1932

Abstract

Analysis of cancer genomes has shown that a large fraction of chromosomal changes originate from catastrophic events including whole-genome duplication, chromothripsis, breakage-fusion-bridge cycles, and chromoplexy. Through sophisticated computational analysis of cancer genomes and experimental recapitulation of these catastrophic alterations, we have gained significant insights into the origin, mechanism, and evolutionary dynamics of cancer genome complexity. In this review, we summarize this progress and survey the major unresolved questions, with particular emphasis on the relative contributions of chromosome fragmentation and DNA replication errors to complex chromosomal alterations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-070620-094029
2022-04-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/6/1/annurev-cancerbio-070620-094029.html?itemId=/content/journals/10.1146/annurev-cancerbio-070620-094029&mimeType=html&fmt=ahah

Literature Cited

  1. Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ et al. 2015. Clock-like mutational processes in human somatic cells. Nat. Genet. 47:1402–7
    [Google Scholar]
  2. Anand RP, Lovett ST, Haber JE. 2013. Break-induced DNA replication. Cold Spring Harb. Perspect. Biol. 5:a010397
    [Google Scholar]
  3. Anderson ND, de Borja R, Young MD, Fuligni F, Rosic A et al. 2018. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361:6405eaam8419
    [Google Scholar]
  4. Antao NV, Marcet-Ortega M, Cifani P, Kentsis A, Foley EA 2019. A cancer-associated missense mutation in PP2A-Aα increases centrosome clustering during mitosis. iScience 19:74–82
    [Google Scholar]
  5. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ et al. 2000. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–45
    [Google Scholar]
  6. Artandi SE, DePinho RA. 2010. Telomeres and telomerase in cancer. Carcinogenesis 31:9–18
    [Google Scholar]
  7. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A et al. 2013. Punctuated evolution of prostate cancer genomes. Cell 153:666–77
    [Google Scholar]
  8. Bakhoum SF, Landau DA. 2017. Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb. Perspect. Med. 7:6a029611
    [Google Scholar]
  9. Bao L, Zhong X, Yang Y, Yang L 2021. Mutational signatures of complex genomic rearrangements in human cancer. bioRxiv 2021.05.16.444385. https://doi.org/10.1101/2021.05.16.444385
    [Crossref]
  10. Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC et al. 1999. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat. Genet. 22:106–9
    [Google Scholar]
  11. Barrett NR. 1950. Chronic peptic ulcer of the oesophagus and ‘oesophagitis’. Br. J. Surg. 38:175–82
    [Google Scholar]
  12. Beck CR, Carvalho CMB, Akdemir ZC, Sedlazeck FJ, Song X et al. 2019. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell 176:1310–24.e10
    [Google Scholar]
  13. Ben-David U, Amon A 2020. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21:44–62
    [Google Scholar]
  14. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S et al. 2010. The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905
    [Google Scholar]
  15. Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M et al. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5:3657
    [Google Scholar]
  16. Berti M, Cortez D, Lopes M 2020. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21:633–51
    [Google Scholar]
  17. Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W et al. 2018. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50:1189–95
    [Google Scholar]
  18. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S et al. 2010. Signatures of mutation and selection in the cancer genome. Nature 463:893–98
    [Google Scholar]
  19. Bignell GR, Santarius T, Pole JC, Butler AP, Perry J et al. 2007. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res 17:1296–303
    [Google Scholar]
  20. Bignold LP, Coghlan B, Jersmann H. 2009. David Paul Hansemann: chromosomes and the origin of the cancerous features of tumor cells. Cell. Oncol. 31:61
    [Google Scholar]
  21. Bollen Y, Stelloo E, van Leenen P, van den Bos M, Ponsioen B et al. 2021. Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nat. Genet. 53:1187–95
    [Google Scholar]
  22. Boveri T. 1902. Über mehrpolige Mitosen als Mittle zur Analyse des Zellkerns. Verh. Phys.-Med. Ges. Würzburg 35:67–90
    [Google Scholar]
  23. Boveri T. 1914. Zur Frage der Entstehung maligner Tumoren Jena, Ger: Fischer-Verlag
  24. Boveri T. 2008. Concerning the Origin of Malignant Tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121:Suppl. 11–84
    [Google Scholar]
  25. Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ et al. 2019. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574:538–42
    [Google Scholar]
  26. Campbell PJ, Stephens PJ, Pleasance ED, O'Meara S, Li H et al. 2008. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40:722–29
    [Google Scholar]
  27. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED et al. 2010. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–13
    [Google Scholar]
  28. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H et al. 2012. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30:413–21
    [Google Scholar]
  29. Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B et al. 2011. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147:107–19
    [Google Scholar]
  30. Cimini D. 2007. Detection and correction of merotelic kinetochore orientation by Aurora B and its partners. Cell Cycle 6:1558–64
    [Google Scholar]
  31. Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED 2001. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell. Biol. 153:517–27
    [Google Scholar]
  32. Cleal K, Baird DM. 2020. Catastrophic endgames: emerging mechanisms of telomere-driven genomic instability. Trends Genet 36:347–59
    [Google Scholar]
  33. Cleal K, Jones RE, Grimstead JW, Hendrickson EA, Baird DM. 2019. Chromothripsis during telomere crisis is independent of NHEJ, and consistent with a replicative origin. Genome Res 29:737–49
    [Google Scholar]
  34. Comai L. 2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6:836–46
    [Google Scholar]
  35. Contino G, Vaughan TL, Whiteman D, Fitzgerald RC. 2017. The evolving genomic landscape of Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology 153:657–73.e1
    [Google Scholar]
  36. Cook MB, Thrift AP. 2021. Epidemiology of Barrett's esophagus and esophageal adenocarcinoma: implications for screening and surveillance. Gastrointest. Endosc. Clin. N. Am. 31:1–26
    [Google Scholar]
  37. Cortes-Ciriano I, Lee JJ, Xi R, Jain D, Jung YL et al. 2020. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52:331–41
    [Google Scholar]
  38. Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E et al. 2014. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91
    [Google Scholar]
  39. Cowell JK. 1982. Double minutes and homogeneously staining regions: gene amplification in mammalian cells. Annu. Rev. Genet. 16:21–59
    [Google Scholar]
  40. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV et al. 2012. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58
    [Google Scholar]
  41. Daughtry BL, Rosenkrantz JL, Lazar NH, Fei SS, Redmayne N et al. 2019. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res 29:367–82
    [Google Scholar]
  42. Davoli T, de Lange T. 2011. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27:585–610
    [Google Scholar]
  43. Davoli T, Denchi EL, de Lange T. 2010. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141:81–93
    [Google Scholar]
  44. Davoli T, Uno H, Wooten EC, Elledge SJ. 2017. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355:6322eaaf8399
    [Google Scholar]
  45. De Lange T. 2005. Telomere-related genome instability in cancer. Cold Spring. Harb. Symp. Quant. Biol. 70:197–204
    [Google Scholar]
  46. de las Heras JI, Schirmer EC 2014. The nuclear envelope and cancer: a diagnostic perspective and historical overview. Cancer Biology and the Nuclear Envelope: Recent Advances May Elucidate Past Paradoxes EC Schirmer, JI de las Heras 5–26 New York: Springer
    [Google Scholar]
  47. de Pagter MS, van Roosmalen MJ, Baas AF, Renkens I, Duran KJ et al. 2015. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 96:651–56
    [Google Scholar]
  48. De S, Michor F. 2011. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol. 29:1103–8
    [Google Scholar]
  49. Debatisse M, Le Tallec B, Letessier A, Dutrillaux B, Brison O 2012. Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32
    [Google Scholar]
  50. Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Gronroos E et al. 2014. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4:175–85
    [Google Scholar]
  51. Dilley RL, Verma P, Cho NW, Winters HD, Wondisford AR, Greenberg RA. 2016. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 539:54–58
    [Google Scholar]
  52. Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A et al. 2019. Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep 28:1370–84.e5
    [Google Scholar]
  53. Donne R, Saroul-Ainama M, Cordier P, Celton-Morizur S, Desdouets C. 2020. Polyploidy in liver development, homeostasis and disease. Nat. Rev. Gastroenterol. Hepatol. 17:391–405
    [Google Scholar]
  54. Duelli D, Lazebnik Y. 2007. Cell-to-cell fusion as a link between viruses and cancer. Nat. Rev. Cancer 7:968–76
    [Google Scholar]
  55. Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML et al. 2010. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467:707–10
    [Google Scholar]
  56. Durkin SG, Glover TW. 2007. Chromosome fragile sites. Annu. Rev. Genet. 41:169–92
    [Google Scholar]
  57. Fais S, Overholtzer M. 2018. Cell-in-cell phenomena in cancer. Nat. Rev. Cancer 18:758–66
    [Google Scholar]
  58. Fearon ER, Vogelstein B. 1990. A genetic model for colorectal tumorigenesis. Cell 61:759–67
    [Google Scholar]
  59. Fischer AH, Zhao C, Li QK, Gustafson KS, Eltoum IE et al. 2010. The cytologic criteria of malignancy. J. Cell Biochem. 110:795–811
    [Google Scholar]
  60. Fudenberg G, Getz G, Meyerson M, Mirny LA 2011. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat. Biotechnol. 29:1109–13
    [Google Scholar]
  61. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–47
    [Google Scholar]
  62. Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ et al. 1996. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. PNAS 93:7081–84
    [Google Scholar]
  63. Ganem NJ, Godinho SA, Pellman D. 2009. A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–82
    [Google Scholar]
  64. Ganem NJ, Pellman D. 2007. Limiting the proliferation of polyploid cells. Cell 131:437–40
    [Google Scholar]
  65. Garraway LA, Lander ES. 2013. Lessons from the cancer genome. Cell 153:17–37
    [Google Scholar]
  66. Garsed DW, Marshall OJ, Corbin VD, Hsu A, Di Stefano L et al. 2014. The architecture and evolution of cancer neochromosomes. Cancer Cell 26:653–67
    [Google Scholar]
  67. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S et al. 2020. The evolutionary history of 2,658 cancers. Nature 578:122–28
    [Google Scholar]
  68. Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L et al. 2000. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. PNAS 97:5357–62
    [Google Scholar]
  69. Gordon DJ, Resio B, Pellman D 2012. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13:189–203
    [Google Scholar]
  70. Haber JE, Debatisse M. 2006. Gene amplification: yeast takes a turn. Cell 125:1237–40
    [Google Scholar]
  71. Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C et al. 2020. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183:197–210.e32
    [Google Scholar]
  72. Hakim O, Resch W, Yamane A, Klein I, Kieffer-Kwon KR et al. 2012. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484:69–74
    [Google Scholar]
  73. Hastings PJ, Lupski JR, Rosenberg SM, Ira G. 2009. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10:551–64
    [Google Scholar]
  74. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M et al. 2006. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–79
    [Google Scholar]
  75. Holland AJ, Cleveland DW. 2009. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10:478–87
    [Google Scholar]
  76. Holland AJ, Cleveland DW. 2012. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 18:1630–38
    [Google Scholar]
  77. ICGC (Int. Cancer Genome Consort.)/TCGA (Cancer Genome Atlas) PCAWG (Pan-Cancer Analysis Whole Genomes) Consort 2020. Pan-cancer analysis of whole genomes. Nature 578:82–93
    [Google Scholar]
  78. Kato H, Sandberg AA. 1967. Chromosome pulverization in human binucleate cells following colcemid treatment. J. Cell Biol. 34:35–45
    [Google Scholar]
  79. Kinsella M, Patel A, Bafna V 2014. The elusive evidence for chromothripsis. Nucleic Acids Res 42:8231–42
    [Google Scholar]
  80. Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A et al. 2011. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147:95–106
    [Google Scholar]
  81. Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E et al. 2011a. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20:1916–24
    [Google Scholar]
  82. Kloosterman WP, Hoogstraat M, Paling O, Tavakoli-Yaraki M, Renkens I et al. 2011b. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol 12:R103
    [Google Scholar]
  83. Kneissig M, Keuper K, de Pagter MS, van Roosmalen MJ, Martin J et al. 2019. Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. eLife 8:e50292
    [Google Scholar]
  84. Knouse KA, Lopez KE, Bachofner M, Amon A. 2018. Chromosome segregation fidelity in epithelia requires tissue architecture. Cell 175:200–11.e13
    [Google Scholar]
  85. Knouse KA, Wu J, Whittaker CA, Amon A. 2014. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. PNAS 111:13409–14
    [Google Scholar]
  86. Kockler ZW, Osia B, Lee R, Musmaker K, Malkova A. 2021. Repair of DNA breaks by break-induced replication. Annu. Rev. Biochem. 90:165–91
    [Google Scholar]
  87. Krupina K, Goginashvili A, Cleveland DW 2021. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70:91–99
    [Google Scholar]
  88. Laks E, McPherson A, Zahn H, Lai D, Steif A et al. 2019. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. Cell 179:1207–21.e22
    [Google Scholar]
  89. Lee JA, Carvalho CM, Lupski JR. 2007. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131:1235–47
    [Google Scholar]
  90. Lee JJ, Park S, Park H, Kim S, Lee J et al. 2019. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177:1842–57.e21
    [Google Scholar]
  91. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y et al. 2010. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465:473–77
    [Google Scholar]
  92. Leibowitz ML, Papathanasiou S, Doerfler PA, Blaine LJ, Sun L et al. 2021. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat. Genet. 53:895–905
    [Google Scholar]
  93. Leibowitz ML, Zhang CZ, Pellman D. 2015. Chromothripsis: a new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49:183–211
    [Google Scholar]
  94. Lengauer C, Kinzler KW, Vogelstein B. 1997. Genetic instability in colorectal cancers. Nature 386:623–27
    [Google Scholar]
  95. Lens SMA, Medema RH. 2019. Cytokinesis defects and cancer. Nat. Rev. Cancer 19:32–45
    [Google Scholar]
  96. Li S, Wang H, Jehi S, Li J, Liu S et al. 2021. PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J 40:e104509
    [Google Scholar]
  97. Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE et al. 2020. Patterns of somatic structural variation in human cancer genomes. Nature 578:112–21
    [Google Scholar]
  98. Li Y, Schwab C, Ryan SL, Papaemmanuil E, Robinson HM et al. 2014. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102
    [Google Scholar]
  99. Lien S, Koop BF, Sandve SR, Miller JR, Kent MP et al. 2016. The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–5
    [Google Scholar]
  100. Liu P, Carvalho CM, Hastings PJ, Lupski JR. 2012. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 22:211–20
    [Google Scholar]
  101. Liu P, Erez A, Nagamani SC, Dhar SU, Kolodziejska KE et al. 2011. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903
    [Google Scholar]
  102. Liu P, Yuan B, Carvalho CMB, Wuster A, Walter K et al. 2017. An organismal CNV mutator phenotype restricted to early human development. Cell 168:830–42.e7
    [Google Scholar]
  103. Lopez S, Lim EL, Horswell S, Haase K, Huebner A et al. 2020. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52:283–93
    [Google Scholar]
  104. Ly P, Brunner SF, Shoshani O, Kim DH, Lan W et al. 2019. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51:705–15
    [Google Scholar]
  105. Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H et al. 2017. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19:68–75
    [Google Scholar]
  106. Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T 2015. Chromothripsis and kataegis induced by telomere crisis. Cell 163:1641–54
    [Google Scholar]
  107. Mardin BR, Drainas AP, Waszak SM, Weischenfeldt J, Isokane M et al. 2015. A cell-based model system links chromothripsis with hyperploidy. Mol. Syst. Biol. 11:828
    [Google Scholar]
  108. Margolis RL. 2005. Tetraploidy and tumor development. Cancer Cell 8:353–54
    [Google Scholar]
  109. Mayer VW, Aguilera A. 1990. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat. Res. 231:177–86
    [Google Scholar]
  110. Mazzagatti A, Shaikh N, Bakker B, Spierings DCJ, Wardenaar R et al. 2020. DNA replication stress generates distinctive landscapes of DNA copy number alterations and chromosome scale losses. bioRxiv 743658. https://doi.org/10.1101/743658
    [Crossref]
  111. McClintock B. 1939. The behavior in successive nuclear divisions of a chromosome broken at meiosis. PNAS 25:405–16
    [Google Scholar]
  112. McClintock B. 1941. Spontaneous alterations in chromosome size and form in Zea mays. Cold Spring Harb. Symp. Quant. Biol. 9:72–81
    [Google Scholar]
  113. McClintock B. 1951. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol. 16:13–47
    [Google Scholar]
  114. McClintock B. 1984. The significance of responses of the genome to challenge. Science 226:792–801
    [Google Scholar]
  115. Meier B, Cooke SL, Weiss J, Bailly AP, Alexandrov LB et al. 2014. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res 24:1624–36
    [Google Scholar]
  116. Meyerson M, Pellman D. 2011. Cancer genomes evolve by pulverizing single chromosomes. Cell 144:9–10
    [Google Scholar]
  117. Minocherhomji S, Ying S, Bjerregaard VA, Bursomanno S, Aleliunaite A et al. 2015. Replication stress activates DNA repair synthesis in mitosis. Nature 528:286–90
    [Google Scholar]
  118. Minussi DC, Nicholson MD, Ye H, Davis A, Wang K et al. 2021. Breast tumours maintain a reservoir of subclonal diversity during expansion. Nature 592:302–8
    [Google Scholar]
  119. Nones K, Waddell N, Wayte N, Patch AM, Bailey P et al. 2014. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5:5224
    [Google Scholar]
  120. Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih I-M et al. 2002. The role of chromosomal instability in tumor initiation. PNAS 99:16226–31
    [Google Scholar]
  121. Obe G, Beek B. 1975. The human leukocyte test system. VII. Further investigations concerning micronucleus-derived premature chromosome condensation. Humangenetik 30:143–54
    [Google Scholar]
  122. Obe G, Beek B 1982. Premature chromosome condensation in micronuclei. Premature Chromosome Condensation PN Rao, RT Johnson, K Sperling 113–30 New York: Academic
    [Google Scholar]
  123. Olafsson S, McIntyre RE, Coorens T, Butler T, Jung H et al. 2020. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182:672–84.e11
    [Google Scholar]
  124. Orr-Weaver TL. 2015. When bigger is better: the role of polyploidy in organogenesis. Trends Genet 31:307–15
    [Google Scholar]
  125. Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:452–62
    [Google Scholar]
  126. Papathanasiou S, Markoulaki S, Blaine LJ, Leibowitz ML, Zhang CZ et al. 2021. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. Nat. Commun. 12:5855
    [Google Scholar]
  127. Peters Y, Al-Kaabi A, Shaheen NJ, Chak A, Blum A et al. 2019. Barrett oesophagus. Nat. Rev. Dis. Primers 5:35
    [Google Scholar]
  128. Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A et al. 2010. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463:184–90
    [Google Scholar]
  129. Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E et al. 2019. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575:210–16
    [Google Scholar]
  130. Quinton RJ, DiDomizio A, Vittoria MA, Kotynkova K, Ticas CJ et al. 2021. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590:492–97
    [Google Scholar]
  131. Ramsey J, Ramsey TS 2014. Ecological studies of polyploidy in the 100 years following its discovery. Philos. Trans. R. Soc. B. 369:20130352
    [Google Scholar]
  132. Ratnaparkhe M, Wong JKL, Wei PC, Hlevnjak M, Kolb T et al. 2018. Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat. Commun. 9:4760
    [Google Scholar]
  133. Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T et al. 2012. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71
    [Google Scholar]
  134. Reid BJ, Blount PL, Rubin CE, Levine DS, Haggitt RC, Rabinovitch PS. 1992. Flow-cytometric and histological progression to malignancy in Barrett's esophagus: prospective endoscopic surveillance of a cohort. Gastroenterology 102:1212–19
    [Google Scholar]
  135. Reid BJ, Haggitt RC, Rubin CE, Rabinovitch PS 1987. Barrett's esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology 93:1–11
    [Google Scholar]
  136. Reid BJ, Li X, Galipeau PC, Vaughan TL. 2010. Barrett's oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer 10:87–101
    [Google Scholar]
  137. Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O et al. 2020. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578:102–11
    [Google Scholar]
  138. Righolt C, Mai S. 2012. Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis—manifestations of a new chromosome crisis?. Genes. Chromosom. Cancer 51:975–81
    [Google Scholar]
  139. Ross-Innes CS, Becq J, Warren A, Cheetham RK, Northen H et al. 2015. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat. Genet. 47:1038–46
    [Google Scholar]
  140. Sansregret L, Swanton C. 2017. The role of aneuploidy in cancer evolution. Cold Spring Harb. Perspect. Med. 7:a028373
    [Google Scholar]
  141. Santaguida S, Amon A. 2015. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16:473–85
    [Google Scholar]
  142. Scully R, Panday A, Elango R, Willis NA 2019. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20:698–714
    [Google Scholar]
  143. Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N et al. 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519:349–52
    [Google Scholar]
  144. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–43
    [Google Scholar]
  145. Shackney SE, Smith CA, Miller BW, Burholt DR, Murtha K et al. 1989. Model for the genetic evolution of human solid tumors. Cancer Res 49:3344–54
    [Google Scholar]
  146. Shapiro JA. 2021. What can evolutionary biology learn from cancer biology?. Prog. Biophys. Mol. Biol. 165:19–28
    [Google Scholar]
  147. Shih DJH, Nayyar N, Bihun I, Dagogo-Jack I, Gill CM et al. 2020. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat. Genet. 52:371–77
    [Google Scholar]
  148. Shingate P, Ravi V, Prasad A, Tay BH, Garg KM et al. 2020. Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution. Nat. Commun. 11:2322
    [Google Scholar]
  149. Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y et al. 2021. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591:7848137–41
    [Google Scholar]
  150. Sidiropoulos N, Mardin BR, Rodríguez-González FG, Garg S, Stütz AM et al. 2021. Somatic structural variant formation is guided by and influences genome architecture. bioRxiv 2021.05.18.444682. https://doi.org/10.1101/2021.05.18.444682
    [Crossref]
  151. Siegel JJ, Amon A. 2012. New insights into the troubles of aneuploidy. Annu. Rev. Cell Dev. Biol. 28:189–214
    [Google Scholar]
  152. Stachler MD, Bao C, Tourdot RW, Brunette GJ, Stewart C et al. 2021. Origins of cancer genome complexity revealed by haplotype-resolved genomic analysis of evolution of Barrett's esophagus to esophageal adenocarcinoma. bioRxiv 2021.03.26.437288. https://doi.org/10.1101/2021.03.26.437288
    [Crossref]
  153. Stachler MD, Taylor-Weiner A, Peng S, McKenna A, Agoston AT et al. 2015. Paired exome analysis of Barrett's esophagus and adenocarcinoma. Nat. Genet. 47:1047–55
    [Google Scholar]
  154. Stark GR, Debatisse M, Giulotto E, Wahl GM 1989. Recent progress in understanding mechanisms of mammalian DNA amplification. Cell 57:901–8
    [Google Scholar]
  155. Stark GR, Wahl GM. 1984. Gene amplification. Annu. Rev. Biochem. 53:447–91
    [Google Scholar]
  156. Steele CD, Abbasi A, Islam SMA, Khandekar A, Haase K et al. 2021. Signatures of copy number alterations in human cancer. bioRxiv 2021.04.30.441940. https://doi.org/10.1101/2021.04.30.441940
    [Crossref]
  157. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR et al. 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40
    [Google Scholar]
  158. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED et al. 2009. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–10
    [Google Scholar]
  159. Storchova Z, Breneman A, Cande J, Dunn J, Burbank K et al. 2006. Genome-wide genetic analysis of polyploidy in yeast. Nature 443:541–47
    [Google Scholar]
  160. Storchova Z, Pellman D. 2004. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5:45–54
    [Google Scholar]
  161. Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, D'Addabbo P et al. 2010. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res 20:1198–206
    [Google Scholar]
  162. Stull GW, Qu XJ, Parins-Fukuchi C, Yang YY, Yang JB et al. 2021. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7:1015–25
    [Google Scholar]
  163. Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T et al. 2015. Catastrophic chromosomal restructuring during genome elimination in plants. eLife 4:e06516
    [Google Scholar]
  164. Taylor AM, Shih J, Ha G, Gao GF, Zhang X et al. 2018. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33:676–89.e3
    [Google Scholar]
  165. Uetake Y, Sluder G. 2010. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr. Biol. 20:1666–71
    [Google Scholar]
  166. Umbreit NT, Zhang CZ, Lynch LD, Blaine LJ, Cheng AM et al. 2020. Mechanisms generating cancer genome complexity from a single cell division error. Science 368:6488eaba0712
    [Google Scholar]
  167. Van de Peer Y, Mizrachi E, Marchal K 2017. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18:411–24
    [Google Scholar]
  168. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P et al. 2009. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15:577–83
    [Google Scholar]
  169. Vazquez-Diez C, Yamagata K, Trivedi S, Haverfield J, FitzHarris G 2016. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. PNAS 113:626–31
    [Google Scholar]
  170. Vendramin R, Litchfield K, Swanton C. 2021. Cancer evolution: Darwin and beyond. EMBO J 40:e108389
    [Google Scholar]
  171. Verhaak RGW, Bafna V, Mischel PS. 2019. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 19:283–88
    [Google Scholar]
  172. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. 2013. Cancer genome landscapes. Science 339:1546–58
    [Google Scholar]
  173. Watkins TBK, Lim EL, Petkovic M, Elizalde S, Birkbak NJ et al. 2020. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587:126–32
    [Google Scholar]
  174. Weinberg RA. 2014. Coming full circle—from endless complexity to simplicity and back again. Cell 157:267–71
    [Google Scholar]
  175. Willis NA, Frock RL, Menghi F, Duffey EE, Panday A et al. 2017. Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature 551:590–95
    [Google Scholar]
  176. Wunderlich V. 2007. Early references to the mutational origin of cancer. Int. J. Epidemiol. 36:246–47
    [Google Scholar]
  177. Yan X, Stuurman N, Ribeiro SA, Tanenbaum ME, Horlbeck MA et al. 2021. High-content imaging-based pooled CRISPR screens in mammalian cells. J. Cell Biol. 220:2e202008158
    [Google Scholar]
  178. Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS et al. 2013. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153:919–29
    [Google Scholar]
  179. Yang X, Gao S, Guo L, Wang B, Jia Y et al. 2021. Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nat. Commun. 12:6030
    [Google Scholar]
  180. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G et al. 2013. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45:1134–40
    [Google Scholar]
  181. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C et al. 2006. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125:1253–67
    [Google Scholar]
  182. Zhang CZ. 2021. No pains, no gains: how chromosome fragmentation promotes gene amplification. Mol. Cell 81:901–4
    [Google Scholar]
  183. Zhang CZ, Leibowitz ML, Pellman D. 2013. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27:2513–30
    [Google Scholar]
  184. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK et al. 2015. Chromothripsis from DNA damage in micronuclei. Nature 522:179–84
    [Google Scholar]
  185. Zhang S, Zhou K, Luo X, Li L, Tu HC et al. 2018. The polyploid state plays a tumor-suppressive role in the liver. Dev. Cell 44:447–59.e5
    [Google Scholar]
  186. Zhang Y, McCord RP, Ho YJ, Lajoie BR, Hildebrand DG et al. 2012. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148:908–21
    [Google Scholar]
  187. Zink D, Fischer AH, Nickerson JA. 2004. Nuclear structure in cancer cells. Nat. Rev. Cancer 4:677–87
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-070620-094029
Loading
/content/journals/10.1146/annurev-cancerbio-070620-094029
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error