1932

Abstract

Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-011620-031429
2020-10-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-011620-031429.html?itemId=/content/journals/10.1146/annurev-cellbio-011620-031429&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelkareem A, Thagun C, Imanishi S, Hashimoto T, Shoji T 2019. Identification of genes regulated by a jasmonate- and salt-inducible transcription factor JRE3 in tomato. Plant Biotechnol 36:29–37
    [Google Scholar]
  2. An C, Li L, Zhai Q, You Y, Deng L et al. 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. PNAS 114:E8930–39
    [Google Scholar]
  3. Andréasson E, Jørgensen LB, Höglund A-S, Rask L, Meijer J 2001. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. . Plant Physiol 127:1750–63
    [Google Scholar]
  4. Bai Y, Meng Y, Huang D, Qi Y, Chen M 2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128–36
    [Google Scholar]
  5. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–63
    [Google Scholar]
  6. Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J 2003. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431–39
    [Google Scholar]
  7. Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H 2018. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana. . Plant Cell Physiol 59:8–16
    [Google Scholar]
  8. Bhargava A, Mansfield SD, Hall HC, Douglas CJ, Ellis BE 2010. MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol 154:1428–38
    [Google Scholar]
  9. Bibb MJ. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8:208–15
    [Google Scholar]
  10. Boccardo NA, Segretin ME, Hernandez I, Mirkin FG, Chacón O et al. 2019. Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials. Sci. Rep. 9:2791
    [Google Scholar]
  11. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–94
    [Google Scholar]
  12. Borghi M, Fernie AR, Schiestl FP, Bouwmeester HJ 2017. The sexual advantage of looking, smelling, and tasting good: the metabolic network that produces signals for pollinators. Trends Plant Sci 22:338–50
    [Google Scholar]
  13. Brkljacic J, Grotewold E. 2017. Combinatorial control of plant gene expression. Biochim. Biophys. Acta Gene Regul. Mech. 1860:31–40
    [Google Scholar]
  14. Bross CD, Howes TR, Abolhassani Rad S, Kljakic O, Kohalmi SE 2017. Subcellular localization of Arabidopsis arogenate dehydratases suggests novel and non-enzymatic roles. J. Exp. Bot. 68:1425–40
    [Google Scholar]
  15. Burow M, Markert J, Gershenzon J, Wittstock U 2006. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J 273:2432–46
    [Google Scholar]
  16. Cárdenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V et al. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7:10654
    [Google Scholar]
  17. Causier B, Ashworth M, Guo W, Davies B 2012. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–38
    [Google Scholar]
  18. Chen S, Lake BB, Zhang K 2019a. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37:1452–57
    [Google Scholar]
  19. Chen X, Wang D-D, Fang X, Chen X-Y, Mao Y-B 2019b. Plant specialized metabolism regulated by jasmonate signaling. Plant Cell Physiol 60:2638–47
    [Google Scholar]
  20. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S 2013. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 72:1–20
    [Google Scholar]
  21. Chezem WR, Clay NK. 2016. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry 131:26–43
    [Google Scholar]
  22. Chini A, Fonseca S, Fernández G, Adie B, Chico JM et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–71
    [Google Scholar]
  23. Chini A, Gimenez-Ibanez S, Goossens A, Solano R 2016. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33:147–56
    [Google Scholar]
  24. Colinas M, Goossens A. 2018. Combinatorial transcriptional control of plant specialized metabolism. Trends Plant Sci 23:324–36
    [Google Scholar]
  25. Cuéllar Pérez A, Goossens A 2013. Jasmonate signalling: a copycat of auxin signalling. Plant Cell Environ 36:2071–84
    [Google Scholar]
  26. Dai L, Prabhu N, Yu LY, Bacanu S, Ramos AD, Nordlund P 2019. Horizontal cell biology: monitoring global changes of protein interaction states with the proteome-wide cellular thermal shift assay (CETSA). Annu. Rev. Biochem. 88:383–408
    [Google Scholar]
  27. Darbani B, Motawia MS, Olsen CE, Nour-Eldin HH, Møller BL, Rook F 2016. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter. Sci. Rep. 6:37079
    [Google Scholar]
  28. Das PK, Shin DH, Choi S-B, Park Y-I 2012. Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol. Cells 34:501–7
    [Google Scholar]
  29. Davidsson P, Broberg M, Kariola T, Sipari N, Pirhonen M, Palva ET 2017. Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana. . BMC Plant Biol 17:19
    [Google Scholar]
  30. De Boer K, Tilleman S, Pauwels L, Vanden Bossche R, De Sutter V et al. 2011. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix–loop–helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis. Plant J 66:1053–65
    [Google Scholar]
  31. De Geyter N, Gholami A, Goormachtig S, Goossens A 2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–59
    [Google Scholar]
  32. Deboever E, Deleu M, Mongrand S, Lins L, Fauconnier M-L 2020. Plant-pathogen interactions: underestimated roles of phyto-oxylipins. Trends Plant Sci 25:22–34
    [Google Scholar]
  33. Deng XW, Lin X-L, Niu D, Hu Z-L, Kim DH et al. 2016. An Arabidopsis SUMO E3 ligase, SIZ1, negatively regulates photomorphogenesis by promoting COP1 activity. PLOS Genet 12:e1006016
    [Google Scholar]
  34. Du M, Zhao J, Tzeng DTW, Liu Y, Deng L et al. 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29:1883–906
    [Google Scholar]
  35. Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E et al. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. . Plant J 55:940–53
    [Google Scholar]
  36. Dutartre L, Hilliou F, Feyereisen R 2012. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol. Biol. 12:64
    [Google Scholar]
  37. Facchini PJ, Bird DA, St-Pierre B 2004. Can Arabidopsis make complex alkaloids. Trends Plant Sci 9:116–22
    [Google Scholar]
  38. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–15
    [Google Scholar]
  39. Field B, Osbourn AE. 2008. Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320:543–47
    [Google Scholar]
  40. Foyer CH, Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100
    [Google Scholar]
  41. Gao Q-M, Zhu S, Kachroo P, Kachroo A 2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6:228
    [Google Scholar]
  42. Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D et al. 2014. Detection of flavonoids in microalgae from different evolutionary lineages. J. Phycol. 50:483–92
    [Google Scholar]
  43. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–27
    [Google Scholar]
  44. Goossens A. 2015. It is easy to get huge candidate gene lists for plant metabolism now, but how to get beyond. Mol. Plant 8:2–5
    [Google Scholar]
  45. Goossens J, Fernández-Calvo P, Schweizer F, Goossens A 2016. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol. Biol. 91:673–89
    [Google Scholar]
  46. Goossens J, Mertens J, Goossens A 2017. Role and functioning of bHLH transcription factors in jasmonate signalling. J. Exp. Bot. 68:1333–47
    [Google Scholar]
  47. Goossens J, Swinnen G, Vanden Bossche R, Pauwels L, Goossens A 2015. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. New Phytol 206:1229–37
    [Google Scholar]
  48. Gou J-Y, Felippes FF, Liu C-J, Weigel D, Wang J-W 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–22
    [Google Scholar]
  49. Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761–80
    [Google Scholar]
  50. Guo H, Nolan TM, Song G, Liu S, Xie Z et al. 2018a. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr. . Biol 28:3316–24
    [Google Scholar]
  51. Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K et al. 2018b. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. . PNAS 115:E10768–77
    [Google Scholar]
  52. Hála M, Žárský V. 2019. Protein prenylation in plant stress responses. Molecules 24:3906
    [Google Scholar]
  53. Hardtke C, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW 2000. HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J 19:4997–5006
    [Google Scholar]
  54. Hemmerlin A. 2013. Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. Plant Sci 203–204:41–54
    [Google Scholar]
  55. Hen-Avivi S, Savin O, Racovita RC, Lee W-S, Adamski NM et al. 2016. A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28:1440–60
    [Google Scholar]
  56. Hinnebusch AG. 2005. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59:407–50
    [Google Scholar]
  57. Hong G-J, Xue X-Y, Mao Y-B, Wang L-J, Chen X-Y 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–48
    [Google Scholar]
  58. Hoskisson PA, Fernández-Martínez LT. 2018. Regulation of specialised metabolites in Actinobacteria—expanding the paradigms. Environ. Microbiol. Rep. 10:231–38
    [Google Scholar]
  59. Howe GA, Major IT, Koo AJ 2018. Modularity in jasmonate signaling for multistress resilience. Annu. Rev. Plant Biol. 69:387–415
    [Google Scholar]
  60. Hsu PY, Calviello L, Wu H-YL, Li F-W, Rothfels CJ et al. 2016. Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. . PNAS 113:E7126–35
    [Google Scholar]
  61. Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J et al. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389
    [Google Scholar]
  62. Huang H, Liu B, Liu L, Song S 2017. Jasmonate action in plant growth and development. J. Exp. Bot. 68:1349–59
    [Google Scholar]
  63. Iorizzo M, Cavagnaro PF, Bostan H, Zhao Y, Zhang J, Simon PW 2019. A cluster of MYB transcription factors regulates anthocyanin biosynthesis in carrot (Daucus carota L.) root and petiole. Front. Plant Sci. 9:1927
    [Google Scholar]
  64. Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B et al. 2013. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341:175–79
    [Google Scholar]
  65. Jeong S-W, Das PK, Jeoung SC, Song J-Y, Lee HK et al. 2010. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154:1514–31 Erratum. 2011. Plant Physiol. https://doi.org/10.1104/pp.110.900403
    [Crossref] [Google Scholar]
  66. Jung C, Zhao P, Seo JS, Mitsuda N, Deng S, Chua N-H 2015. PLANT U-BOX PROTEIN10 regulates MYC2 stability in Arabidopsis. Plant Cell 27:2016–31
    [Google Scholar]
  67. Kajikawa M, Sierro N, Hashimoto T, Shoji T 2017. A model for evolution and regulation of nicotine biosynthesis regulon in tobacco. Plant Signal. Behav. 12:e1338225
    [Google Scholar]
  68. Karapetyan S, Dong X. 2018. Redox and the circadian clock in plant immunity: a balancing act. Free Radic. Biol. Med. 119:56–61
    [Google Scholar]
  69. Kazan K, Manners JM. 2013. MYC2: the master in action. Mol. Plant 6:686–703
    [Google Scholar]
  70. Keller NP. 2019. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17:167–80
    [Google Scholar]
  71. Laing WA, Martínez-Sánchez M, Wright MA, Bulley SM, Brewster D et al. 2015. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 27:772–86
    [Google Scholar]
  72. Lam E, Kato N, Lawton M 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–53
    [Google Scholar]
  73. Larrieu A, Vernoux T. 2015. Comparison of plant hormone signalling systems. Essays Biochem 58:165–81
    [Google Scholar]
  74. Lee TA, Bailey-Serres J. 2019. Integrative analysis from the epigenome to translatome uncovers patterns of dominant nuclear regulation during transient stress. Plant Cell 31:2573–95
    [Google Scholar]
  75. Lei K-J, Lin Y-M, Ren J, Bai L, Miao Y-C et al. 2016. Modulation of the phosphate-deficient responses by microRNA156 and its targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis. Plant Cell Physiol 57:192–203
    [Google Scholar]
  76. Lei L. 2017. Lignin evolution: invasion of land. Nat. Plants 3:17042
    [Google Scholar]
  77. Lempp M, Farke N, Kuntz M, Freibert SA, Lill R, Link H 2019. Systematic identification of metabolites controlling gene expression in E. coli. Nat. . Commun 10:4463
    [Google Scholar]
  78. Li B, Qiu B, Lee DSM, Walton ZE, Ochocki JD et al. 2014. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513:251–55
    [Google Scholar]
  79. Li C, Shi L, Wang Y, Li W, Chen B et al. 2020. Arabidopsis ECAP is a new adaptor protein that connects JAZ repressors with the TPR2 co-repressor to suppress jasmonate-responsive anthocyanin accumulation. Mol. Plant 13:246–65
    [Google Scholar]
  80. Li C, Zhang B, Chen B, Ji L, Yu H 2018. Site-specific phosphorylation of TRANSPARENT TESTA GLABRA1 mediates carbon partitioning in Arabidopsis seeds. Nat. Commun. 9:571
    [Google Scholar]
  81. Li S, Wang W, Gao J, Yin K, Wang R et al. 2016. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28:2866–83
    [Google Scholar]
  82. Liu D, Evans T, Zhang F 2015. Applications and advances of metabolite biosensors for metabolic engineering. Metab. Eng. 31:35–43
    [Google Scholar]
  83. Liu Y, Du M, Deng L, Shen J, Fang M et al. 2019. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31:106–27
    [Google Scholar]
  84. Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A et al. 2017. Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol 58:1431–41
    [Google Scholar]
  85. Maier A, Schrader A, Kokkelink L, Falke C, Welter B et al. 2013. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–51
    [Google Scholar]
  86. Mair A, Xu S-L, Branon TC, Ting AY, Bergmann DC 2019. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 8:e47864
    [Google Scholar]
  87. Malinovsky FG, Thomsen M-LF, Nintemann SJ, Møller Jagd L, Bourgine B et al. 2017. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. eLife 6:e29353
    [Google Scholar]
  88. Mertens J, Pollier J, Vanden Bossche R, Lopez-Vidriero I, Franco-Zorrilla JM, Goossens A 2016a. The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula. . Plant Physiol 170:194–210
    [Google Scholar]
  89. Mertens J, Van Moerkercke A, Vanden Bossche R, Pollier J, Goossens A 2016b. Clade IVa basic helix-loop-helix transcription factors form part of a conserved jasmonate signaling circuit for the regulation of bioactive plant terpenoid biosynthesis. Plant Cell Physiol 57:2564–75
    [Google Scholar]
  90. Mishra AK, Puranik S, Prasad M 2012. Structure and regulatory networks of WD40 protein in plants. J. Plant Biochem. Biotechnol. 21:32–39
    [Google Scholar]
  91. Møller BL. 2010. Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 13:338–47
    [Google Scholar]
  92. Morita M, Shitan N, Sawada K, Van Montagu MCE, Inzé D et al. 2009. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. . PNAS 106:2447–52
    [Google Scholar]
  93. Mugford ST, Louveau T, Melton R, Qi X, Bakht S et al. 2013. Modularity of plant metabolic gene clusters: a trio of linked genes that are collectively required for acylation of triterpenes in oat. Plant Cell 25:1078–92
    [Google Scholar]
  94. Mutuku JM, Cui S, Hori C, Takeda Y, Tobimatsu Y et al. 2019. The structural integrity of lignin is crucial for resistance against Striga hermonthica parasitism in rice. Plant Physiol 179:1796–809
    [Google Scholar]
  95. Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y et al. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–79
    [Google Scholar]
  96. Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165–85
    [Google Scholar]
  97. Nawrath C, Métraux J-P. 1999. Salicylic acid induction–deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393–404
    [Google Scholar]
  98. Nesi N, Dobeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–78
    [Google Scholar]
  99. Niu D, Lin X-L, Kong X, Qu G-P, Cai B et al. 2019. SIZ1-mediated SUMOylation of TPR1 suppresses plant immunity in Arabidopsis. Mol. Plant 12:215–28
    [Google Scholar]
  100. Northey JGB, Liang S, Jamshed M, Deb S, Foo E et al. 2016. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants 2:16114
    [Google Scholar]
  101. Nützmann H-W, Osbourn A. 2015. Regulation of metabolic gene clusters in Arabidopsis thaliana. . New Phytol 205:503–10
    [Google Scholar]
  102. Nützmann H-W, Scazzocchio C, Osbourn A 2018. Metabolic gene clusters in eukaryotes. Annu. Rev. Genet. 52:159–83
    [Google Scholar]
  103. Okada A, Okada K, Miyamoto K, Koga J, Shibuya N et al. 2009. OsTGAP1, a bZIP transcription factor, coordinately regulates the inductive production of diterpenoid phytoalexins in rice. J. Biol. Chem. 284:26510–18
    [Google Scholar]
  104. Park WJ, Hochholdinger F, Gierl A 2004. Release of the benzoxazinoids defense molecules during lateral- and crown root emergence in Zea mays. J. . Plant Physiol 161:981–85
    [Google Scholar]
  105. Paul P, Singh SK, Patra B, Sui X, Pattanaik S, Yuan L 2017. A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. . New Phytol 213:1107–23
    [Google Scholar]
  106. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W et al. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–91
    [Google Scholar]
  107. Pauwels L, Goossens A. 2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–100
    [Google Scholar]
  108. Pauwels L, Inzé D, Goossens A 2009. Jasmonate-inducible gene: What does it mean. Trends Plant Sci 14:87–91
    [Google Scholar]
  109. Peñuelas M, Monte I, Schweizer F, Vallat A, Reymond P et al. 2019. Jasmonate-related MYC transcription factors are functionally conserved in Marchantia polymorpha. . Plant Cell 31:2491–509
    [Google Scholar]
  110. Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E et al. 2018. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172:358–72
    [Google Scholar]
  111. Pollier J, De Geyter N, Moses T, Boachon B, Franco-Zorrilla JM et al. 2019. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. Plant J 99:637–54
    [Google Scholar]
  112. Potter KC, Wang J, Schaller GE, Kieber JJ 2018. Cytokinin modulates context-dependent chromatin accessibility through the type-B response regulators. Nat. Plants 4:1102–11
    [Google Scholar]
  113. Qi T, Song S, Ren Q, Wu D, Huang H et al. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. . Plant Cell 23:1795–814
    [Google Scholar]
  114. Rajniak J, Barco B, Clay NK, Sattely ES 2015. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature 525:376–79
    [Google Scholar]
  115. Renault H, Alber A, Horst NA, Basilio Lopes A, Fich EA et al. 2017. A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 8:14713
    [Google Scholar]
  116. Robin AY, Giustini C, Graindorge M, Matringe M, Dumas R 2016. Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids. Plant J 87:641–53
    [Google Scholar]
  117. Rolland F, Baena-Gonzalez E, Sheen J 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57:675–709
    [Google Scholar]
  118. Rosa M, Prado C, Podazza G, Interdonato R, González JA et al. 2009. Soluble sugars—metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal. Behav. 4:388–93
    [Google Scholar]
  119. Rowe HC, Walley JW, Corwin J, Chan EK-F, Dehesh K, Kliebenstein DJ 2010. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLOS Pathog 6:e1000861
    [Google Scholar]
  120. Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. . Plant Cell 21:3567–84
    [Google Scholar]
  121. Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H 2013. The biology of strigolactones. Trends Plant Sci 18:72–83
    [Google Scholar]
  122. Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS et al. 2018. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell 30:1077–99
    [Google Scholar]
  123. Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S et al. 2013. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 163:291–304
    [Google Scholar]
  124. Schweizer F, Colinas M, Pollier J, Van Moerkercke A, Vanden Bossche R et al. 2018. An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metab. . Eng 48:150–62
    [Google Scholar]
  125. Shapiro J, Machattie L, Eron L, Ilher G, Ippen K, Beckwith J 1969. Isolation of pure lac operon DNA. Nature 224:768–74
    [Google Scholar]
  126. Shen Q, Lu X, Yan T, Fu X, Lv Z et al. 2016. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. . New Phytol 210:1269–81
    [Google Scholar]
  127. Shimura K, Okada A, Okada K, Jikumaru Y, Ko K-W et al. 2007. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282:34013–18
    [Google Scholar]
  128. Shoji T. 2019. The recruitment model of metabolic evolution: jasmonate-responsive transcription factors and a conceptual model for the evolution of metabolic pathways. Front. Plant Sci. 10:560
    [Google Scholar]
  129. Shoji T, Hashimoto T. 2011. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol 52:1117–30
    [Google Scholar]
  130. Shoji T, Kajikawa M, Hashimoto T 2010. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–409
    [Google Scholar]
  131. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P 2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–46
    [Google Scholar]
  132. Srivastava AK, Orosa B, Singh P, Cummins I, Walsh C et al. 2018. SUMO suppresses the activity of the jasmonic acid receptor CORONATINE INSENSITIVE1. Plant Cell 30:2099–115
    [Google Scholar]
  133. Staswick PE, Yuen GY, Casey LC 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. . Plant J 15:747–54
    [Google Scholar]
  134. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A et al. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–65
    [Google Scholar]
  135. Todd AT, Liu E, Polvi SL, Pammett RT, Page JE 2010. A functional genomics screen identifies diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana. . Plant J 62:589–600
    [Google Scholar]
  136. Van Moerkercke A, Steensma P, Gariboldi I, Espoz J, Purnama PC et al. 2016. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. . Plant J 88:3–12
    [Google Scholar]
  137. Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I et al. 2015. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. . PNAS 112:8130–35
    [Google Scholar]
  138. von Arnim AG, Jia Q, Vaughn JN 2014. Regulation of plant translation by upstream open reading frames. Plant Sci 214:1–12
    [Google Scholar]
  139. Wan X, Marsafari M, Xu P 2019. Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives. Microb. Cell Fact. 18:61
    [Google Scholar]
  140. Wang H, Li S, Li Y, Xu Y, Wang Y et al. 2019a. MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signalling. Nat. Plants 5:616–25
    [Google Scholar]
  141. Wang JP, Chuang L, Loziuk PL, Chen H, Lin Y-C et al. 2015. Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyltransferase activity in poplar monolignol biosynthesis. PNAS 112:8481–86
    [Google Scholar]
  142. Wang X, Zhu B, Jiang Z, Wang S 2019b. Calcium-mediation of jasmonate biosynthesis and signaling in plants. Plant Sci 287:110192
    [Google Scholar]
  143. Wang X-F, An J-P, Liu X, Su L, You C-X, Hao Y-J 2018. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynthesis by interacting with the MdMYB1 transcription factor. Plant Physiol 178:890–906
    [Google Scholar]
  144. Wasternack C. 2019. Termination in jasmonate signaling by MYC2 and MTBs. Trends Plant Sci 24:667–69
    [Google Scholar]
  145. Wasternack C, Feussner I. 2018. The oxylipin pathways: biochemistry and function. Annu. Rev. Plant Biol. 69:363–86
    [Google Scholar]
  146. Wasternack C, Song S. 2017. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68:1303–21
    [Google Scholar]
  147. Wasternack C, Strnad M. 2019. Jasmonates are signals in the biosynthesis of secondary metabolites—pathways, transcription factors and applied aspects—a brief review. New Biotechnol 48:1–11
    [Google Scholar]
  148. Weng J-K, Philippe RN, Noel JP 2012. The rise of chemodiversity in plants. Science 336:1667–70
    [Google Scholar]
  149. Wiese A, Elzinga N, Wobbes B, Smeekens S 2004. A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16:1717–29
    [Google Scholar]
  150. Willems P, Ndah E, Jonckheere V, Stael S, Sticker A et al. 2017. N-terminal proteomics assisted profiling of the unexplored translation initiation landscape in Arabidopsis thaliana. Mol. Cell. . Proteom 16:1064–80
    [Google Scholar]
  151. Wittstock U, Gershenzon J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5:300–7
    [Google Scholar]
  152. Wu F, Deng L, Zhai Q, Zhao J, Chen Q, Li C 2020. Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32:429–48
    [Google Scholar]
  153. Xie Y, Tan H, Ma Z, Huang J 2016. DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Mol. . Plant 9:711–21
    [Google Scholar]
  154. Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC 2018. SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant Cell 30:2988–3005
    [Google Scholar]
  155. Xu P. 2017. Production of chemicals using dynamic control of metabolic fluxes. Curr. Opin. Biotechnol. 53:12–19
    [Google Scholar]
  156. Xu W, Dubos C, Lepiniec L 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–85
    [Google Scholar]
  157. Yang J, Duan G, Li C, Liu L, Han G et al. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 10:1349
    [Google Scholar]
  158. You Y, Zhai Q, An C, Li C 2019. LEUNIG_HOMOLOG mediates MYC2-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31:2187–205
    [Google Scholar]
  159. Yu N, Nützmann H-W, MacDonald JT, Moore B, Field B et al. 2016. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 44:2255–65
    [Google Scholar]
  160. Zhai Q, Li C. 2019. The plant Mediator complex and its role in jasmonate signaling. J. Exp. Bot. 70:3415–24
    [Google Scholar]
  161. Zhai Q, Yan L, Tan D, Chen R, Sun J et al. 2013. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLOS Genet 9:e1003422
    [Google Scholar]
  162. Zhang F, Yao J, Ke J, Zhang L, Lam VQ et al. 2015. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525:269–73
    [Google Scholar]
  163. Zhang H, He H, Wang X, Wang X, Yang X et al. 2011a. Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J 65:346–58
    [Google Scholar]
  164. Zhang H, Hedhili S, Montiel G, Zhang Y, Chatel G et al. 2011b. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. . Plant J 67:61–71
    [Google Scholar]
  165. Zhang X, Abrahan C, Colquhoun TA, Liu C-J 2017. A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell 29:1157–74
    [Google Scholar]
  166. Zhang X, Gou M, Liu C-J 2013. Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 25:4994–5010
    [Google Scholar]
  167. Zhang X, Liu C-J. 2015. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol. Plant 8:17–27
    [Google Scholar]
  168. Zhao J, Dixon RA. 2009. MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. . Plant Cell 21:2323–40
    [Google Scholar]
  169. Zheng T, Tan W, Yang H, Zhang L, Li T et al. 2019. Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLOS Genet 15:e1007993
    [Google Scholar]
  170. Zhou L-J, Li Y-Y, Zhang R-F, Zhang C-L, Xie X-B et al. 2017. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant Cell Environ 40:2068–80
    [Google Scholar]
  171. Zhou M, Memelink J. 2016. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol. Adv. 34:441–49
    [Google Scholar]
  172. Zhou Y, Ma Y, Zeng J, Duan L, Xue X et al. 2016. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat. Plants 2:16183
    [Google Scholar]
  173. Zhu J-K. 2016. Abiotic stress signaling and responses in plants. Cell 167:313–24
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-011620-031429
Loading
/content/journals/10.1146/annurev-cellbio-011620-031429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error