1932

Abstract

Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin-modifying and -remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at the histone H3 tail, studies have revealed how these so-called oncohistones dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an oncohistone-like protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. Here we review recent progress in understanding the biochemical, molecular, and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-070120-102521
2022-04-11
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/6/1/annurev-cancerbio-070120-102521.html?itemId=/content/journals/10.1146/annurev-cancerbio-070120-102521&mimeType=html&fmt=ahah

Literature Cited

  1. Abe S, Nagatomo H, Sasaki H, Ishiuchi T. 2020. A histone H3.3K36M mutation in mice causes an imbalance of histone modifications and defects in chondrocyte differentiation. Epigenetics 16:101123–34
    [Google Scholar]
  2. Anastas JN, Zee BM, Kalin JH, Kim M, Guo R et al. 2019. Re-programing chromatin with a bifunctional LSD1/HDAC inhibitor induces therapeutic differentiation in DIPG. Cancer Cell 36:5528–44.e10
    [Google Scholar]
  3. Bagert JD, Mitchener MM, Patriotis AL, Dul BE, Wojcik F et al. 2021. Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat. Chem. Biol. 17:4403–11
    [Google Scholar]
  4. Balakrishnan I, Danis E, Pierce A, Madhavan K, Wang D et al. 2020. Senescence induced by BMI1 inhibition is a therapeutic vulnerability in H3K27M-mutant DIPG. Cell Rep 33:3108286
    [Google Scholar]
  5. Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L et al. 2015. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520:7546243–47
    [Google Scholar]
  6. Bayliss J, Mukherjee P, Lu C, Jain SU, Chung C et al. 2016. Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci. Transl. Med. 8:366366ra161
    [Google Scholar]
  7. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N et al. 2013. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 45:121479–82
    [Google Scholar]
  8. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DTW et al. 2013. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:5660–72
    [Google Scholar]
  9. Bennett RL, Bele A, Small EC, Will CM, Nabet B et al. 2019. A mutation in histone H2B represents a new class of oncogenic driver. Cancer Discov 9:101438–51
    [Google Scholar]
  10. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A et al. 2013. Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3:5512–19
    [Google Scholar]
  11. Bressan RB, Southgate B, Ferguson KM, Blin C, Grant V et al. 2021. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell 28:5877–93.e9
    [Google Scholar]
  12. Brown ZZ, Müller MM, Jain SU, Allis CD, Lewis PW, Muir TW 2014. Strategy for “detoxification” of a cancer-derived histone mutant based on mapping its interaction with the methyltransferase PRC2. J. Am. Chem. Soc. 136:3913498–501
    [Google Scholar]
  13. Brumbaugh J, Kim IS, Ji F, Huebner AJ, Di Stefano B et al. 2019. Inducible histone K-to-M mutations are dynamic tools to probe the physiological role of site-specific histone methylation in vitro and in vivo. Nat. Cell Biol. 21:111449–61
    [Google Scholar]
  14. Buczkowicz P, Hawkins C. 2015. Pathology, molecular genetics, and epigenetics of diffuse intrinsic pontine glioma. Front. Oncol. 5:147
    [Google Scholar]
  15. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L et al. 2014. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat. Genet. 46:5451–56
    [Google Scholar]
  16. Carvalho S, Vítor AC, Sridhara SC, Martins FB, Raposo AC et al. 2014. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. eLife 3:e02482
    [Google Scholar]
  17. Castel D, Kergrohen T, Tauziède-Espariat A, Mackay A, Ghermaoui S et al. 2020. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3-K27M mutation. Acta Neuropathol 139:61109–13
    [Google Scholar]
  18. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N et al. 2015. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:6815–27
    [Google Scholar]
  19. Castel D, Philippe C, Kergrohen T, Sill M, Merlevede J et al. 2018. Transcriptomic and epigenetic profiling of “diffuse midline gliomas, H3 K27M-mutant” discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location. Acta Neuropathol. Commun. 6:117
    [Google Scholar]
  20. Chan K-M, Fang D, Gan H, Hashizume R, Yu C et al. 2013. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:9985–90
    [Google Scholar]
  21. Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V et al. 2020. Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 183:61617–33.e22
    [Google Scholar]
  22. Chew G-L, Bleakley M, Bradley RK, Malik HS, Henikoff S et al. 2021. Short H2A histone variants are expressed in cancer. Nat. Commun. 12:490
    [Google Scholar]
  23. Chung C, Sweha SR, Pratt D, Tamrazi B, Panwalkar P et al. 2020. Integrated metabolic and epigenomic reprograming by H3K27M mutations in diffuse intrinsic pontine gliomas. Cancer Cell 38:3334–49.e9
    [Google Scholar]
  24. Cordero FJ, Huang Z, Grenier C, He X, Hu G et al. 2017. Histone H3.3K27M represses p16 to accelerate gliomagenesis in a murine model of DIPG. Mol. Cancer Res. 15:91243–54
    [Google Scholar]
  25. Dahl NA, Danis E, Balakrishnan I, Wang D, Pierce A et al. 2020. Super elongation complex as a targetable dependency in diffuse midline glioma. Cell Rep 31:1107485
    [Google Scholar]
  26. Diehl KL, Ge EJ, Weinberg DN, Jani KS, Allis CD, Muir TW 2019. PRC2 engages a bivalent H3K27M-H3K27me3 dinucleosome inhibitor. PNAS 116:4422152–57
    [Google Scholar]
  27. Ehteda A, Simon S, Franshaw L, Giorgi FM, Liu J et al. 2021. Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Rep 35:2108994
    [Google Scholar]
  28. Fang D, Gan H, Cheng L, Lee J-H, Zhou H et al. 2018. H3.3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers. eLife 7:e36696
    [Google Scholar]
  29. Fang D, Gan H, Lee J-H, Han J, Wang Z et al. 2016. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352:62911344–48
    [Google Scholar]
  30. Fang J, Huang Y, Mao G, Yang S, Rennert G et al. 2018. Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3–MutSα interaction. PNAS 115:389598–603
    [Google Scholar]
  31. Fellenberg J, Sähr H, Mancarella D, Plass C, Lindroth AM et al. 2019. Knock-down of oncohistone H3F3A-G34W counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells. Cancer Lett 448:61–69
    [Google Scholar]
  32. Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE et al. 2018. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:6386331–35
    [Google Scholar]
  33. Finogenova K, Bonnet J, Poepsel S, Schäfer IB, Finkl K et al. 2020. Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 9:e61964
    [Google Scholar]
  34. Fortin J, Tian R, Zarrabi I, Hill G, Williams E et al. 2020. Mutant ACVR1 arrests glial cell differentiation to drive tumorigenesis in pediatric gliomas. Cancer Cell 37:3308–23.e12
    [Google Scholar]
  35. Funato K, Major T, Lewis PW, Allis CD, Tabar V 2014. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346:62161529–33
    [Google Scholar]
  36. Funato K, Smith RC, Saito Y, Tabar V. 2021. Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. Cell Stem Cell 28:5894–905.e7
    [Google Scholar]
  37. Funato K, Tabar V. 2018. Histone mutations in cancer. Annu. Rev. Cancer Biol. 2:337–51
    [Google Scholar]
  38. Grasso CS, Tang Y, Truffaux N, Berlow NE, Liu L et al. 2015. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med. 21:6555–59
    [Google Scholar]
  39. Haag D, Mack N, Benites Goncalves da Silva P, Statz B, Clark J et al. 2021. H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell 39:3407–22.e13
    [Google Scholar]
  40. Harutyunyan AS, Chen H, Lu T, Horth C, Nikbakht H et al. 2020. H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep 33:7108390
    [Google Scholar]
  41. Harutyunyan AS, Krug B, Chen H, Papillon-Cavanagh S, Zeinieh M et al. 2019. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat. Commun. 10:1262
    [Google Scholar]
  42. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H et al. 2014. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med. 20:121394–96
    [Google Scholar]
  43. Herz H-M, Morgan M, Gao X, Jackson J, Rickels R et al. 2014. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345:62001065–70
    [Google Scholar]
  44. Hoeman CM, Cordero FJ, Hu G, Misuraca K, Romero MM et al. 2019. ACVR1 R206H cooperates with H3.1K27M in promoting diffuse intrinsic pontine glioma pathogenesis. Nat. Commun. 10:1023
    [Google Scholar]
  45. Huang TY-T, Piunti A, Qi J, Morgan M, Bartom E et al. 2020. Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells. Acta Neuropathol. Commun. 8:219
    [Google Scholar]
  46. Hübner J-M, Müller T, Papageorgiou DN, Mauermann M, Krijgsveld J et al. 2019. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro-Oncology 21:7878–89
    [Google Scholar]
  47. Jain K, Strahl BD. 2021. Oncohistones: corruption at the core.. Nat. Chem. Biol. 17:4370–71
    [Google Scholar]
  48. Jain SU, Do TJ, Lund PJ, Rashoff AQ, Diehl KL et al. 2019. PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism. Nat. Commun. 10:2146
    [Google Scholar]
  49. Jain SU, Khazaei S, Marchione DM, Lundgren SM, Wang X et al. 2020a. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. PNAS 117:4427354–64
    [Google Scholar]
  50. Jain SU, Rashoff AQ, Krabbenhoft SD, Hoelper D, Do TJ et al. 2020b. H3 K27M and EZHIP impede H3K27-methylation spreading by inhibiting allosterically stimulated PRC2. Mol. Cell 80:4726–35.e7
    [Google Scholar]
  51. Jani KS, Jain SU, Ge EJ, Diehl KL, Lundgren SM et al. 2019. Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase. PNAS 116:178295–300
    [Google Scholar]
  52. Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293:55321074–80
    [Google Scholar]
  53. Jiao F, Li Z, He C, Xu W, Yang G et al. 2020. RACK7 recognizes H3.3G34R mutation to suppress expression of MHC class II complex components and their delivery pathway in pediatric glioblastoma. Sci. Adv. 6:29eaba2113
    [Google Scholar]
  54. Justin N, Zhang Y, Tarricone C, Martin SR, Chen S et al. 2016. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat. Commun. 7:11316
    [Google Scholar]
  55. Kang TZE, Zhu L, Yang D, Ding D, Zhu X et al. 2021. The elevated transcription of ADAM19 by the oncohistone H2BE76K contributes to oncogenic properties in breast cancer. J. Biol. Chem. 296:100374
    [Google Scholar]
  56. Katagi H, Louis N, Unruh D, Sasaki T, He X et al. 2019. Radiosensitization by histone H3 demethylase inhibition in diffuse intrinsic pontine glioma. Clin. Cancer Res. 25:185572–83
    [Google Scholar]
  57. Kernohan KD, Grynspan D, Ramphal R, Bareke E, Wang YC et al. 2017. H3.1 K36M mutation in a congenital-onset soft tissue neoplasm. Pediatr. Blood Cancer. 64:12e26633
    [Google Scholar]
  58. Khazaei S, De Jay N, Deshmukh S, Hendrikse LD, Jawhar W et al. 2020. H3.3 G34W promotes growth and impedes differentiation of osteoblast-like mesenchymal progenitors in giant cell tumor of bone. Cancer Discov 10:121968–87
    [Google Scholar]
  59. Koelsche C, Schrimpf D, Tharun L, Roth E, Sturm D et al. 2017. Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clin. Sarcoma Res. 7:9
    [Google Scholar]
  60. Krug B, De Jay N, Harutyunyan AS, Deshmukh S, Marchione DM et al. 2019. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 35:5782–97.e8
    [Google Scholar]
  61. Kumar SS, Sengupta S, Lee K, Hura N, Fuller C et al. 2017. BMI-1 is a potential therapeutic target in diffuse intrinsic pontine glioma. Oncotarget 8:3862962–75
    [Google Scholar]
  62. Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M et al. 2011. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44:4609–20
    [Google Scholar]
  63. Larson JD, Kasper LH, Paugh BS, Jin H, Wu G et al. 2019. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression. Cancer Cell 35:1140–55.e7
    [Google Scholar]
  64. Lee C-H, Yu J-R, Granat J, Saldaña-Meyer R, Andrade J et al. 2019. Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma. Genes Dev 33:19–201428–40
    [Google Scholar]
  65. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN et al. 2014. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46:111227–32
    [Google Scholar]
  66. Leicher R, Ge EJ, Lin X, Reynolds MJ, Xie W et al. 2020. Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. PNAS 117:4830465–75
    [Google Scholar]
  67. Lewis PW, Müller MM, Koletsky MS, Cordero F, Lin S et al. 2013. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:6134857–61
    [Google Scholar]
  68. Li F, Mao G, Tong D, Huang J, Gu L et al. 2013. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153:3590–600
    [Google Scholar]
  69. Li H, Kaminski MS, Li Y, Yildiz M, Ouillette P et al. 2014. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123:101487–98
    [Google Scholar]
  70. Lim J, Park JH, Baude A, Yoo Y, Lee YK et al. 2017. The histone variant H3.3 G34W substitution in giant cell tumor of the bone link chromatin and RNA processing. Sci. Rep. 7:13459
    [Google Scholar]
  71. Lin G, Zhou Y, Li M, Fang Y 2018. Histone 3 lysine 36 to methionine mutations stably interact with and sequester SDG8 in Arabidopsis thaliana. Sci. China Life Sci. 61:2225–34
    [Google Scholar]
  72. Lowe BR, Yadav RK, Henry RA, Schreiner P, Matsuda A et al. 2021. Surprising phenotypic diversity of cancer-associated mutations of Gly 34 in the histone H3 tail. eLife 10:e65369
    [Google Scholar]
  73. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC et al. 2016. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:6287844–49
    [Google Scholar]
  74. Lutsik P, Baude A, Mancarella D, Öz S, Kühn A et al. 2020. Globally altered epigenetic landscape and delayed osteogenic differentiation in H3.3-G34W-mutant giant cell tumor of bone. Nat. Commun. 11:5414
    [Google Scholar]
  75. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S et al. 2014. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:7489445–50
    [Google Scholar]
  76. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Højfeldt JW et al. 2017. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23:4483–92
    [Google Scholar]
  77. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M et al. 2018. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat. Med. 24:5572–79
    [Google Scholar]
  78. Nacev BA, Feng L, Bagert JD, Lemiesz AE, Gao J et al. 2019. The expanding landscape of “oncohistone” mutations in human cancers. Nature 567:7749473–78
    [Google Scholar]
  79. Nagaraja S, Quezada MA, Gillespie SM, Arzt M, Lennon JJ et al. 2019. Histone variant and cell context determine H3K27M reprogramming of the enhancer landscape and oncogenic state. Mol. Cell 76:6965–80.e12
    [Google Scholar]
  80. Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F et al. 2017. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell 31:5635–52.e6
    [Google Scholar]
  81. Okosun J, Bödör C, Wang J, Araf S, Yang C-Y et al. 2014. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46:2176–81
    [Google Scholar]
  82. Pajovic S, Siddaway R, Bridge T, Sheth J, Rakopoulos P et al. 2020. Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat. Commun. 11:6216
    [Google Scholar]
  83. Pajtler KW, Wen J, Sill M, Lin T, Orisme W et al. 2018. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol 136:2211–26
    [Google Scholar]
  84. Pajtler KW, Witt H, Sill M, Jones DTW, Hovestadt V et al. 2015. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:5728–43
    [Google Scholar]
  85. Papillon-Cavanagh S, Lu C, Gayden T, Mikael LG, Bechet D et al. 2017. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat. Genet. 49:2180–85
    [Google Scholar]
  86. Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J et al. 2017. H3.3K27M cooperates with Trp53 loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. Cancer Cell 32:5684–700.e9
    [Google Scholar]
  87. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM et al. 2017. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23:4493–500
    [Google Scholar]
  88. Piunti A, Smith ER, Morgan MAJ, Ugarenko M, Khaltyan N et al. 2019. CATACOMB: an endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci. Adv. 5:7eaax2887
    [Google Scholar]
  89. Ragazzini R, Pérez-Palacios R, Baymaz IH, Diop S, Ancelin K et al. 2019. EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nat. Commun. 10:3858
    [Google Scholar]
  90. Rajagopalan KN, Chen X, Weinberg DN, Chen H, Majewski J et al. 2021. Depletion of H3K36me2 recapitulates epigenomic and phenotypic changes induced by the H3.3K36M oncohistone mutation. PNAS 118:9e2021795118
    [Google Scholar]
  91. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL et al. 2017. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171:2481–94.e15
    [Google Scholar]
  92. Sanders D, Qian S, Fieweger R, Lu L, Dowell JA et al. 2017. Histone lysine-to-methionine mutations reduce histone methylation and cause developmental pleiotropy. Plant Physiol 173:42243–52
    [Google Scholar]
  93. Sangatsuda Y, Miura F, Araki H, Mizoguchi M, Hata N et al. 2020. Base-resolution methylomes of gliomas bearing histone H3.3 mutations reveal a G34 mutant-specific signature shared with bone tumors. Sci. Rep. 10:16162
    [Google Scholar]
  94. Sankaran SM, Gozani O. 2017. Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells. Epigenetics 12:11917–22
    [Google Scholar]
  95. Sarthy JF, Meers MP, Janssens DH, Henikoff JG, Feldman H et al. 2020. Histone deposition pathways determine the chromatin landscapes of H3.1 and H3.3 K27M oncohistones. eLife 9:e61090
    [Google Scholar]
  96. Schwartzentruber J, Korshunov A, Liu X-Y, Jones DTW, Pfaff E et al. 2012. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:7384226–31
    [Google Scholar]
  97. Shi L, Shi J, Shi X, Li W, Wen H 2018. Histone H3.3 G34 mutations alter histone H3K36 and H3K27 methylation in cis. J. Mol. Biol. 430:111562–65
    [Google Scholar]
  98. Silveira AB, Kasper LH, Fan Y, Jin H, Wu G et al. 2019. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathol 137:4637–55
    [Google Scholar]
  99. Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS et al. 2014. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 24:2241–50
    [Google Scholar]
  100. Snuderl M, Dolgalev I, Heguy A, Walsh MF, Benayed R et al. 2019. Histone H3K36I mutation in a metastatic histiocytic tumor of the skull and response to sarcoma chemotherapy. Cold Spring Harb. Mol. Case Stud. 5:5a004606
    [Google Scholar]
  101. Stafford JM, Lee C-H, Voigt P, Descostes N, Saldaña-Meyer R et al. 2018. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci. Adv. 4:10eaau5935
    [Google Scholar]
  102. Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones DTW et al. 2012. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:4425–37
    [Google Scholar]
  103. Subashi E, Cordero FJ, Halvorson KG, Qi Y, Nouls JC et al. 2016. Tumor location, but not H3.3K27M, significantly influences the blood-brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J. Neurooncol. 126:2243–51
    [Google Scholar]
  104. Tatavosian R, Duc HN, Huynh TN, Fang D, Schmitt B et al. 2018. Live-cell single-molecule dynamics of PcG proteins imposed by the DIPG H3.3K27M mutation. Nat. Commun. 9:2080
    [Google Scholar]
  105. Taylor KR, Mackay A, Truffaux N, Butterfield Y, Morozova O et al. 2014. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat. Genet. 46:5457–61
    [Google Scholar]
  106. Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT et al. 2013. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 23:5558–64
    [Google Scholar]
  107. Voon HPJ, Udugama M, Lin W, Hii L, Law RHP et al. 2018. Inhibition of a K9/K36 demethylase by an H3.3 point mutation found in paediatric glioblastoma. Nat. Commun. 9:3142
    [Google Scholar]
  108. Wagner EJ, Carpenter PB. 2012. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13:2115–26
    [Google Scholar]
  109. Wan YCE, Leung TCS, Ding D, Sun X, Liu J et al. 2020. Cancer-associated histone mutation H2BG53D disrupts DNA–histone octamer interaction and promotes oncogenic phenotypes. Sci. Transduct. Target. Therapy 5:27
    [Google Scholar]
  110. Wang X, Paucek RD, Gooding AR, Brown ZZ, Ge EJ et al. 2017. Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat. Struct. Mol. Biol. 24:121028–38
    [Google Scholar]
  111. Weinberg DN, Papillon-Cavanagh S, Chen H, Yue Y, Chen X et al. 2019. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573:7773281–86
    [Google Scholar]
  112. Wen H, Li Y, Xi Y, Jiang S, Stratton S et al. 2014. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508:7495263–68
    [Google Scholar]
  113. Willcockson MA, Healton SE, Weiss CN, Bartholdy BA, Botbol Y et al. 2021. H1 histones control the epigenetic landscape by local chromatin compaction. Nature 589:7841293–98
    [Google Scholar]
  114. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS et al. 2012. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44:3251–53
    [Google Scholar]
  115. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B et al. 2014. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 46:5444–50
    [Google Scholar]
  116. Yadav RK, Jablonowski CM, Fernandez AG, Lowe BR, Henry RA et al. 2017. Histone H3G34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe. eLife 6:e27406
    [Google Scholar]
  117. Yang S, Zheng X, Lu C, Li G-M, Allis CD, Li H 2016. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes Dev 30:141611–16
    [Google Scholar]
  118. Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B 2011. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286:107983–89
    [Google Scholar]
  119. Yusufova N, Kloetgen A, Teater M, Osunsade A, Camarillo JM et al. 2021. Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature 589:7841299–305
    [Google Scholar]
  120. Zhang Y, Fang D. 2021. The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas. Cell Death Dis 12:4311
    [Google Scholar]
  121. Zhang Y, Shan C-M, Wang J, Bao K, Tong L, Jia S 2017. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation. Sci. Rep. 7:43906
    [Google Scholar]
  122. Zhao S, Bellone S, Lopez S, Thakral D, Schwab C et al. 2016. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. PNAS 113:4312238–43
    [Google Scholar]
  123. Zhuang L, Jang Y, Park Y-K, Lee J-E, Jain S et al. 2018. Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat. Commun. 9:1796
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-070120-102521
Loading
/content/journals/10.1146/annurev-cancerbio-070120-102521
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error