1932

Abstract

Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal–fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-021120-033518
2020-10-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-021120-033518.html?itemId=/content/journals/10.1146/annurev-cellbio-021120-033518&mimeType=html&fmt=ahah

Literature Cited

  1. Abdallah MW, Larsen N, Grove J, Nørgaard-Pedersen B, Thorsen P et al. 2012. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav. Immun. 26:1170–76
    [Google Scholar]
  2. Abrahams VM, Bole-Aldo P, Kim YM, Straszewski-Chavez SL, Chaiworapongsa T et al. 2004. Divergent trophoblast responses to bacterial products mediated by TLRs. J. Immunol. 173:74286–96
    [Google Scholar]
  3. Abrahams VM, Mor G. 2005. Toll-like receptors and their role in the trophoblast. Placenta 26:7540–47
    [Google Scholar]
  4. Abrahams VM, Schaefer TM, Fahey JV, Visintin I, Wright JA et al. 2006. Expression and secretion of antiviral factors by trophoblast cells following stimulation by the TLR-3 agonist, Poly(I: C). Hum. Reprod. 21:92432–39
    [Google Scholar]
  5. Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, Mor G 2005. A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. J. Immunol. 175:128096–104
    [Google Scholar]
  6. Alvarado AG, Lathia JD. 2016. Taking a Toll on self-renewal: TLR-mediated innate immune signaling in stem cells. Trends Neurosci 39:7463–71
    [Google Scholar]
  7. Ander SE, Diamond MS, Coyne CB 2019. Immune responses at the maternal-fetal interface. Sci. Immunol. 4:31eaat6114
    [Google Scholar]
  8. Atladóttir HÓ, Thorsen P, Østergaard L, Schendel DE, Lemcke S et al. 2010. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 40:121423–30
    [Google Scholar]
  9. Bagri A, Gurney T, He X, Zou Y-R, Littman DR et al. 2002. The chemokine SDF1 regulates migration of dentate granule cells. Development 129:184249–60
    [Google Scholar]
  10. Barker V, Middleton G, Davey F, Davies AM 2001. TNFα contributes to the death of NGF-dependent neurons during development. Nat. Neurosci. 4:121194–98
    [Google Scholar]
  11. Barnabé-Heider F, Wasylnka JA, Fernandes KJL, Porsche C, Sendtner M et al. 2005. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:2253–65
    [Google Scholar]
  12. Bashiri A, Burstein E, Mazor M 2006. Cerebral palsy and fetal inflammatory response syndrome: a review. J. Perinat. Med. 34:1512
    [Google Scholar]
  13. Bayer A, Delorme-Axford E, Sleigher C, Frey TK, Trobaugh DW et al. 2015. Human trophoblasts confer resistance to viruses implicated in perinatal infection. Am. J. Obstet. Gynecol. 212:171.e1–e8
    [Google Scholar]
  14. Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S et al. 2016. Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 19:5705–12
    [Google Scholar]
  15. Bell MJ, Hallenbeck JM. 2002. Effects of intrauterine inflammation on developing rat brain. J. Neurosci. Res. 70:4570–79
    [Google Scholar]
  16. Benros ME, Mortensen PB, Eaton WW 2012. Autoimmune diseases and infections as risk factors for schizophrenia. Ann. N. Y. Acad. Sci. 1262:156–66
    [Google Scholar]
  17. Bialuk I, Taranta A, Winnicka MM 2018. IL-6 deficiency alters spatial memory in 4- and 24-month-old mice. Neurobiol. Learn. Mem. 155:21–29
    [Google Scholar]
  18. Bilbo SD, Schwarz JM. 2012. The immune system and developmental programming of brain and behavior. Front. Neuroendocrinol. 33:3267–86
    [Google Scholar]
  19. Bilimoria PM, Stevens B. 2015. Microglia function during brain development: new insights from animal models. Brain Res 1617:7–17
    [Google Scholar]
  20. Borsini A, Zunszain PA, Thuret S, Pariante CM 2015. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38:3145–57
    [Google Scholar]
  21. Bowen JM, Chamley L, Mitchell MD, Keelan JA 2002. Cytokines of the placenta and extra-placental membranes: biosynthesis, secretion and roles in establishment of pregnancy in women. Placenta 23:4239–56
    [Google Scholar]
  22. Brown AS. 2006. Prenatal infection as a risk factor for schizophrenia. Schizophr. Bull. 32:2200–2
    [Google Scholar]
  23. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E et al. 2004. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am. J. Psychiatry 161:5889–95
    [Google Scholar]
  24. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Sundvall J, Surcel H-M 2014. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol. Psychiatry 19:2259–64
    [Google Scholar]
  25. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Wagner RL, Yolken RH 2001. Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav. Immun. 15:4411–20
    [Google Scholar]
  26. Bulla R, Bossi F, Agostinis C, Radillo O, Colombo F et al. 2009. Complement production by trophoblast cells at the feto-maternal interface. J. Reprod. Immunol. 82:2119–25
    [Google Scholar]
  27. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D 1991. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum. Reprod. 6:6791–98
    [Google Scholar]
  28. Bulmer JN, Williams PJ, Lash GE 2010. Immune cells in the placental bed. Int. J. Dev. Biol. 54:2–3281–94
    [Google Scholar]
  29. Burns TM, Clough JA, Klein RM, Wood GW, Berman NE 1993. Developmental regulation of cytokine expression in the mouse brain. Growth Factors 9:4253–58
    [Google Scholar]
  30. Canetta S, Sourander A, Surcel H-M, Hinkka-Yli-Salomäki S, Leiviskä J et al. 2014. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am. J. Psychiatry 171:9960–68
    [Google Scholar]
  31. Careaga M, Murai T, Bauman MD 2017. Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol. Psychiatry 81:5391–401
    [Google Scholar]
  32. Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M et al. 2011. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev. Cell 21:61026–37
    [Google Scholar]
  33. Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA 2003. A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J. Neurosci. 23:41360–71
    [Google Scholar]
  34. Chess S. 1971. Autism in children with congenital rubella. J. Autism Child Schizophr. 1:33–47
    [Google Scholar]
  35. Choi GB, Yim YS, Wong H, Kim S, Kim H et al. 2016. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351:6276933–39
    [Google Scholar]
  36. Chua JSC, Rofe AM, Coyle P 2006. Dietary zinc supplementation ameliorates LPS-induced teratogenicity in mice. Pediatr. Res. 59:3355–58
    [Google Scholar]
  37. Collins JG, Smith MA, Arnold RR, Offenbacher S 1994. Effects of Escherichia coli and Porphyromonas gingivalis lipopolysaccharide on pregnancy outcome in the golden hamster. Infect. Immun. 62:104652–55
    [Google Scholar]
  38. Copp AJ, Stanier P, Greene NDE 2013. Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol 12:8799–810
    [Google Scholar]
  39. Corradini I, Focchi E, Rasile M, Morini R, Desiato G et al. 2018. Maternal immune activation delays excitatory-to-inhibitory gamma-aminobutyric acid switch in offspring. Biol. Psychiatry 83:8680–91
    [Google Scholar]
  40. Coulthard LG, Hawksworth OA, Conroy J, Lee JD, Woodruff TM 2018a. Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance. Mol. Immunol. 101:176–81
    [Google Scholar]
  41. Coulthard LG, Hawksworth OA, Li R, Balachandran A, Lee JD et al. 2017. Complement C5aR1 signaling promotes polarization and proliferation of embryonic neural progenitor cells through PKCζ. J. Neurosci. 37:225395–407
    [Google Scholar]
  42. Coulthard LG, Hawksworth OA, Woodruff TM 2018b. Complement: the emerging architect of the developing brain. Trends Neurosci 41:6373–84
    [Google Scholar]
  43. Coyne CB, Lazear HM. 2016. Zika virus—reigniting the TORCH. Nat. Rev. Microbiol. 14:11707–15
    [Google Scholar]
  44. Cross-Disord. Group Psychiatr. Genom. Consort. 2019. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179:71469–82.e11
    [Google Scholar]
  45. Dahlgren J, Samuelsson A-M, Jansson T, Holmäng A 2006. Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation. Pediatr. Res. 60:2147–51
    [Google Scholar]
  46. Davies NP, Buggins AG, Snijders RJ, Jenkins E, Layton DM, Nicolaides KH 1992. Blood leucocyte count in the human fetus. Arch. Dis. Child. 67:4399–403
    [Google Scholar]
  47. Delorme-Axford E, Donker RB, Mouillet J-F, Chu T, Bayer A et al. 2013. Human placental trophoblasts confer viral resistance to recipient cells. PNAS 110:2912048–53
    [Google Scholar]
  48. Denny KJ, Coulthard LG, Jeanes A, Lisgo S, Simmons DG et al. 2013. C5a receptor signaling prevents folate deficiency–induced neural tube defects in mice. J. Immunol. 190:73493–99
    [Google Scholar]
  49. Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A et al. 2010. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207:51067–80
    [Google Scholar]
  50. Desmond MM, Wilson GS, Melnick JL, Singer DB, Zion TE et al. 1967. Congenital rubella encephalitis: course and early sequelae. J. Pediatr. 71:3311–31
    [Google Scholar]
  51. Deverman BE, Patterson PH. 2009. Cytokines and CNS development. Neuron 64:161–78
    [Google Scholar]
  52. Doehner J, Genoud C, Imhof C, Krstic D, Knuesel I 2012. Extrusion of misfolded and aggregated proteins—a protective strategy of aging neurons?. Eur. J. Neurosci. 35:121938–50
    [Google Scholar]
  53. Dohi E, Choi EY, Rose IVL, Murata AS, Chow S et al. 2017. Behavioral changes in mice lacking interleukin-33. eNeuro 4:6 ENEURO.0147-17.2017
    [Google Scholar]
  54. Dzamko N, Geczy CL, Halliday GM 2015. Inflammation is genetically implicated in Parkinson's disease. Neuroscience 302:89–102
    [Google Scholar]
  55. Dziembowska M, Tham TN, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M 2005. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50:3258–69
    [Google Scholar]
  56. Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH et al. 2010. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr. Res. 121:1–346–54
    [Google Scholar]
  57. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW 2011. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLOS ONE 6:10e26317 Erratum. 2012. PLOS ONE 7(1). https://doi.org/10.1371/annotation/5dc1b3a6-ac3c-4c63-951d-cf355ffe7b48
    [Crossref] [Google Scholar]
  58. Erlebacher A. 2013. Immunology of the maternal-fetal interface. Annu. Rev. Immunol. 31:387–411
    [Google Scholar]
  59. Estes ML, McAllister AK. 2016. Maternal immune activation: implications for neuropsychiatric disorders. Science 353:6301772–77
    [Google Scholar]
  60. Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang H-R 2018. Expression and function of IL-33/ST2 axis in the central nervous system under normal and diseased conditions. Front. Immunol. 9:2596
    [Google Scholar]
  61. Femenia T, Qian Y, Arentsen T, Forssberg H, Diaz Heijtz R 2018. Toll-like receptor-4 regulates anxiety-like behavior and DARPP-32 phosphorylation. Brain Behav. Immun. 69:273–82
    [Google Scholar]
  62. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W et al. 2016. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535:7612425–29
    [Google Scholar]
  63. Fineberg AM, Ellman LM. 2013. Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol. Psychiatry 73:10951–66
    [Google Scholar]
  64. Georgiades P, Ferguson-Smith AC, Burton GJ 2002. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 23:13–19
    [Google Scholar]
  65. Girard S, Tremblay L, Lepage M, Sébire G 2010. IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J. Immunol. 184:73997–4005
    [Google Scholar]
  66. Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A et al. 2015. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518:7539365–69
    [Google Scholar]
  67. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140:6918–34
    [Google Scholar]
  68. Gong B, Pan Y, Zhao W, Knable L, Vempati P et al. 2013. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer's disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol. Immunol. 56:4619–29
    [Google Scholar]
  69. Gorelik A, Sapir T, Haffner-Krausz R, Olender T, Woodruff TM, Reiner O 2017. Developmental activities of the complement pathway in migrating neurons. Nat. Commun. 8:15096
    [Google Scholar]
  70. Goumans MJ, Mummery C. 2000. Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44:3253–65
    [Google Scholar]
  71. Graham AM, Rasmussen JM, Rudolph MD, Heim CM, Gilmore JH et al. 2018. Maternal systemic interleukin-6 during pregnancy is associated with newborn amygdala phenotypes and subsequent behavior at 2 years of age. Biol. Psychiatry 83:2109–19
    [Google Scholar]
  72. Greene NDE, Copp AJ. 2014. Neural tube defects. Annu. Rev. Neurosci. 37:221–42
    [Google Scholar]
  73. Gregg C, Weiss S. 2005. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development 132:3565–78
    [Google Scholar]
  74. Haida O, Al Sagheer T, Balbous A, Francheteau M, Matas E et al. 2019. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl. Psychiatry 9:124
    [Google Scholar]
  75. Hanke ML, Kielian T. 2011. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin. Sci. 121:9367–87
    [Google Scholar]
  76. Hao LY, Hao XQ, Li SH, Li XH 2010. Prenatal exposure to lipopolysaccharide results in cognitive deficits in age-increasing offspring rats. Neuroscience 166:3763–70 Corrigendum. 2010. Neuroscience 169(1):555–57
    [Google Scholar]
  77. Hatta T, Moriyama K, Nakashima K, Taga T, Otani H 2002. The role of gp130 in cerebral cortical development: in vivo functional analysis in a mouse ex utero system. J. Neurosci. 22:135516–24
    [Google Scholar]
  78. Hegarty SV, O'Keeffe GW, Sullivan AM 2013. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog. Neurobiol. 109:28–41
    [Google Scholar]
  79. Heupel K, Sargsyan V, Plomp JJ, Rickmann M, Varoqueaux F et al. 2008. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function. Neural Dev 3:25
    [Google Scholar]
  80. Hoeijmakers L, Heinen Y, van Dam A-M, Lucassen PJ, Korosi A 2016. Microglial priming and Alzheimer's disease: a possible role for (early) immune challenges and epigenetics?. Front. Hum. Neurosci. 10:398
    [Google Scholar]
  81. Hoffmann JA. 2003. The immune response of Drosophila. . Nature 426:696233–38
    [Google Scholar]
  82. Holladay SD, Sharova LV, Punareewattana K, Hrubec TC, Gogal RM et al. 2002. Maternal immune stimulation in mice decreases fetal malformations caused by teratogens. Int. Immunopharmacol. 2:2–3325–32
    [Google Scholar]
  83. Holladay SD, Sharova L, Smith BJ, Gogal RM, Ward DL, Blaylock BL 2000. Nonspecific stimulation of the maternal immune system. I. Effects on teratogen-induced fetal malformations. Teratology 62:6413–19
    [Google Scholar]
  84. Holmans P, Moskvina V, Jones L, Sharma M, Vedernikov A et al. 2013. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. Hum. Mol. Genet. 22:51039–49
    [Google Scholar]
  85. Holt PG, Jones CA. 2000. The development of the immune system during pregnancy and early life. Allergy 55:8688–97
    [Google Scholar]
  86. Hong S, Song M-R. 2015. Signal transducer and activator of transcription-3 maintains the stemness of radial glia at mid-neurogenesis. J. Neurosci. 35:31011–23
    [Google Scholar]
  87. Hsi BL, Hunt JS, Atkinson JP 1991. Differential expression of complement regulatory proteins on subpopulations of human trophoblast cells. J. Reprod. Immunol. 19:3209–23
    [Google Scholar]
  88. Hsiao EY, Patterson PH. 2011. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 25:4604–15
    [Google Scholar]
  89. Hung Y-F, Chen C-Y, Li W-C, Wang T-F, Hsueh Y-P 2018a. Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain Behav. Immun. 72:101–13
    [Google Scholar]
  90. Hung Y-F, Chen C-Y, Shih Y-C, Liu HY, Huang C-M, Hsueh Y-P 2018b. Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. J. Cell Biol. 217:82727–42
    [Google Scholar]
  91. Jacobsson B, Hagberg G. 2004. Antenatal risk factors for cerebral palsy. Best Pract. Res. Clin. Obstet. Gynaecol. 18:3425–36
    [Google Scholar]
  92. Jeanes A, Coulthard LG, Mantovani S, Markham K, Woodruff TM 2015. Co-ordinated expression of innate immune molecules during mouse neurulation. Mol. Immunol. 68:2, Part A253–60
    [Google Scholar]
  93. Jiang NM, Cowan M, Moonah SN, Petri WA 2018. The impact of systemic inflammation on neurodevelopment. Trends Mol. Med. 24:9794–804
    [Google Scholar]
  94. Kashima DT, Grueter BA. 2017. Toll-like receptor 4 deficiency alters nucleus accumbens synaptic physiology and drug reward behavior. PNAS 114:338865–70
    [Google Scholar]
  95. Kaul D, Habbel P, Derkow K, Krüger C, Franzoni E et al. 2012. Expression of Toll-like receptors in the developing brain. PLOS ONE 7:5e37767
    [Google Scholar]
  96. Keil A, Daniels JL, Forssen U, Hultman C, Cnattingius S et al. 2010. Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology 21:6805–8
    [Google Scholar]
  97. Kentner AC, Bilbo SD, Brown AS, Hsiao EY, McAllister AK et al. 2019. Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology 44:2245–58
    [Google Scholar]
  98. Kim S, Kim H, Shin Yim Y, Ha S, Atarashi K et al. 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549:7673528–32
    [Google Scholar]
  99. Klein SL, Flanagan KL. 2016. Sex differences in immune responses. Nat. Rev. Immunol. 16:10626–38
    [Google Scholar]
  100. Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M et al. 2014. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10:11643–60
    [Google Scholar]
  101. Koblar SA, Turnley AM, Classon BJ, Reid KL, Ware CB et al. 1998. Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. PNAS 95:63178–81
    [Google Scholar]
  102. Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S et al. 2012. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 129:5e1121–28
    [Google Scholar]
  103. Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T et al. 2012. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflammation 9:151
    [Google Scholar]
  104. Lammert CR, Frost EL, Bolte AC, Paysour MJ, Shaw ME et al. 2018. Cutting edge: critical roles for microbiota-mediated regulation of the immune system in a prenatal immune activation model of autism. J. Immunol. 201:3845–50
    [Google Scholar]
  105. Lanning JC, Hilbelink DR, Chen LT 1983. Teratogenic effects of endotoxin on the golden hamster. Teratog. Carcinog. Mutagen. 3:2145–49
    [Google Scholar]
  106. Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sébire G 2005. Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev. Neurosci. 27:2–4134–42
    [Google Scholar]
  107. Lathia JD, Okun E, Tang S-C, Griffioen K, Cheng A et al. 2008. Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. J. Neurosci. 28:5113978–84
    [Google Scholar]
  108. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M 2003. Role of the α-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42:2139–48
    [Google Scholar]
  109. Lee JD, Coulthard LG, Woodruff TM 2019. Complement dysregulation in the central nervous system during development and disease. Semin. Immunol. 45:101340
    [Google Scholar]
  110. Lenz KM, Nelson LH. 2018. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front. Immunol. 9:0698
    [Google Scholar]
  111. Li M, Santpere G, Imamura Kawasawa Y, Evgrafov OV, Gulden FO et al. 2018. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362:6420eaat7615
    [Google Scholar]
  112. Lieberam I, Agalliu D, Nagasawa T, Ericson J, Jessell TM 2005. A Cxcl12-CXCR4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons. Neuron 47:5667–79
    [Google Scholar]
  113. Ling Z, Gayle DA, Ma SY, Lipton JW, Tong CW et al. 2001. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov. Disord. 17:1116–24
    [Google Scholar]
  114. Ling Z, Zhu Y, Tong CW, Snyder JA, Lipton JW, Carvey PM 2006. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp. Neurol. 199:2499–512
    [Google Scholar]
  115. Liu H-Y, Hong Y-F, Huang C-M, Chen C-Y, Huang T-N, Hsueh Y-P 2013. TLR7 negatively regulates dendrite outgrowth through the Myd88–c-Fos–IL-6 pathway. J. Neurosci. 33:2811479–93
    [Google Scholar]
  116. Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH 2017. The role of decidual immune cells on human pregnancy. J. Reprod. Immunol. 124:44–53
    [Google Scholar]
  117. Lu M, Grove EA, Miller RJ 2002. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. PNAS 99:107090–95
    [Google Scholar]
  118. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T et al. 1998. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. PNAS 95:169448–53
    [Google Scholar]
  119. McDonald CR, Cahill LS, Ho KT, Yang J, Kim H et al. 2015. Experimental malaria in pregnancy induces neurocognitive injury in uninfected offspring via a C5a-C5a receptor dependent pathway. PLOS Pathog 11:9e1005140
    [Google Scholar]
  120. Meyer U. 2019. Neurodevelopmental resilience and susceptibility to maternal immune activation. Trends Neurosci 42:11793–806
    [Google Scholar]
  121. Meyer U, Murray PJ, Urwyler A, Yee BK, Schedlowski M, Feldon J 2008. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol. Psychiatry 13:2208–21
    [Google Scholar]
  122. Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC et al. 1996. CSF-1 deficiency in mice results in abnormal brain development. Development 122:92661–72
    [Google Scholar]
  123. Miller BJ, Culpepper N, Rapaport MH, Buckley P 2013. Prenatal inflammation and neurodevelopment in schizophrenia: a review of human studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 42:92–100
    [Google Scholar]
  124. Mor G, Aldo P, Alvero AB 2017. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 17:8469–82
    [Google Scholar]
  125. Nahmias AJ, Walls KW, Stewart JA, Herrmann KL, Flynt WJ 1971. The ToRCH complex-perinatal infections associated with toxoplasma and rubella, cytomegol- and herpes simplex viruses. Pediatr. Res. 5:8405–6
    [Google Scholar]
  126. Nakashima K, Wiese S, Yanagisawa M, Arakawa H, Kimura N et al. 1999. Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J. Neurosci. 19:135429–34
    [Google Scholar]
  127. Nimgaonkar VL, Prasad KM, Chowdari KV, Severance EG, Yolken RH 2017. The complement system: a gateway to gene–environment interactions in schizophrenia pathogenesis. Mol. Psychiatry 22:111554–61
    [Google Scholar]
  128. Ödemis V, Lamp E, Pezeshki G, Moepps B, Schilling K et al. 2005. Mice deficient in the chemokine receptor CXCR4 exhibit impaired limb innervation and myogenesis. Mol. Cell. Neurosci. 30:4494–505
    [Google Scholar]
  129. Okun E, Barak B, Saada-Madar R, Rothman SM, Griffioen KJ et al. 2012. Evidence for a developmental role for TLR4 in learning and memory. PLOS ONE 7:10e47522
    [Google Scholar]
  130. Okun E, Griffioen K, Barak B, Roberts NJ, Castro K et al. 2010a. Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. PNAS 107:3515625–30
    [Google Scholar]
  131. Okun E, Griffioen KJ, Mattson MP 2011. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:5269–81
    [Google Scholar]
  132. Okun E, Griffioen KJ, Son TG, Lee J-H, Roberts NJ et al. 2010b. TLR2 activation inhibits embryonic neural progenitor cell proliferation. J. Neurochem. 114:2462–74
    [Google Scholar]
  133. Ornoy A, Altshuler G. 1976. Maternal endotoxemia, fetal anomalies, and central nervous system damage: a rat model of a human problem. Am. J. Obstet. Gynecol. 124:2196–204
    [Google Scholar]
  134. Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK 2004. N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J. Neurosci. Res. 78:3347–61
    [Google Scholar]
  135. Paolicelli RC, Ferretti MT. 2017. Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Front. Synaptic Neurosci. 9:9
    [Google Scholar]
  136. Park SJ, Lee JY, Kim SJ, Choi S-Y, Yune TY, Ryu JH 2015. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci. Rep. 5:8502
    [Google Scholar]
  137. Petitto JM, McNamara RK, Gendreau PL, Huang Z, Jackson AJ 1999. Impaired learning and memory and altered hippocampal neurodevelopment resulting from interleukin-2 gene deletion. J. Neurosci. Res. 56:4441–46
    [Google Scholar]
  138. Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A 2013. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann. Neurol. 74:111–19
    [Google Scholar]
  139. Poggi SH, Park J, Toso L, Abebe D, Roberson R et al. 2005. No phenotype associated with established lipopolysaccharide model for cerebral palsy. Am. J. Obstet. Gynecol. 192:3727–33
    [Google Scholar]
  140. Polioudakis D, de la Torre-Ubieta L, Langerman J, Elkins AG, Shi X et al. 2019. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron 103:5785–801.e8
    [Google Scholar]
  141. Pollard JW. 1997. Role of colony-stimulating factor-1 in reproduction and development. Mol. Reprod. Dev. 46:154–61
    [Google Scholar]
  142. Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C et al. 2015. Molecular identity of human outer radial glia during cortical development. Cell 163:155–67
    [Google Scholar]
  143. Pousset F. 1994. Developmental expression of cytokine genes in the cortex and hippocampus of the rat central nervous system. Dev. Brain Res. 81:1143–46
    [Google Scholar]
  144. PrabhuDas M, Bonney E, Caron K, Dey S, Erlebacher A et al. 2015. Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat. Immunol. 16:4328–34
    [Google Scholar]
  145. Prater MR, Johnson VJ, Germolec DR, Luster MI, Holladay SD 2006. Maternal treatment with a high dose of CpG ODN during gestation alters fetal craniofacial and distal limb development in C57BL/6 mice. Vaccine 24:3263–71
    [Google Scholar]
  146. Pronovost GN, Hsiao EY. 2019. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity 50:118–36
    [Google Scholar]
  147. Qulu L, Daniels WMU, Mabandla MV 2012. Exposure to prenatal stress enhances the development of seizures in young rats. Metab. Brain Dis. 27:3399–404
    [Google Scholar]
  148. Rechavi E, Lev A, Lee YN, Simon AJ, Yinon Y et al. 2015. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci. Transl. Med. 7:276276ra25
    [Google Scholar]
  149. Rolls A, Shechter R, London A, Ziv Y, Ronen A et al. 2007. Toll-like receptors modulate adult hippocampal neurogenesis. Nat. Cell Biol. 9:91081–88
    [Google Scholar]
  150. Roussa E, Wiehle M, Dünker N, Becker-Katins S, Oehlke O, Krieglstein K 2006. Transforming growth factor β is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells 24:92120–29
    [Google Scholar]
  151. Rousset CI, Chalon S, Cantagrel S, Bodard S, Andres C et al. 2006. Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr. Res. 59:3428–33
    [Google Scholar]
  152. Rousset CI, Kassem J, Aubert A, Planchenault D, Gressens P et al. 2013. Maternal exposure to lipopolysaccharide leads to transient motor dysfunction in neonatal rats. Dev. Neurosci. 35:2–3172–81
    [Google Scholar]
  153. Rousset CI, Kassem J, Olivier P, Chalon S, Gressens P, Saliba E 2008. Antenatal bacterial endotoxin sensitizes the immature rat brain to postnatal excitotoxic injury. J. Neuropathol. Exp. Neurol. 67:10994–1000
    [Google Scholar]
  154. Saijo K, Winner B, Carson CT, Collier JG, Boyer L et al. 2009. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:147–59
    [Google Scholar]
  155. Saito S. 2000. Cytokine network at the feto-maternal interface. J. Reprod. Immunol. 47:287–103
    [Google Scholar]
  156. Savard A, Brochu M-E, Chevin M, Guiraut C, Grbic D, Sébire G 2015. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia. J. Neuroinflammation 12:111
    [Google Scholar]
  157. Schizophr. Work. Group Psychiatr. Genom. Consort. 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:7510421–27
    [Google Scholar]
  158. Schwarting GA, Henion TR, Nugent JD, Caplan B, Tobet S 2006. Stromal cell-derived factor-1 (chemokine C-X-C motif ligand 12) and chemokine C-X-C motif receptor 4 are required for migration of gonadotropin-releasing hormone neurons to the forebrain. J. Neurosci. 26:256834–40
    [Google Scholar]
  159. Sedel F, Béchade C, Vyas S, Triller A 2004. Macrophage-derived tumor necrosis factor α, an early developmental signal for motoneuron death. J. Neurosci. 24:92236–46
    [Google Scholar]
  160. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR et al. 2016. Schizophrenia risk from complex variation of complement component 4. Nature 530:7589177–83
    [Google Scholar]
  161. Severance EG, Gressitt KL, Buka SL, Cannon TD, Yolken RH 2014. Maternal complement C1q and increased odds for psychosis in adult offspring. Schizophr. Res. 159:114–19
    [Google Scholar]
  162. Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM et al. 2017. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549:7673482–87
    [Google Scholar]
  163. Shinjyo N, Ståhlberg A, Dragunow M, Pekny M, Pekna M 2009. Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells 27:112824–32
    [Google Scholar]
  164. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH 2007. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27:4010695–702
    [Google Scholar]
  165. Solek CM, Farooqi N, Verly M, Lim TK, Ruthazer ES 2017. Maternal immune activation in neurodevelopmental disorders. Dev. Dyn. 247:4588–619
    [Google Scholar]
  166. Stefanski AL, Martinez N, Peterson LK, Callahan TJ, Treacy E et al. 2019. Murine trophoblast-derived and pregnancy-associated exosome-enriched extracellular vesicle microRNAs: implications for placenta driven effects on maternal physiology. PLOS ONE 14:2e0210675
    [Google Scholar]
  167. Stephan AH, Barres BA, Stevens B 2012. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35:369–89
    [Google Scholar]
  168. Stolp HB. 2013. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Mol. Cell. Neurosci. 53:63–68
    [Google Scholar]
  169. Stridh L, Mottahedin A, Johansson ME, Valdez RC, Northington F et al. 2013. Toll-like receptor-3 activation increases the vulnerability of the neonatal brain to hypoxia-ischemia. J. Neurosci. 33:2912041–51
    [Google Scholar]
  170. Sun Y, Vestergaard M, Christensen J, Nahmias AJ, Olsen J 2008. Prenatal exposure to maternal infections and epilepsy in childhood: a population-based cohort study. Pediatrics 121:5e1100–7
    [Google Scholar]
  171. Sun Y, Vestergaard M, Christensen J, Olsen J 2010. Prenatal exposure to elevated maternal body temperature and risk of epilepsy in childhood: a population-based pregnancy cohort study. Paediatr. Perinat. Epidemiol. 25:153–59
    [Google Scholar]
  172. Taubeneck MW, Daston GP, Rogers JM, Gershwin ME, Ansari A, Keen CL 1995. Tumor necrosis factor-α alters maternal and embryonic zinc metabolism and is developmentally toxic in mice. J. Nutr. 125:4908–19
    [Google Scholar]
  173. Thaxton JE, Romero R, Sharma S 2009. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J. Immunol. 183:21144–54
    [Google Scholar]
  174. Ubeda C, Lipuma L, Gobourne A, Viale A, Leiner I et al. 2012. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209:81445–56
    [Google Scholar]
  175. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG et al. 2018. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359:63811269–73
    [Google Scholar]
  176. Vuillermot S, Joodmardi E, Perlmann T, Ögren SO, Feldon J, Meyer U 2012. Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments. J. Neurosci. 32:2436–51
    [Google Scholar]
  177. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13:8753–60
    [Google Scholar]
  178. Whitehead E, Dodds L, Joseph KS, Gordon KE, Wood E et al. 2006. Relation of pregnancy and neonatal factors to subsequent development of childhood epilepsy: a population-based cohort study. Pediatrics 117:41298–306
    [Google Scholar]
  179. Williams PJ, Searle RF, Robson SC, Innes BA, Bulmer JN 2009. Decidual leucocyte populations in early to late gestation normal human pregnancy. J. Reprod. Immunol. 82:124–31
    [Google Scholar]
  180. Wu W-L, Hsiao EY, Yan Z, Mazmanian SK, Patterson PH 2017. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav. Immun. 62:11–23
    [Google Scholar]
  181. Xiang AH, Wang X, Martinez MP, Walthall JC, Curry ES et al. 2015. Association of maternal diabetes with autism in offspring. JAMA 313:141425–34 Correction. 2017. JAMA 317(5):538
    [Google Scholar]
  182. Yasuoka S, Kawanokuchi J, Parajuli B, Jin S, Doi Y et al. 2011. Production and functions of IL-33 in the central nervous system. Brain Res 1385:8–17
    [Google Scholar]
  183. Yockey LJ, Iwasaki A. 2018. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity 49:3397–412
    [Google Scholar]
  184. Yoon BH, Jun JK, Romero R, Park KH, Gomez R et al. 1997. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am. J. Obstet. Gynecol. 177:119–26
    [Google Scholar]
  185. Yoon BH, Romero R, Park JS, Kim CJ, Kim SH et al. 2000. Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am. J. Obstet. Gynecol. 182:3675–81
    [Google Scholar]
  186. Yoshimatsu T. 2006. Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133:132553–63
    [Google Scholar]
  187. Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G 2012. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 491:7426774–78
    [Google Scholar]
  188. Yu P, Lübben W, Slomka H, Gebler J, Konert M et al. 2012. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37:5867–79
    [Google Scholar]
  189. Zaretsky MV, Alexander JM, Byrd W, Bawdon RE 2004. Transfer of inflammatory cytokines across the placenta. Obstet. Gynecol. 103:3546–50
    [Google Scholar]
  190. Zhao L, Chen Y-H, Wang H, Ji Y-L, Ning H et al. 2008. Reactive oxygen species contribute to lipopolysaccharide-induced teratogenesis in mice. Toxicol. Sci. 103:1149–57
    [Google Scholar]
  191. Zhao B, Schwartz JP. 1998. Involvement of cytokines in normal CNS development and neurological diseases: recent progress and perspectives. J. Neurosci. Res. 52:17–16
    [Google Scholar]
  192. Zhong S, Zhang S, Fan X, Wu Q, Yan L et al. 2018. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555:7697524–28
    [Google Scholar]
  193. Zhu Y, Matsumoto T, Mikami S, Nagasawa T, Murakami F 2009. SDF1/CXCR4 signalling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation. Development 136:111919–28
    [Google Scholar]
  194. Zhu Y, Yu T, Zhang X-C, Nagasawa T, Wu JY, Rao Y 2002. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat. Neurosci. 5:8719–20
    [Google Scholar]
  195. Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:6685595–99
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-021120-033518
Loading
/content/journals/10.1146/annurev-cellbio-021120-033518
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error