X, Chen S, Deng Y et al. 2019. Prevotella copri is associated with carboplatin-induced gut toxicity. Cell Death Dis. 10:10714
    [Google Scholar]
  135. Yu J, Feng Q, Wong SH, Zhang D, Liang QY et al. 2017. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66:70–78
    [Google Scholar]
  136. Yu T, Guo F, Yu Y, Sun T, Ma Det al 2017. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170:354863.e16
    [Google Scholar]
  137. Zaharuddin L, Mokhtar NM, Muhammad Nawawi KN, Raja Ali RA 2019. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol 19:1131
    [Google Scholar]
  138. Zhu Y, Shi T, Lu X, Xu Z, Qu J et al. 2021. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J. 40:e105320
    [Google Scholar]
  139. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. 2018. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359:63821366–70
    [Google Scholar]
  140. zur Hausen H 2012. Red meat consumption and cancer: reasons to suspect involvement of bovine infectious factors in colorectal cancer. Int. J. Cancer 130:112475–83
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-070120-095211
Loading
/content/journals/10.1146/annurev-cancerbio-070120-095211
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error