1932

Abstract

Development encapsulates the morphogenesis of an organism from a single fertilized cell to a functional adult. A critical part of development is the specification of organ forms. Beyond the molecular control of morphogenesis, shape in essence entails structural constraints and thus mechanics. Revisiting recent results in biophysics and development, and comparing animal and plant model systems, we derive key overarching principles behind the formation of organs across kingdoms. In particular, we highlight how growing organs are active rather than passive systems and how such behavior plays a role in shaping the organ. We discuss the importance of considering different scales in understanding how organs form. Such an integrative view of organ development generates new questions while calling for more cross-fertilization between scientific fields and model system communities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-012820-103850
2020-10-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-012820-103850.html?itemId=/content/journals/10.1146/annurev-cellbio-012820-103850&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar-Hidalgo D, Werner S, Wartlick O, González-Gaitán M, Friedrich BM, Jülicher F 2018. Critical point in self-organized tissue growth. Phys. Rev. Lett. 120:198102
    [Google Scholar]
  2. Alexandre C, Baena-Lopez A, Vincent J-P 2014. Patterning and growth control by membrane-tethered Wingless. Nature 505:180–85
    [Google Scholar]
  3. Altartouri B, Bidhendi AJ, Tani T, Suzuki J, Conrad C et al. 2019. Pectin chemistry and cellulose crystallinity govern pavement cell morphogenesis in a multi-step mechanism. Plant Physiol 181:127–41
    [Google Scholar]
  4. Altschuler SJ, Angenent SB, Wang Y, Wu LF 2008. On the spontaneous emergence of cell polarity. Nature 454:886–89
    [Google Scholar]
  5. Aurich F, Dahmann C. 2016. A mutation in fat2 uncouples tissue elongation from global tissue rotation. Cell Rep 14:2503–10
    [Google Scholar]
  6. Bagriantsev SN, Gracheva EO, Gallagher PG 2014. Piezo proteins: regulators of mechanosensation and other cellular processes. J. Biol. Chem. 289:31673–81
    [Google Scholar]
  7. Bailles A, Collinet C, Philippe J-M, Lenne P-F, Munro E, Lecuit T 2019. Genetic induction and mechanochemical propagation of a morphogenetic wave. Nature 572:467–73
    [Google Scholar]
  8. Barbez E, Dünser K, Gaidora A, Lendl T, Busch W 2017. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. . PNAS 114:E4884–93
    [Google Scholar]
  9. Barresi MJF, Gilbert SF. 2020. Developmental Biology New York: Sinauer Assoc. , 12th ed..
  10. Baskin TI. 2005. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21:203–22
    [Google Scholar]
  11. Baum B, Georgiou M. 2011. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J. Cell Biol. 192:907–17
    [Google Scholar]
  12. Bejsovec A. 2018. Wingless signaling: a genetic journey from morphogenesis to metastasis. Genetics 208:1311–36
    [Google Scholar]
  13. Berg HC. 1993. Random Walks in Biology Princeton, NJ: Princeton Univ. Press
  14. Bertet C, Sulak L, Lecuit T 2004. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–71
    [Google Scholar]
  15. Bi D, Lopez JH, Schwarz JM, Manning ML 2015. A density-independent rigidity transition in biological tissues. Nat. Phys. 11:1074–79
    [Google Scholar]
  16. Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A et al. 2011. Model for the regulation of Arabidopsis thaliana leaf margin development. PNAS 108:3424–29
    [Google Scholar]
  17. Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M et al. 2010. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLOS Biol 8:e1000420
    [Google Scholar]
  18. Bosveld F, Markova O, Guirao B, Martin C, Wang Z et al. 2016. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis. Nature 530:495–98
    [Google Scholar]
  19. Brassard JA, Lutolf MP. 2019. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24:860–76
    [Google Scholar]
  20. Brioudes F, Thierry A-M, Chambrier P, Mollereau B, Bendahmane M 2010. Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. PNAS 107:16384–89
    [Google Scholar]
  21. Burget I, Fratzl P. 2009. Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integr. Comp. Biol. 49:69–79
    [Google Scholar]
  22. Canut H, Carrasco A, Galaud JP, Cassan C, Bouyssou H et al. 1998. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J. Cell Mol. Biol. 16:63–71
    [Google Scholar]
  23. Chan CJ, Costanzo M, Ruiz-Herrero T, Mönke G, Petrie RJ et al. 2019. Hydraulic control of mammalian embryo size and cell fate. Nature 571:112–16
    [Google Scholar]
  24. Charras G, Yap AS. 2018. Tensile forces and mechanotransduction at cell-cell junctions. Curr. Biol. 28:R445–57
    [Google Scholar]
  25. Chen X, te Boekhorst V, McEvoy E, Friedl P, Shenoy VB 2020. An active chemo-mechanical model to predict adhesion and microenvironmental regulation of 3D cell shapes. bioRxiv 897405. https://doi.org/10.1101/2020.01.07.897405
    [Crossref]
  26. Chen Y, Zhao X. 1998. Shaping limbs by apoptosis. J. Exp. Zool. 282:6691–702
    [Google Scholar]
  27. Chiba A, Snow P, Keshishian H, Hotta Y 1995. Fasciclin III as a synaptic target recognition molecule in Drosophila. . Nature 374:166–68
    [Google Scholar]
  28. Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM 2012. Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing Arabidopsis shoot meristem. PNAS 109:4002–7
    [Google Scholar]
  29. Christodoulou N, Weberling A, Strathdee D, Anderson KI, Timpson P, Zernicka-Goetz M 2019. Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation. Nat. Commun. 10:3557
    [Google Scholar]
  30. Coates JC, Laplaze L, Haseloff J 2006. Armadillo-related proteins promote lateral root development in Arabidopsis. PNAS 103:1621–26
    [Google Scholar]
  31. Coen E, Rebocho AB. 2016. Resolving conflicts: modeling genetic control of plant morphogenesis. Dev. Cell 38:579–83
    [Google Scholar]
  32. Coen E, Rolland-Lagan A-G, Matthews M, Bangham JA, Prusinkiewicz P 2004. The genetics of geometry. PNAS 101:4728–35
    [Google Scholar]
  33. Collinet C, Lecuit T. 2013. Stability and dynamics of cell–cell junctions. Prog. Mol. Biol. Transl. Sci. 116:25–47
    [Google Scholar]
  34. Colombani J, Andersen DS, Leopold P 2012. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336:582–85
    [Google Scholar]
  35. Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, Couder Y 2009. Turning a plant tissue into a living cell froth through isotropic growth. PNAS 106:8453–58
    [Google Scholar]
  36. Cosgrove DJ. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850–61
    [Google Scholar]
  37. Coudert Y, Harris S, Charrier B 2019. Design principles of branching morphogenesis in filamentous organisms. Curr. Biol. 29:R1149–62
    [Google Scholar]
  38. Couturier E, du Pont SC, Douady S 2011. The filling law: a general framework for leaf folding and its consequences on leaf shape diversity. J. Theor. Biol. 289:47–64
    [Google Scholar]
  39. Czesnick H, Lenhard M. 2015. Size control in plants—lessons from leaves and flowers. Cold Spring Harb. Perspect. Biol. 7:a019190
    [Google Scholar]
  40. Daher FB, Braybrook SA. 2015. How to let go: pectin and plant cell adhesion. Front. Plant Sci. 6:523
    [Google Scholar]
  41. Daneva A, Gao Z, Van Durme M, Nowack MK 2016. Functions and regulation of programmed cell death in plant development. Annu. Rev. Cell Dev. Biol. 32:441–68
    [Google Scholar]
  42. Day SJ, Lawrence PA. 2000. Measuring dimensions: the regulation of size and shape. Development 127:2977–87
    [Google Scholar]
  43. Debat V, Bégin M, Legout H, David JR 2003. Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evol. Int. J. Org. Evol 57:2773–84
    [Google Scholar]
  44. Diego X, Marcon L, Müller P, Sharpe J 2018. Key features of Turing systems are determined purely by network topology. Phys. Rev. X 8:021071
    [Google Scholar]
  45. Driever W, Nüsslein-Volhard C. 1988. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104
    [Google Scholar]
  46. Duda M, Kirkland NJ, Khalilgharibi N, Tozluoglu M, Yuen AC et al. 2019. Polarization of myosin II refines tissue material properties to buffer mechanical stress. Dev. Cell 48:245–260.e7
    [Google Scholar]
  47. DuFort CC, Paszek MJ, Weaver VM 2011. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12:308–19
    [Google Scholar]
  48. Dumais J. 2007. Can mechanics control pattern formation in plants. ? Curr. Opin. Plant Biol. 10:58–62
    [Google Scholar]
  49. Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L et al. 2019. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365:465–68
    [Google Scholar]
  50. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83
    [Google Scholar]
  51. Ede DA, Law JT. 1969. Computer simulation of vertebrate limb morphogenesis. Nature 221:244–48
    [Google Scholar]
  52. Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M et al. 2017. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–410.e14
    [Google Scholar]
  53. Escamez S, André D, Sztojka B, Bollhöner B, Hall H et al. 2020. Cell death in cells overlying lateral root primordia facilitates organ growth in Arabidopsis. Curr. Biol 30:455–64.e7
    [Google Scholar]
  54. Evert RF, Eichhorn SE, Raven PH 2013. Raven Biology of Plants New York: W.H. Freeman. , 8th ed..
  55. Fagard M, Desnos T, Desprez T, Goubet F, Refregier G et al. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–24
    [Google Scholar]
  56. Farge E. 2011. Mechanotransduction in development. Curr. Top. Dev. Biol. 95:243–65
    [Google Scholar]
  57. Faulkner C. 2018. Plasmodesmata and the symplast. Curr. Biol. 28:R1374–78
    [Google Scholar]
  58. Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V et al. 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28:666–75.e5
    [Google Scholar]
  59. Fernandez-Gonzalez R, de Matos Simoes S, Röper J-C, Eaton S, Zallen JA 2009. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17:736–43
    [Google Scholar]
  60. Fletcher DA, Geissler PL. 2009. Active biological materials. Annu. Rev. Phys. Chem. 60:469–86
    [Google Scholar]
  61. Fleury V. 2013. Can physics help to explain embryonic development? An overview. Orthop. Traumatol. Surg. Res. 99:S356–65
    [Google Scholar]
  62. Foissner I, Wasteneys GO. 2014. Characean internodal cells as a model system for the study of cell organization. Int. Rev. Cell Mol. Biol. 311:307–64
    [Google Scholar]
  63. Fu Y. 2015. The cytoskeleton in the pollen tube. Curr. Opin. Plant Biol. 28:111–19
    [Google Scholar]
  64. Fuchs Y, Steller H. 2011. Programmed cell death in animal development and disease. Cell 147:742–58
    [Google Scholar]
  65. Galletti R, Verger S, Hamant O, Ingram GC 2016. Developing a “thick skin”: a paradoxical role for mechanical tension in maintaining epidermal integrity. ? Development 143:3249–58
    [Google Scholar]
  66. Garcia De Las Bayonas A, Philippe J-M, Lellouch AC, Lecuit T 2019. Distinct RhoGEFs activate apical and junctional contractility under control of G proteins during epithelial morphogenesis. Curr. Biol. 29:3370–85.e7
    [Google Scholar]
  67. Gázquez A, Beemster GTS. 2017. What determines organ size differences between species? A meta-analysis of the cellular basis. New Phytol 215:299–308
    [Google Scholar]
  68. Ghosh SM, Testa ND, Shingleton AW 2013. Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc. R. Soc. B 280:20130174
    [Google Scholar]
  69. Gibson MC, Patel AB, Nagpal R, Perrimon N 2006. The emergence of geometric order in proliferating metazoan epithelia. Nature 442:1038–41
    [Google Scholar]
  70. Gibson WT, Veldhuis JH, Rubinstein B, Cartwright HN, Perrimon N et al. 2011. Control of the mitotic cleavage plane by local epithelial topology. Cell 144:427–38
    [Google Scholar]
  71. Gilmour D, Rembold M, Leptin M 2017. From morphogen to morphogenesis and back. Nature 541:311–20
    [Google Scholar]
  72. Ginzberg MB, Kafri R, Kirschner M 2015. On being the right (cell) size. Science 348:1245075
    [Google Scholar]
  73. Gittes F, Mickey B, Nettleton J, Howard J 1993. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923–34
    [Google Scholar]
  74. Gómez-Gálvez P, Vicente-Munuera P, Tagua A, Forja C, Castro AM et al. 2018. Scutoids are a geometrical solution to three-dimensional packing of epithelia. Nat. Commun. 9:2960
    [Google Scholar]
  75. Gorshkova T, Brutch N, Chabbert B, Deyholos M, Hayashi T et al. 2012. Plant fiber formation: state of the art, recent and expected progress, and open questions. Crit. Rev. Plant Sci. 31:201–28
    [Google Scholar]
  76. Green JBA, Sharpe J. 2015. Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142:1203–11
    [Google Scholar]
  77. Green P, King A. 1966. A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture. Aust. J. Biol. Sci. 19:421–37
    [Google Scholar]
  78. Gross P, Kumar KV, Goehring NW, Bois JS, Hoege C et al. 2019. Guiding self-organized pattern formation in cell polarity establishment. Nat. Phys. 15:293–300
    [Google Scholar]
  79. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. . Science 322:1650–55
    [Google Scholar]
  80. Hamant O, Moulia B. 2016. How do plants read their own shapes. ? New Phytol 212:333–37
    [Google Scholar]
  81. Hannezo E, Heisenberg C-P. 2019. Mechanochemical feedback loops in development and disease. Cell 178:12–25
    [Google Scholar]
  82. Hannezo E, Scheele CLGJ, Moad M, Drogo N, Heer R et al. 2017. A unifying theory of branching morphogenesis. Cell 171:242–55.e27
    [Google Scholar]
  83. Harashima H, Dissmeyer N, Schnittger A 2013. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:345–56
    [Google Scholar]
  84. Haswell ES, Phillips R, Rees DC 2011. Mechanosensitive channels: What can they do and how do they do it. ? Structure 19:1356–69
    [Google Scholar]
  85. Hayashi T, Carthew RW. 2004. Surface mechanics mediate pattern formation in the developing retina. Nature 431:647–52
    [Google Scholar]
  86. Hayes P, Solon J. 2017. Drosophila dorsal closure: an orchestra of forces to zip shut the embryo. Mech. Dev. 144:2–10
    [Google Scholar]
  87. He B, Doubrovinski K, Polyakov O, Wieschaus E 2014. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature 508:392–96
    [Google Scholar]
  88. He L, Si G, Huang J, Samuel ADT, Perrimon N 2018. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 555:103–6
    [Google Scholar]
  89. Helander HF, Fändriks L. 2014. Surface area of the digestive tract—revisited. Scand. J. Gastroenterol. 49:681–89
    [Google Scholar]
  90. Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T et al. 2007. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17:922–31
    [Google Scholar]
  91. Hernández-Hernández V, Niklas KJ, Newman SA, Benítez M 2012. Dynamical patterning modules in plant development and evolution. Int. J. Dev. Biol. 56:661–74
    [Google Scholar]
  92. Hervé J-C, Derangeon M. 2013. Gap-junction-mediated cell-to-cell communication. Cell Tissue Res 352:21–31
    [Google Scholar]
  93. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska A-L, Kierzkowski D et al. 2016. A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr. Biol 26:1019–28
    [Google Scholar]
  94. Hirakawa Y, Sawa S. 2019. Diverse function of plant peptide hormones in local signaling and development. Curr. Opin. Plant Biol. 51:81–87
    [Google Scholar]
  95. Hoffmann J, Donoughe S, Li K, Salcedo MK, Rycroft CH 2018. A simple developmental model recapitulates complex insect wing venation patterns. PNAS 115:9905–10
    [Google Scholar]
  96. Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska A-L et al. 2016. Variable cell growth yields reproducible organ development through spatiotemporal averaging. Dev. Cell 38:15–32
    [Google Scholar]
  97. Horiguchi G, Tsukaya H. 2011. Organ size regulation in plants: insights from compensation. Front. Plant Sci. 2: https://doi.org/10.3389/fpls.2011.00024
    [Crossref] [Google Scholar]
  98. Horne-Badovinac S. 2014. The Drosophila egg chamber—a new spin on how tissues elongate. Integr. Comp. Biol. 54:667–76
    [Google Scholar]
  99. Huang A, Saunders TE. 2020. A matter of time: formation and interpretation of the Bicoid morphogen gradient. Curr. Top. Dev. Biol. 137:79–117
    [Google Scholar]
  100. Hufnagel L, Teleman AA, Rouault H, Cohen SM, Shraiman BI 2007. On the mechanism of wing size determination in fly development. PNAS 104:3835–40
    [Google Scholar]
  101. Ingham PW. 2001. Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–87
    [Google Scholar]
  102. Iyer KV, Piscitello-Gómez R, Paijmans J, Jülicher F, Eaton S 2019. Epithelial viscoelasticity is regulated by mechanosensitive E-cadherin turnover. Curr. Biol. 29:578–91.e5
    [Google Scholar]
  103. Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, Martin P 2000. Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr. Biol. 10:1420–26
    [Google Scholar]
  104. Kafri R, Levy J, Ginzberg MB, Oh S, Lahav G, Kirschner MW 2013. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494:7438480–83
    [Google Scholar]
  105. Kawaguchi K, Kageyama R, Sano M 2017. Topological defects control collective dynamics in neural progenitor cell cultures. Nature 545:327–31
    [Google Scholar]
  106. Kechagia JZ, Ivaska J, Roca-Cusachs P 2019. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20:457–73
    [Google Scholar]
  107. Kelliher T, Walbot V. 2012. Hypoxia triggers meiotic fate acquisition in maize. Science 337:345–48
    [Google Scholar]
  108. Kimata Y, Kato T, Higaki T, Kurihara D, Yamada T et al. 2019. Polar vacuolar distribution is essential for accurate asymmetric division of Arabidopsis zygotes. PNAS 116:2338–43
    [Google Scholar]
  109. Kondo T, Hayashi S. 2013. Mitotic cell rounding accelerates epithelial invagination. Nature 494:125–29
    [Google Scholar]
  110. Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L 2012. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9:730–33
    [Google Scholar]
  111. Kutschera U, Niklas KJ. 2007. The epidermal-growth-control theory of stem elongation: an old and a new perspective. J. Plant Physiol. 164:1395–409
    [Google Scholar]
  112. Kwiatkowska D, Dumais J. 2003. Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L. J. Exp. Bot. 54:1585–95
    [Google Scholar]
  113. Lancaster OM, Le Berre M, Dimitracopoulos A, Bonazzi D, Zlotek-Zlotkiewicz E et al. 2013. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell. 25:270–83
    [Google Scholar]
  114. Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ et al. 2009. Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr. Biol. 19:1950–55
    [Google Scholar]
  115. Lang CF, Munro E. 2017. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 144:3405–16
    [Google Scholar]
  116. Lecuit T, Lenne P-F, Munro E 2011. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 27:157–84
    [Google Scholar]
  117. Ledbetter MC, Porter KR. 1963. A “microtubule” in plant cell fine structure. J. Cell Biol. 19:239–50
    [Google Scholar]
  118. Lee HO, Davidson JM, Duronio RJ 2009. Endoreplication: polyploidy with purpose. Genes Dev 23:2461–77
    [Google Scholar]
  119. LeGoff L, Lecuit T. 2016. Mechanical forces and growth in animal tissues. Cold Spring Harb. Perspect. Biol. 8:a019232
    [Google Scholar]
  120. Li Y, Li A, Junge J, Bronner M 2017. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage. eLife 6:e23279
    [Google Scholar]
  121. Louveaux M, Julien J-D, Mirabet V, Boudaoud A, Hamant O 2016. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. . PNAS 113:E4294–303
    [Google Scholar]
  122. Majda M, Grones P, Sintorn I-M, Vain T, Milani P et al. 2017. Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev. Cell 43:290–304.e4
    [Google Scholar]
  123. Manfield IW, Orfila C, McCartney L, Harholt J, Bernal AJ et al. 2004. Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J. Cell Mol. Biol. 40:260–75
    [Google Scholar]
  124. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143–89
    [Google Scholar]
  125. Marsollier A-C, Ingram G. 2018. Getting physical: invasive growth events during plant development. Curr. Opin. Plant Biol. 46:8–17
    [Google Scholar]
  126. Martin AC, Kaschube M, Wieschaus EF 2009. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457:495–99
    [Google Scholar]
  127. Martin E, Theis S, Gay G, Monier B, Suzanne M 2020. Mechanical control of morphogenesis robustness. bioRxiv 896266. https://doi.org/10.1101/2020.01.06.896266
    [Crossref]
  128. Matsuda K, Gotoh H, Tajika Y, Sushida T, Aonuma H et al. 2017. Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn. Sci. Rep. 7:13939
    [Google Scholar]
  129. Mirabet V, Krupinski P, Hamant O, Meyerowitz EM, Jönsson H, Boudaoud A 2018. The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues. PLOS Comput. Biol. 14:e1006011
    [Google Scholar]
  130. Mongera A, Rowghanian P, Gustafson HJ, Shelton E, Kealhofer DA et al. 2018. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561:401–5
    [Google Scholar]
  131. Mosaliganti KR, Swinburne IA, Chan CU, Obholzer ND, Green AA et al. 2019. Size control of the inner ear via hydraulic feedback. eLife 8:e39596
    [Google Scholar]
  132. Moulton DE, Goriely A, Chirat R 2020. Mechanics unlocks the morphogenetic puzzle of interlocking bivalved shells. PNAS 117:43–51
    [Google Scholar]
  133. Moussu S, Doll NM, Chamot S, Brocard L, Creff A et al. 2017. ZHOUPI and KERBEROS mediate embryo/endosperm separation by promoting the formation of an extracuticular sheath at the embryo surface. Plant Cell 29:1642–56
    [Google Scholar]
  134. Müller P, Rogers KW, Jordan BM, Lee JS, Robson D et al. 2012. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336:721–24
    [Google Scholar]
  135. Münster S, Jain A, Mietke A, Pavlopoulos A, Grill SW, Tomancak P 2019. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature 568:395–99
    [Google Scholar]
  136. Muroyama A, Lechler T. 2017. Microtubule organization, dynamics and functions in differentiated cells. Development 144:3012–21
    [Google Scholar]
  137. Nance J, Zallen JA. 2011. Elaborating polarity: PAR proteins and the cytoskeleton. Development 138:799–809
    [Google Scholar]
  138. Nath U, Crawford BCW, Carpenter R, Coen E 2003. Genetic control of surface curvature. Science 299:1404–7
    [Google Scholar]
  139. Nebenführ A, Dixit R. 2018. Kinesins and myosins: molecular motors that coordinate cellular functions in plants. Annu. Rev. Plant Biol. 69:329–61
    [Google Scholar]
  140. Needleman D, Dogic Z. 2017. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2:17048
    [Google Scholar]
  141. Nelson CM. 2009. Geometric control of tissue morphogenesis. Biochim. Biophys. Acta Mol. Cell Res. 1793:903–10
    [Google Scholar]
  142. Newman SA, Bhat R. 2009. Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form. Int. J. Dev. Biol. 53:693–705
    [Google Scholar]
  143. Noblin X, Rojas NO, Westbrook J, Llorens C, Argentina M, Dumais J 2012. The fern sporangium: a unique catapult. Science 335:1322
    [Google Scholar]
  144. Noll N, Mani M, Heemskerk I, Streichan SJ, Shraiman BI 2017. Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nat. Phys. 13:1221–26
    [Google Scholar]
  145. Nowell CS, Odermatt PD, Azzolin L, Hohnel S, Wagner EF et al. 2016. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat. Cell Biol. 18:168–80
    [Google Scholar]
  146. Pan KZ, Saunders TE, Flor-Parra I, Howard M, Chang F 2014. Cortical regulation of cell size by a sizer cdr2p. eLife 3:e02040
    [Google Scholar]
  147. Pan Y, Heemskerk I, Ibar C, Shraiman BI, Irvine KD 2016. Differential growth triggers mechanical feedback that elevates Hippo signaling. PNAS 113:E6974–83
    [Google Scholar]
  148. Peaucelle A, Wightman R, Höfte H 2015. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 25:1746–52
    [Google Scholar]
  149. Pérez-González C, Alert R, Blanch-Mercader C, Gómez-González M, Kolodziej T et al. 2019. Active wetting of epithelial tissues. Nat. Phys. 15:79–88
    [Google Scholar]
  150. Petkova MD, Tkačik G, Bialek W, Wieschaus EF, Gregor T 2019. Optimal decoding of cellular identities in a genetic network. Cell 176:844–55.e15
    [Google Scholar]
  151. Pinto-Teixeira F, Konstantinides N, Desplan C 2016. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 590:2435–53
    [Google Scholar]
  152. Potter C. 2001. Mechanisms of size control. Curr. Opin. Genet. Dev. 11:279–86
    [Google Scholar]
  153. Prost J, Jülicher F, Joanny J-F 2015. Active gel physics. Nat. Phys. 11:111–17
    [Google Scholar]
  154. Ramírez-Weber F-A, Kornberg TB. 1999. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607
    [Google Scholar]
  155. Ray RP, Matamoro-Vidal A, Ribeiro PS, Tapon N, Houle D et al. 2015. Patterned anchorage to the apical extracellular matrix defines tissue shape in the developing appendages of Drosophila. Dev. . Cell 34:310–22
    [Google Scholar]
  156. Rayle DL, Cleland R. 1970. Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–53
    [Google Scholar]
  157. Recho P, Hallou A, Hannezo E 2019. Theory of mechanochemical patterning in biphasic biological tissues. PNAS 116:5344–49
    [Google Scholar]
  158. Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K et al. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:255–60
    [Google Scholar]
  159. Rexin D, Meyer C, Robaglia C, Veit B 2015. TOR signalling in plants. Biochem. J. 470:1–14
    [Google Scholar]
  160. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T et al. 2001. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–86
    [Google Scholar]
  161. Rogers KW, Schier AF. 2011. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27:377–407
    [Google Scholar]
  162. Rupprecht J-F, Ong KH, Yin J, Huang A, Dinh H-H-Q et al. 2017. Geometric constraints alter cell arrangements within curved epithelial tissues. Mol. Biol. Cell 28:3582–94
    [Google Scholar]
  163. Salazar-Ciudad I, Jernvall J. 2010. A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–86
    [Google Scholar]
  164. Sapala A, Runions A, Routier-Kierzkowska A-L, Das Gupta M, Hong L et al. 2018. Why plants make puzzle cells, and how their shape emerges. eLife 7:e32794
    [Google Scholar]
  165. Sassi M, Ali O, Boudon F, Cloarec G, Abad U et al. 2014. An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr. Biol 24:2335–42
    [Google Scholar]
  166. Sauer FC. 1935. Mitosis in the neural tube. J. Comp. Neurol. 62:377–405
    [Google Scholar]
  167. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H et al. 2011. On the growth and form of the gut. Nature 476:57–62
    [Google Scholar]
  168. Saw TB, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S et al. 2017. Topological defects in epithelia govern cell death and extrusion. Nature 544:212–16
    [Google Scholar]
  169. Segalen M, Bellaïche Y. 2009. Cell division orientation and planar cell polarity pathways. Semin. Cell Dev. Biol. 20:972–77
    [Google Scholar]
  170. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M et al. 2019. Self-organization and symmetry breaking in intestinal organoid development. Nature 569:66–72
    [Google Scholar]
  171. Sherrard K, Robin F, Lemaire P, Munro E 2010. Sequential activation of apical and basolateral contractility drives ascidian endoderm invagination. Curr. Biol. 20:1499–510
    [Google Scholar]
  172. Sheth R, Marcon L, Bastida MF, Junco M, Quintana L et al. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338:1476–80
    [Google Scholar]
  173. Shih H-W, Miller ND, Dai C, Spalding EP, Monshausen GB 2014. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24:1887–92
    [Google Scholar]
  174. Shraiman BI. 2005. Mechanical feedback as a possible regulator of tissue growth. PNAS 102:3318–23
    [Google Scholar]
  175. Skopelitis DS, Husbands AY, Timmermans MC 2012. Plant small RNAs as morphogens. Curr. Opin. Cell Biol. 24:217–24
    [Google Scholar]
  176. Smutny M, Ákos Z, Grigolon S, Shamipour S, Ruprecht V et al. 2017. Friction forces position the neural anlage. Nat. Cell Biol. 19:306–17
    [Google Scholar]
  177. Sui L, Alt S, Weigert M, Dye N, Eaton S et al. 2018. Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nat. Commun. 9:4620
    [Google Scholar]
  178. Sun Z, Amourda C, Shagirov M, Hara Y, Saunders TE, Toyama Y 2017. Basolateral protrusion and apical contraction cooperatively drive Drosophila germ-band extension. Nat. Cell Biol. 19:375–83
    [Google Scholar]
  179. Tepfer M, Taylor IEP. 1981. The permeability of plant cell walls as measured by gel filtration chromatography. Science 213:761–63
    [Google Scholar]
  180. Tetley RJ, Staddon MF, Heller D, Hoppe A, Banerjee S, Mao Y 2019. Tissue fluidity promotes epithelial wound healing. Nat. Phys. 15:1195–203
    [Google Scholar]
  181. Thompson DW. 1917. On Growth and Form Cambridge, UK: Cambridge Univ. Press
  182. Tlili S, Yin J, Rupprecht J-F, Mendieta-Serrano MA, Weissbart G et al. 2019. Shaping the zebrafish myotome by intertissue friction and active stress. PNAS 116:25430–39
    [Google Scholar]
  183. Totaro A, Panciera T, Piccolo S 2018. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 20:888–99
    [Google Scholar]
  184. Tozluoǧlu M, Duda M, Kirkland NJ, Barrientos R, Burden JJ et al. 2019. Planar differential growth rates initiate precise fold positions in complex epithelia. Dev. Cell 51:299–312.e4
    [Google Scholar]
  185. Tran D, Galletti R, Neumann ED, Dubois A, Sharif-Naeini R et al. 2017. A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1. Nat. Commun. 8:1009
    [Google Scholar]
  186. Tsai TY-C, Sikora M, Xia P, Colak-Champollion T, Knaut H et al. 2019. An adhesion code ensures robust pattern formation during tissue morphogenesis. bioRxiv 803635. https://doi.org/10.1101/803635
    [Crossref]
  187. Tsukaya H. 2019. Has the impact of endoreduplication on cell size been overestimated. ? New Phytol 223:11–15
    [Google Scholar]
  188. Ueda M, Berger F. 2019. New cues for body axis formation in plant embryos. Curr. Opin. Plant Biol. 47:16–21
    [Google Scholar]
  189. Umetsu D, Aigouy B, Aliee M, Sui L, Eaton S et al. 2014. Local increases in mechanical tension shape compartment boundaries by biasing cell intercalations. Curr. Biol. 24:1798–805
    [Google Scholar]
  190. Umulis DM, Othmer HG. 2013. Mechanisms of scaling in pattern formation. Development 140:4830–43
    [Google Scholar]
  191. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J 2006. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8:957–62
    [Google Scholar]
  192. Verger S, Liu M, Hamant O 2019. Mechanical conflicts in twisting growth revealed by cell-cell adhesion defects. Front. Plant Sci. 10:173
    [Google Scholar]
  193. Verger S, Long Y, Boudaoud A, Hamant O 2018. A tension-adhesion feedback loop in plant epidermis. eLife 7:e34460
    [Google Scholar]
  194. Viktorinová I, Dahmann C. 2013. Microtubule polarity predicts direction of egg chamber rotation in Drosophila. Curr. Biol 23:1472–77
    [Google Scholar]
  195. Wang X, Merkel M, Sutter LB, Erdemci-Tandogan G, Manning ML, Kasza KE 2019. Anisotropy links cell shapes to a solid-to-fluid transition during convergent extension. bioRxiv 781492. https://doi.org/10.1101/781492
    [Crossref]
  196. Wang Y-C, Khan Z, Kaschube M, Wieschaus EF 2012. Differential positioning of adherens junctions is associated with initiation of epithelial folding. Nature 484:390–93
    [Google Scholar]
  197. Wartlick O, Mumcu P, Kicheva A, Bittig T, Seum C et al. 2011. Dynamics of Dpp signaling and proliferation control. Science 331:1154–59
    [Google Scholar]
  198. Wells RE, Barry JD, Warrington SJ, Cuhlmann S, Evans P et al. 2013. Control of tissue morphology by Fasciclin III-mediated intercellular adhesion. Development 140:3858–68
    [Google Scholar]
  199. Whitewoods CD, Coen E. 2017. Growth and development of three-dimensional plant form. Curr. Biol. 27:R910–18
    [Google Scholar]
  200. Whitewoods CD, Gonçalves B, Cheng J, Cui M, Kennaway R et al. 2020. Evolution of carnivorous traps from planar leaves through simple shifts in gene expression. Science 367:91–96
    [Google Scholar]
  201. Williamson R. 1990. Alignment of cortical microtubules by anisotropic wall stresses. Aust. J. Plant Physiol. 17:601–13
    [Google Scholar]
  202. Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, Reddy GV 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–30
    [Google Scholar]
  203. Zenker J, White MD, Gasnier M, Alvarez YD, Lim HYG et al. 2018. Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173:776–91.e17
    [Google Scholar]
  204. Zenker J, White MD, Templin RM, Parton RG, Thorn-Seshold O et al. 2017. A microtubule-organizing center directing intracellular transport in the early mouse embryo. Science 357:925–28
    [Google Scholar]
  205. Zhang S, Amourda C, Garfield D, Saunders TE 2018. Selective filopodia adhesion ensures robust cell matching in the Drosophila heart. Dev. Cell 46:189–203.e4
    [Google Scholar]
  206. Zhong M, Komarova Y, Rehman J, Malik AB 2018. Mechanosensing Piezo channels in tissue homeostasis including their role in lungs. Pulm. Circ. 8: https://doi.org/10.1177/2045894018767393
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-012820-103850
Loading
/content/journals/10.1146/annurev-cellbio-012820-103850
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error