1932

Abstract

As cells grow, the size and number of their internal organelles increase in order to keep up with increased metabolic requirements. Abnormal size of organelles is a hallmark of cancer and an important aspect of diagnosis in cytopathology. Most organelles vary in either size or number, or both, as a function of cell size, but the mechanisms that create this variation remain unclear. In some cases, organelle size appears to scale with cell size through processes of relative growth, but in others the size may be set by either active measurement systems or genetic programs that instruct organelle biosynthetic activities to create organelles of a size appropriate to a given cell type.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-020520-113246
2020-10-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-020520-113246.html?itemId=/content/journals/10.1146/annurev-cellbio-020520-113246&mimeType=html&fmt=ahah

Literature Cited

  1. Agar HA, Douglas HC. 1957. Studies of the cytological structure of yeast: electron microscopy of thin sections. J. Bacteriol. 70:427–34
    [Google Scholar]
  2. Avasthi P, Onishi M, Karpiak J, Yamamoto R, Mackinder L et al. 2014. Actin is required for IFT regulation in Chlamydomonas reinhardtii. Curr. Biol 24:2025–32
    [Google Scholar]
  3. Baetcke KP, Sparrow AH, Nauman CH, Schwemmer SS 1967. The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). PNAS 58:533–40
    [Google Scholar]
  4. Bakowska J, Jerka-Dziadosz M. 1980. Ultrastructural aspect of size dependent regulation of surface pattern of complex ciliary organelle in a protozoan ciliate. J. Embryol. Exp. Morphol. 59:355–75
    [Google Scholar]
  5. Bakshi S, Siryaporn A, Goulian M, Weisshaar M 2012. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85:21–38
    [Google Scholar]
  6. Bernales S, McDonald KL, Walter P 2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLOS Biol 4:e423
    [Google Scholar]
  7. Bonifacino JS, Lippincott-Schwartz J. 2003. Coat proteins: shaping membrane transport. Nat. Rev. Mol. Cell Biol. 4:409–14
    [Google Scholar]
  8. Brownlee C, Heald R. 2019. Importin α partitioning to the plasma membrane regulates intracellular scaling. Cell 176:805–15
    [Google Scholar]
  9. Bryan AK, Goranov A, Amon A, Manalis SR 2010. Measurement of mass, density, and volume during the cell cycle of yeast. PNAS 107:999–1004
    [Google Scholar]
  10. Butterfass T. 1973. Control of plastid division by means of nuclear DNA amount. Protoplasma 76:167–95
    [Google Scholar]
  11. Cadart C, Zlotek-Zlotkiewicz E, Venkova L, Thouvenin O, Racine V et al. 2017. Fluorescence eXclusion measurement of volume in live cells. Methods Cell Biol 139:103–20
    [Google Scholar]
  12. Chan YH, Marshall WF. 2012. How cells know the size of their organelles. Science 337:1186–89
    [Google Scholar]
  13. Chan YH, Marshall WF. 2014. Organelle size scaling of the budding yeast vacuole is tuned by membrane trafficking rates. Biophys. J. 106:1986–96
    [Google Scholar]
  14. Chan YH, Reyes L, Sohail SM, Tran NK, Marshall WF 2016. Organelle size scaling of the budding yeast vacuole by relative growth and inheritance. Curr. Biol. 26:1221–28
    [Google Scholar]
  15. Chang AY, Marshall WF. 2017. Organelles—understanding noise and heterogeneity in cell biology at an intermediate scale. J. Cell Sci. 130:819–26
    [Google Scholar]
  16. Chang AY, Marshall WF. 2019. Dynamics of living cells in a cytomorphological state space. PNAS 116:21556–62
    [Google Scholar]
  17. Chang CC, South S, Warren D, Jones J, Moser AM et al. 1999. Metabolic control of peroxisome abundance. J. Cell Sci. 112:1579–90
    [Google Scholar]
  18. Chen P, Tomschik M, Nelson KM, Oakey J, Gatlin JC, Levy DL 2019. Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J. Cell Biol. 218:4063–78
    [Google Scholar]
  19. Cookson NA, Cookson SW, Tsimring LS, Hasty J 2010. Cell cycle–dependent variations in protein concentration. Nucleic Acids Res 38:2676–81
    [Google Scholar]
  20. Cox JS, Chapman RE, Walter P 1997. The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell 8:1805–14
    [Google Scholar]
  21. Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF 2015. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J. Cell Biol. 208:223–37
    [Google Scholar]
  22. Decker M, Jaensch S, Pozniakovsky A, Zinke A, O'Connell KF et al. 2011. Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr. Biol. 21:1259–67
    [Google Scholar]
  23. Engel BD, Ludington WB, Marshall WF 2009. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J. Cell Biol. 187:81–89
    [Google Scholar]
  24. Fankhauser G. 1945. The effects of changes in chromosome number on amphibian development. Q. Rev. Biol. 20:20–78
    [Google Scholar]
  25. Flickinger CJ. 1971. Decreased formation of Golgi bodies in amebae in the presence of RNA and protein synthesis inhibitors. J. Cell Biol. 49:221–26
    [Google Scholar]
  26. Gillooly JF, Hein A, Damiani R 2015. Nuclear DNA content varies with cell size across human cell types. Cold Spring Harb. Perspect. Biol. 7:a019091
    [Google Scholar]
  27. Glazier DS. 2005. Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. Camb. Philos. Soc. 80:611–62
    [Google Scholar]
  28. Goehring NW, Hyman AA. 2012. Organelle growth control through limiting pools of cytoplasmic components. Curr. Biol. 22:R330–39
    [Google Scholar]
  29. Good MC, Vahey MD, Skandarajah A, Fletcher DA, Heald R 2013. Cytoplasmic volume modulates spindle size during embryogenesis. Science 342:856–60
    [Google Scholar]
  30. Greenan G, Brangwynne CP, Jaensch S, Gharakhani J, Jülicher F, Hyman AA 2010. Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos. Curr. Biol. 20:353–58
    [Google Scholar]
  31. Gregory TR. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol. Dis. 27:830–43
    [Google Scholar]
  32. Gregory TR. 2005. Genome size evolution in animals. The Evolution of the Genome TR Gregory 3–87 Burlington, VT: Elsevier Sci.
    [Google Scholar]
  33. Hara Y, Kimura A. 2009. Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo. Curr. Biol. 19:1549–54
    [Google Scholar]
  34. Hara Y, Kimura A. 2013. An allometric relationship between mitotic spindle width, spindle length, and ploidy in Caenorhabditis elegans embryos. Mol. Biol. Cell 24:1411–19
    [Google Scholar]
  35. Hazel J, Krutkramelis K, Mooney P, Tomschik M, Gerow K et al. 2013. Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 342:853–56
    [Google Scholar]
  36. Hendel N, Thomson M, Marshall WF 2018. Diffusion as a ruler: modeling kinesin diffusion as a length sensor for intraflagellar transport. Biophys. J. 14:663–74
    [Google Scholar]
  37. Henery CC, Kaufman MH. 1992. Relationship between cell size and nuclear volume. i: n nucleated red blood cells of developmentally matched diploid and tetraploid mouse embryos. J. Exp. Zool. 261:472–78
    [Google Scholar]
  38. Hennis AS, Birky CW. 1984. Stochastic partitioning of chloroplasts at cell division in the alga Olisthodiscus, and compensating control of chloroplast replication. J. Cell Sci. 70:1–15
    [Google Scholar]
  39. Hirakow R, Gotoh T. 1980. Quantitative studies on the ultrastructural differentiation and growth of mammalian cardiac muscle cells. II: The atria and ventricles of the guinea pig. Acta Anat 108:230–37
    [Google Scholar]
  40. Huxley JS. 1932. Problems of Relative Growth New York: Dial
  41. Ishikawa H, Marshall WF. 2017. Testing the time-of-flight model for flagellar length sensing. Mol. Biol. Cell 28:3447–56
    [Google Scholar]
  42. Jevtić P, Schibler AC, Wesley CC, Pegoraro G, Misteli T, Levy DL 2019. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep 20:e47283
    [Google Scholar]
  43. Jorgensen P, Edgington NP, Schneider BL, Rupes I, Tyers M, Futcher B 2007. The size of the nucleus increases as yeast cells grow. Mol. Biol. Cell 18:3523–32
    [Google Scholar]
  44. Keller LC, Wemmer KA, Marshall WF 2010. Influence of centriole number on mitotic spindle length and symmetry. Cytoskeleton 67:504–18
    [Google Scholar]
  45. Kieserman EK, Heald R. 2011. Mitotic chromosome size scaling in Xenopus. Cell Cycle 10:3863–70
    [Google Scholar]
  46. Kirschner M, Gerhart J, Mitchison T 2000. Molecular “vitalism.”. Cell 100:79–88
    [Google Scholar]
  47. Kuchka MR, Jarvik JW. 1982. Analysis of flagellar size control using a mutant of Chlamydomonas reinhardtii with a variable number of flagella. J. Cell Biol. 92:170–75
    [Google Scholar]
  48. Lacroix B, Letort G, Pitayu L, Sallé J, Stefanutti M et al. 2018. Microtubule dynamics scale with cell size to set spindle length and assembly timing. Dev. Cell 45:496–511
    [Google Scholar]
  49. Ladouceur AM, Dorn JF, Maddox PS 2015. Mitotic chromosome length scales in response to both cell and nuclear size. J. Cell Biol. 209:645–51
    [Google Scholar]
  50. Levy DL, Heald R. 2010. Nuclear size is regulated by importin α and Ntf2 in Xenopus. . Cell 143:288–98
    [Google Scholar]
  51. Lin J, Amir A. 2018. Homeostasis of protein and mRNA concentrations in growing cells. Nat. Commun. 9:4496
    [Google Scholar]
  52. Liu F, Lu Y, Pieuchot L, Dhavale T, Jedd G 2011. Import oligomers induce positive feedback to promote peroxisome differentiation and control organelle abundance. Dev. Cell 21:457–68
    [Google Scholar]
  53. Loughlin R, Wilbur JD, McNally FJ, Nédélec FJ, Heald R 2011. Katanin contributes to interspecies spindle length scaling in Xenopus. . Cell 147:1397–407
    [Google Scholar]
  54. Ludington WB, Ishikawa H, Serebrenik YV, Ritter A, Hernandez-Lopez RA et al. 2015. A systematic comparison of mathematical models for inherent measurement of ciliary length: how a cell can measure length and volume. Biophys. J. 108:1361–79
    [Google Scholar]
  55. Ludington WB, Shi LZ, Zhu Q, Berns MW, Marshall WF 2012. Organelle size equalization by a constitutive process. Curr. Biol. 22:2173–79
    [Google Scholar]
  56. Ludington WB, Wemmer KA, Lechtreck KF, Witman GB, Marshall WF 2013. Avalanche-like behavior in ciliary import. PNAS 110:3925–30
    [Google Scholar]
  57. Marshall WF. 2007. Stability and robustness of an organelle number control system: modeling and measuring homeostatic regulation of centriole abundance. Biophys. J. 93:1818–33
    [Google Scholar]
  58. Marshall WF, Qin H, Rodrigo Brenni M, Rosenbaum JL 2005. Flagellar length control system: testing a simple model based on intraflagellar transport. Mol. Biol. Cell 16:270–78
    [Google Scholar]
  59. Martínez-Martín D, Fläschner G, Gaub B, Martin S, Newton R et al. 2017. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550:500–5
    [Google Scholar]
  60. Miettinen TP, Björklund M. 2016. Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev. Cell 39:370–82
    [Google Scholar]
  61. Miller SE, Mathiasen S, Bright NA, Pierre F, Kelly BT et al. 2015. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33:163–75
    [Google Scholar]
  62. Mitchison T, Wuehr M, Nguyen P, Ishihara K, Groen A, Field CM 2012. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton 69:738–50
    [Google Scholar]
  63. Morgan TH. 1901. Regeneration of proportionate structures in Stentor. Biol. Bull. 2:311–28
    [Google Scholar]
  64. Mukherji S, O'Shea EK. 2014. Mechanisms of organelle biogenesis govern stochastic fluctuations in organelle abundance. eLife 3:e02678
    [Google Scholar]
  65. Nanjundappa R, Kong D, Shim K, Stearns T, Brody SL et al. 2019. Regulation of cilia abundance in multiciliated cells. eLife 8:e44039
    [Google Scholar]
  66. Naoz M, Manor U, Sakaguchi H, Kachar B, Gov NS 2008. Protein localization by actin treadmilling and molecular motors regulates stereocilia shape and treadmilling rate. Biophys. J. 95:5706–18
    [Google Scholar]
  67. Neumann FR, Nurse P. 2007. Nuclear size control in fission yeast. J. Cell Biol. 179:593–600
    [Google Scholar]
  68. Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP et al. 2019. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176:1083–97
    [Google Scholar]
  69. Noel JS, Dewey WC, Abel JH, Thompson RP 1971. Ultrastructure of the nucleolus during the Chinese hamster cell cycle. J. Cell Biol. 49:830–47
    [Google Scholar]
  70. Organ CL, Shedlock AM, Maede A, Pagel M, Edwards SV 2007. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446:180–84
    [Google Scholar]
  71. Park K, Millet LJ, Kim N, Li H, Jin X et al. 2010. Measurement of adherent cell mass and growth. PNAS 107:20691–96
    [Google Scholar]
  72. Pellegrini M. 1980. Three-dimensional reconstruction of organelles in Euglena gracilis Z. I. Qualitative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous photoautotrophic culture. J. Cell Sci. 43:137–66
    [Google Scholar]
  73. Posakony JW, England JM, Attardi G 1977. Mitochondrial growth and division during the cell cycle in HeLa cells. J. Cell Biol. 74:468–91
    [Google Scholar]
  74. Possingham JV, Sauer W. 1969. Changes in chloroplast number per cell during leaf development in spinach. Planta 86:186–94
    [Google Scholar]
  75. Rafelski SM, Marshall WF. 2008. Building the cell: design principles of cellular architecture. Nat. Rev. Mol. Cell Biol. 9:593–602
    [Google Scholar]
  76. Rafelski SM, Viana MP, Zhang Y, Chan YH, Thorn KS et al. 2012. Mitochondrial network size scaling in budding yeast. Science 338:822–24
    [Google Scholar]
  77. Reber S, Goehring NW. 2015. Intracellular scaling mechanisms. Cold Spring Harb. Perspect. Biol. 7:a019067
    [Google Scholar]
  78. Rosenbaum JL, Moulder JE, Ringo DL 1969. Flagellar elongation and shortening in Chlamydomonas: the use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J. Cell Biol. 41:600–19
    [Google Scholar]
  79. Rosenblatt T, Doeler W, Ruschenburg I, Droese M, Harder D 1993. Application of form features in digital cell analysis of non-Hodgkin's lymphoma. Comput. Biol. Med. 23:483–95
    [Google Scholar]
  80. Schuck S, Prinz WA, Thorn KS, Voss C, Walter P 2009. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 187:525–36
    [Google Scholar]
  81. Sleigh MA. 1962. The Biology of Cilia and Flagella New York: Macmillan
  82. Smith JJ, Brown TW, Eitzen GA, Rachubinski RA 2000. Regulation of peroxisome size and number by fatty acid β-oxidation in the yeast Yarrowia lipolytica. J. Biol. . Chem 275:20168–78
    [Google Scholar]
  83. Son S, Kang JH, Oh S, Kirschner MW, Mitchison TJ, Manalis S 2015. Resonant microchannel volume and mass measurements show that suspended cells swell during mitosis. J. Cell Biol. 211:757–63
    [Google Scholar]
  84. Stidwell RP, Burgess DR. 1986. Regulation of intestinal brush border microvillus length during development by the G- to F-actin ratio. Dev. Biol. 114:381–88
    [Google Scholar]
  85. Sung Y, Tzur A, Oh S, Choi W, Li V et al. 2013. Size homeostasis in adherent cells studied by synthetic phase microscopy. PNAS 110:16687–92
    [Google Scholar]
  86. Tang SKY, Marshall WF. 2017. Self-repairing cells: how single cells heal membrane ruptures and restore lost structures. Science 356:1022–25
    [Google Scholar]
  87. Uchida M, Sun Y, McDermott G, Knoechel C, LeGros MA et al. 2011. Quantitative analysis of yeast internal architecture using soft X-ray tomography. Yeast 28:227–36
    [Google Scholar]
  88. Veenhuis M, Kiel JAKW, Van der Klei IJ 2003. Peroxisome assembly in yeast. Microsc. Res. Tech. 61:139–50
    [Google Scholar]
  89. Vuković LD, Jevtić P, Zhang Z, Stohr BA, Levy DL 2016. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding. J. Cell Sci. 129:1115–27
    [Google Scholar]
  90. Walters AD, Amoateng K, Wang R, Chen JH, McDermott G et al. 2019. Nuclear envelope expansion in budding yeast is independent of cell growth and does not determine nuclear volume. Mol. Biol. Cell 30:131–45
    [Google Scholar]
  91. Weber SC, Brangwynne CP. 2015. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 25:641–46
    [Google Scholar]
  92. Wemmer KA, Ludington W, Marshall WF 2020. Testing the role of intraflagellar transport in flagellar length control using length-altering mutants of Chlamydomonas. Philos. Trans. R. Soc. B 375:20190159
    [Google Scholar]
  93. Wemmer KA, Marshall WF. 2007. Flagellar length control in Chlamydomonas—a paradigm for organelle size regulation. Int. Rev. Cytol. 260:175–212
    [Google Scholar]
  94. Wiest DL, Burkhardt JK, Hester S, Hortsch M, Meyer DI, Argon Y 1990. Membrane biogenesis during B cell differentiation: Most endoplasmic reticulum proteins are expressed coordinately. J. Cell Biol. 110:1501–11
    [Google Scholar]
  95. Wren KN, Craft JM, Tritschler D, Schauer A, Patel DK et al. 2013. A differential cargo-loading model of ciliary length regulation by IFT. Curr. Biol. 23:2463–71
    [Google Scholar]
  96. Wuehr M, Chen Y, Dumont S, Groen AC, Needleman DJ et al. 2008. Evidence for an upper limit to mitotic spindle length. Curr. Biol. 18:1256–61
    [Google Scholar]
  97. Wuehr M, Tan ES, Parker SK, Detrich HW III, Mitchison TJ 2010. A model for cleavage plane determination in early amphibian and fish embryos. Curr. Biol. 20:2040–45
    [Google Scholar]
  98. Zhang B, Koh YH, Beckstead RB, Rudnik V, Ganetzky B, Bellen HJ 1998. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21:1465–75
    [Google Scholar]
  99. Zlotek-Zlotkiewicz E, Monnier S, Cappello G, Le Berre M, Piel M 2015. Optical volume and mass measurements show that mammalian cells swell during mitosis. J. Cell Biol. 211:765–74
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-020520-113246
Loading
/content/journals/10.1146/annurev-cellbio-020520-113246
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error