1932

Abstract

Lipid droplets (LDs) are endoplasmic reticulum–derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-031320-101827
2020-10-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-031320-101827.html?itemId=/content/journals/10.1146/annurev-cellbio-031320-101827&mimeType=html&fmt=ahah

Literature Cited

  1. Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM 1997. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9:81481–93
    [Google Scholar]
  2. Ajjaji D, Ben M'barek K, Mimmack ML, England C, Herscovitz H et al. 2019. Dual binding motifs underpin the hierarchical association of perilipins1–3 with lipid droplets. Mol. Biol. Cell 30:5703–16
    [Google Scholar]
  3. Ariyama H, Kono N, Matsuda S, Inoue T, Arai H 2010. Decrease in membrane phospholipid unsaturation induces unfolded protein response. J. Biol. Chem. 285:2922027–35
    [Google Scholar]
  4. Bacle A, Gautier R, Jackson CL, Fuchs PFJ, Vanni S 2017. Interdigitation between triglycerides and lipids modulates surface properties of lipid droplets. Biophys. J. 112:71417–30
    [Google Scholar]
  5. Bartz R, Li W-H, Venables B, Zehmer JK, Roth MR et al. 2007a. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48:4837–47
    [Google Scholar]
  6. Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G et al. 2007b. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J. Proteome Res. 6:83256–65
    [Google Scholar]
  7. BasuRay S, Smagris E, Cohen JC, Hobbs HH 2017. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66:41111–24
    [Google Scholar]
  8. BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH 2019. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. PNAS 116:199521–26
    [Google Scholar]
  9. Becuwe M, Bond LM, Mejhert N, Boland S, Elliott SD et al. 2018. FIT2 is a lipid phosphate phosphatase crucial for endoplasmic reticulum homeostasis. bioRxiv 291765. https://doi.org/10.1101/291765
    [Crossref]
  10. Ben M'barek K, Ajjaji D, Chorlay A, Vanni S, Forêt L, Thiam AR 2017. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev. Cell 41:6591–604.e7
    [Google Scholar]
  11. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B et al. 2019. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:7784688–92
    [Google Scholar]
  12. Bersuker K, Olzmann JA. 2017. Establishing the lipid droplet proteome: mechanisms of lipid droplet protein targeting and degradation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:10 Part B1166–77
    [Google Scholar]
  13. Bersuker K, Olzmann JA. 2019. Identification of lipid droplet proteomes by proximity labeling proteomics using APEX2. Methods Mol. Biol. 2008:57–72
    [Google Scholar]
  14. Bersuker K, Peterson CWH, To M, Sahl SJ, Savikhin V et al. 2018. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell 44:197–112.e7
    [Google Scholar]
  15. Boeszoermenyi A, Nagy HM, Arthanari H, Pillip CJ, Lindermuth H et al. 2015. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J. Biol. Chem. 290:4426361–72
    [Google Scholar]
  16. Boström P, Andersson L, Rutberg M, Perman J, Lidberg U et al. 2007. SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat. Cell Biol. 9:111286–93
    [Google Scholar]
  17. Brandt C, McFie PJ, Stone SJ 2016. Diacylglycerol acyltransferase-2 and monoacylglycerol acyltransferase-2 are ubiquitinated proteins that are degraded by the 26S proteasome. Biochem. J. 473:203621–37
    [Google Scholar]
  18. Brasaemle DL, Dolios G, Shapiro L, Wang R 2004. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279:4546835–42
    [Google Scholar]
  19. Cermelli S, Guo Y, Gross SP, Welte MA 2006. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16:181783–95
    [Google Scholar]
  20. Chan SC, Lin S-C, Li P 2007. Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway. Biochem. J. 408:2259–66
    [Google Scholar]
  21. Chang C-L, Weigel AV, Ioannou MS, Pasolli HA, Xu CS et al. 2019. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218:82583–99
    [Google Scholar]
  22. Chen Y-C, Umanah GKE, Dephoure N, Andrabi SA, Gygi SP et al. 2014. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J 33:141548–64
    [Google Scholar]
  23. Cheng J, Fujita A, Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T 2009. Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochem. Cell Biol. 132:3281–91
    [Google Scholar]
  24. Chino H, Mizushima N. 2020. ER-phagy: quality control and turnover of endoplasmic reticulum. Trends Cell Biol 30:5384–98
    [Google Scholar]
  25. Chitraju C, Mejhert N, Haas JT, Diaz-Ramirez LG, Grueter CA et al. 2017. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab 26:2407–18.e3
    [Google Scholar]
  26. Choi K, Kim H, Kang H, Lee S-Y, Lee SJ et al. 2014. Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation. FEBS J 281:133048–60
    [Google Scholar]
  27. Chorlay A, Monticelli L, Ferreira JV, Ben M'barek K, Ajjaji D et al. 2019. Membrane asymmetry imposes directionality on lipid droplet emergence from the ER. Dev. Cell 50:125–42.e7
    [Google Scholar]
  28. Chorlay A, Thiam AR. 2020. Neutral lipids regulate amphipathic helix affinity for model lipid droplets. J. Cell Biol. 219:4e201907099
    [Google Scholar]
  29. Čopič A, Antoine-Bally S, Giménez-Andrés M, La Torre Garay C, Antonny B et al. 2018. A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nat. Commun. 9:11332
    [Google Scholar]
  30. Crunk AE, Monks J, Murakami A, Jackman M, Maclean PS et al. 2013. Dynamic regulation of hepatic lipid droplet properties by diet. PLOS ONE 8:7e67631
    [Google Scholar]
  31. Cunha DA, Hekerman P, Ladrière L, Bazarra-Castro A, Ortis F et al. 2008. Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J. Cell Sci. 121:Part 142308–18
    [Google Scholar]
  32. Currie E, Guo X, Christiano R, Chitraju C, Kory N et al. 2014. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J. Lipid Res. 55:71465–77
    [Google Scholar]
  33. Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E et al. 2008. Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J. Biol. Chem 283:2517065–74
    [Google Scholar]
  34. Dai Z, Qi W, Li C, Lu J, Mao Y et al. 2013. Dual regulation of adipose triglyceride lipase by pigment epithelium-derived factor: a novel mechanistic insight into progressive obesity. Mol. Cell. Endocrinol. 377:1–2123–34
    [Google Scholar]
  35. D'Aquila T, Zembroski AS, Buhman KK 2019. Diet induced obesity alters intestinal cytoplasmic lipid droplet morphology and proteome in the postprandial response to dietary fat. Front. Physiol. 10:180
    [Google Scholar]
  36. Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas J-L et al. 2018. PUX10 is a CDC48A adaptor protein that regulates the extraction of ubiquitinated oleosins from seed lipid droplets in Arabidopsis. . Plant Cell 30:92116–36
    [Google Scholar]
  37. Ding Y, Wu Y, Zeng R, Liao K 2012. Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse. Acta Biochim. Biophys. Sin. 44:5394–406
    [Google Scholar]
  38. Doll S, Freitas FP, Shah R, Aldrovandi M, Silva MCD et al. 2019. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:7784693–98
    [Google Scholar]
  39. Du X, Zhou L, Aw YC, Mak HY, Xu Y et al. 2020. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J. Cell Biol. 219:1e201905162
    [Google Scholar]
  40. Dubey R, Stivala CE, Nguyen HQ, Goo Y-H, Paul A et al. 2020. Lipid droplets can promote drug accumulation and activation. Nat. Chem. Biol. 16:2206–13
    [Google Scholar]
  41. Eastman SW, Yassaee M, Bieniasz PD 2009. A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J. Cell Biol. 184:6881–94
    [Google Scholar]
  42. Edwards TL, Clowes VE, Tsang HTH, Connell JW, Sanderson CM et al. 2009. Endogenous spartin (SPG20) is recruited to endosomes and lipid droplets and interacts with the ubiquitin E3 ligases AIP4 and AIP5. Biochem. J. 423:131–39
    [Google Scholar]
  43. Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI et al. 2019. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment. Mol. Cell 73:51001–14.e8
    [Google Scholar]
  44. Fanning S, Selkoe D, Dettmer U 2020. Parkinson's disease: proteinopathy or lipidopathy. ? npj Parkinson's Dis 6:3
    [Google Scholar]
  45. Fei W, Wang H, Fu X, Bielby C, Yang H 2009. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J 424:161–67
    [Google Scholar]
  46. Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P 2014. Quality control of inner nuclear membrane proteins by the Asi complex. Science 346:6210751–55
    [Google Scholar]
  47. Fu S, Yang L, Li P, Hofmann O, Dicker L et al. 2011. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473:7348528–31
    [Google Scholar]
  48. Fujimoto T, Parton RG. 2011. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb. Perspect. Biol. 3:3a004838
    [Google Scholar]
  49. Gallardo-Montejano VI, Saxena G, Kusminski CM, Yang C, McAfee JL et al. 2016. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat. Commun. 7:12723
    [Google Scholar]
  50. Garbarino J, Padamsee M, Wilcox L, Oelkers PM, D'Ambrosio D et al. 2009. Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death. J. Biol. Chem. 284:4530994–1005
    [Google Scholar]
  51. Ghosh M, Niyogi S, Bhattacharyya M, Adak M, Nayak DK et al. 2016. Ubiquitin ligase COP1 controls hepatic fat metabolism by targeting ATGL for degradation. Diabetes 65:123561–72
    [Google Scholar]
  52. Graef M. 2018. Lipid droplet-mediated lipid and protein homeostasis in budding yeast. FEBS Lett 592:81291–303
    [Google Scholar]
  53. Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C 1991. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266:1711341–46
    [Google Scholar]
  54. Greenwood DJ, Dos Santos MS, Huang S, Russell MRG, Collinson LM et al. 2019. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 364:64471279–82
    [Google Scholar]
  55. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC et al. 2009. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58:3693–700
    [Google Scholar]
  56. Hariri H, Rogers S, Ugrankar R, Liu YL, Feathers JR, Henne WM 2018. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep 19:157–72
    [Google Scholar]
  57. Hariri H, Speer N, Bowerman J, Rogers S, Fu G et al. 2019. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J. Cell Biol. 218:41319–34
    [Google Scholar]
  58. Hartman IZ, Liu P, Zehmer JK, Luby-Phelps K, Jo Y et al. 2010. Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J. Biol. Chem. 285:2519288–98
    [Google Scholar]
  59. Hayes M, Choudhary V, Ojha N, Shin JJH, Han G-S et al. 2017. Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. Microb. Cell 5:288–103
    [Google Scholar]
  60. Heckmann BL, Zhang X, Saarinen AM, Liu J 2016. Regulation of G0/G1 switch gene 2 (G0S2) protein ubiquitination and stability by triglyceride accumulation and ATGL interaction. PLOS ONE 11:6e0156742
    [Google Scholar]
  61. Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC 2010. Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72
    [Google Scholar]
  62. Hope RG, Murphy DJ, McLauchlan J 2002. The domains required to direct core proteins of hepatitis C virus and GB virus-B to lipid droplets share common features with plant oleosin proteins. J. Biol. Chem. 277:64261–70
    [Google Scholar]
  63. Hynynen R, Suchanek M, Spandl J, Bäck N, Thiele C, Olkkonen VM 2009. OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. J. Lipid Res. 50:71305–15
    [Google Scholar]
  64. Imberdis T, Negri J, Ramalingam N, Terry-Kantor E, Ho GPH et al. 2019. Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearoyl-CoA desaturase. PNAS 116:4120760–69
    [Google Scholar]
  65. Ingelmo-Torres M, González-Moreno E, Kassan A, Hanzal-Bayer M, Tebar F et al. 2009. Hydrophobic and basic domains target proteins to lipid droplets. Traffic 10:121785–801
    [Google Scholar]
  66. Ioannou MS, Jackson J, Sheu S-H, Chang C-L, Weigel AV et al. 2019. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177:61522–35.e14
    [Google Scholar]
  67. Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE 2002. Defective membrane interactions of familial Parkinson's disease mutant A30P α-synuclein. J. Mol. Biol. 315:4799–807
    [Google Scholar]
  68. Jo Y, Hartman IZ, DeBose-Boyd RA 2013. Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet–associated endoplasmic reticulum membranes. Mol. Biol. Cell 24:3169–83
    [Google Scholar]
  69. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM et al. 2009. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323:59221693–97
    [Google Scholar]
  70. Kamikubo K, Kato H, Kioka H, Yamazaki S, Tsukamoto O et al. 2019. A molecular triage process mediated by RING finger protein 126 and BCL2-associated athanogene 6 regulates degradation of G0/G1 switch gene 2. J. Biol. Chem. 294:4014562–73
    [Google Scholar]
  71. Kaushik S, Cuervo AM. 2015. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17:6759–70
    [Google Scholar]
  72. Kaushik S, Cuervo AM. 2016. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12:2432–38
    [Google Scholar]
  73. Kaushik S, Cuervo AM. 2018. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19:6365–81
    [Google Scholar]
  74. Khan SA, Wollaston-Hayden EE, Markowski TW, Higgins L, Mashek DG 2015. Quantitative analysis of the murine lipid droplet-associated proteome during diet-induced hepatic steatosis. J. Lipid Res. 56:122260–72
    [Google Scholar]
  75. Khandelia H, Duelund L, Pakkanen KI, Ipsen JH 2010. Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLOS ONE 5:9e12811
    [Google Scholar]
  76. Khmelinskii A, Blaszczak E, Pantazopoulou M, Fischer B, Omnus DJ et al. 2014. Protein quality control at the inner nuclear membrane. Nature 516:7531410–13
    [Google Scholar]
  77. Kimmel AR, Sztalryd C. 2016. The perilipins: major cytosolic lipid droplet–associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36:471–509
    [Google Scholar]
  78. Kitamura T, Takagi S, Naganuma T, Kihara A 2015. Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification. Biochem. J. 465:179–87
    [Google Scholar]
  79. Klemm EJ, Spooner E, Ploegh HL 2011. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem. 286:4337602–14
    [Google Scholar]
  80. Kory N, Farese RV Jr, Walther TC 2016. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol 26:7535–46
    [Google Scholar]
  81. Kory N, Thiam A-R, Farese RV Jr, Walther TC 2015. Protein crowding is a determinant of lipid droplet protein composition. Dev. Cell 34:3351–63
    [Google Scholar]
  82. Krahmer N, Farese RV Jr, Walther TC 2013a. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5:7973–83
    [Google Scholar]
  83. Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S et al. 2011. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14:4504–15
    [Google Scholar]
  84. Krahmer N, Hilger M, Kory N, Wilfling F, Stoehr G et al. 2013b. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell Proteom. 12:51115–26
    [Google Scholar]
  85. Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M et al. 2018. Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. Dev. Cell 47:2205–21.e7
    [Google Scholar]
  86. Kretzschmar FK, Mengel LA, Müller AO, Schmitt K, Blersch KF et al. 2018. PUX10 is a lipid droplet-localized scaffold protein that interacts with CELL DIVISION CYCLE48 and is involved in the degradation of lipid droplet proteins. Plant Cell 30:92137–60
    [Google Scholar]
  87. Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P et al. 2018. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217:103625–39
    [Google Scholar]
  88. Lam T, Harmancey R, Vasquez H, Gilbert B, Patel N et al. 2016. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway. Cell Death Discov 2:16061
    [Google Scholar]
  89. Lee J-S, Mendez R, Heng HH, Yang Z-Q, Zhang K 2012. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am. J. Transl. Res. 4:1102–13
    [Google Scholar]
  90. Li D, Zhao YG, Li D, Zhao H, Huang J et al. 2019. The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation. Cell Rep 27:2343–58.e5
    [Google Scholar]
  91. Li Z, Schulze RJ, Weller SG, Krueger EW, Schott MB et al. 2016. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci. Adv. 2:12e1601470
    [Google Scholar]
  92. Li Z, Weller SG, Drizyte-Miller K, Chen J, Krueger EWet al 2019. Maturation of lipophagic organelles in hepatocytes is dependent upon a Rab10/dynamin-2 complex. Hepatology 72:2486502
    [Google Scholar]
  93. Liu L, MacKenzie KR, Putluri N, Maletić-Savatić M, Bellen HJ 2017a. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab 26:5719–37.e6
    [Google Scholar]
  94. Liu M, Ge R, Liu W, Liu Q, Xia X et al. 2017b. Differential proteomics profiling identifies LDPs and biological functions in high-fat diet-induced fatty livers. J. Lipid Res. 58:4681–94
    [Google Scholar]
  95. Liu P, Bartz R, Zehmer JK, Ying Y, Zhu M et al. 2007. Rab-regulated interaction of early endosomes with lipid droplets. Biochim. Biophys. Acta. 1773. 6:784–93
    [Google Scholar]
  96. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RGW 2004. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279:53787–92
    [Google Scholar]
  97. Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H et al. 2011. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLOS ONE 6:7e22542
    [Google Scholar]
  98. Luo H, Jiang M, Lian G, Liu Q, Shi M et al. 2018. AIDA selectively mediates downregulation of fat synthesis enzymes by ERAD to retard intestinal fat absorption and prevent obesity. Cell Metab 27:4843–53.e6
    [Google Scholar]
  99. Mahamid J, Tegunov D, Maiser A, Arnold J, Leonhardt H et al. 2019. Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. PNAS 116:3416866–71
    [Google Scholar]
  100. Masuda Y, Itabe H, Odaki M, Hama K, Fujimoto Y et al. 2006. ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J. Lipid Res. 47:187–98
    [Google Scholar]
  101. McFie PJ, Banman SL, Stone SJ 2018. Diacylglycerol acyltransferase-2 contains a c-terminal sequence that interacts with lipid droplets. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863. 9:1068–81
    [Google Scholar]
  102. McFie PJ, Stone SL, Banman SL, Stone SJ 2010. Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the n terminus in dimer/tetramer formation. J. Biol. Chem. 285:4837377–87
    [Google Scholar]
  103. Mejhert N, Kuruvilla L, Gabriel KR, Elliott SD, Guie M-A et al. 2020. Partitioning of MLX-family transcription factors to lipid droplets regulates metabolic gene expression. Mol. Cell 77:61251–64.e9
    [Google Scholar]
  104. Minville-Walz M, Pierre A-S, Pichon L, Bellenger S, Fèvre C et al. 2010. Inhibition of stearoyl-CoA desaturase 1 expression induces CHOP-dependent cell death in human cancer cells. PLOS ONE 5:12e14363
    [Google Scholar]
  105. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T et al. 2007. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9:91089–97
    [Google Scholar]
  106. Mizushima N. 2018. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol. 20:521–27
    [Google Scholar]
  107. Moldavski O, Amen T, Levin-Zaidman S, Eisenstein M, Rogachev I et al. 2015. Lipid droplets are essential for efficient clearance of cytosolic inclusion bodies. Dev. Cell 33:5603–10
    [Google Scholar]
  108. Morito D, Nishikawa K, Hoseki J, Kitamura A, Kotani Y et al. 2014. Moyamoya disease-associated protein mysterin/RNF213 is a novel AAA+ ATPase, which dynamically changes its oligomeric state. Sci. Rep. 4:4442
    [Google Scholar]
  109. Nakatsukasa K, Kamura T. 2016. Subcellular fractionation analysis of the extraction of ubiquitinated polytopic membrane substrate during ER-associated degradation. PLOS ONE 11:2e0148327
    [Google Scholar]
  110. Nguyen HP, Yi D, Lin F, Viscarra JA, Tabuchi C et al. 2020. Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis. Mol. Cell 77:3600–17.e4
    [Google Scholar]
  111. Nguyen KT, Lee C-S, Mun S-H, Truong NT, Park SK, Hwang C-S 2019. N-terminal acetylation and the N-end rule pathway control degradation of the lipid droplet protein PLIN2. J. Biol. Chem. 294:1379–88
    [Google Scholar]
  112. Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A et al. 2017. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42:19–21.e5
    [Google Scholar]
  113. Nian Z, Sun Z, Yu L, Toh SY, Sang J, Li P 2010. Fat-specific protein 27 undergoes ubiquitin-dependent degradation regulated by triacylglycerol synthesis and lipid droplet formation. J. Biol. Chem. 285:139604–15
    [Google Scholar]
  114. Niyogi S, Ghosh M, Adak M, Chakrabarti P 2019. PEDF promotes nuclear degradation of ATGL through COP1. Biochem. Biophys. Res. Commun. 512:4806–11
    [Google Scholar]
  115. Ohsaki Y, Cheng J, Fujita A, Tokumoto T, Fujimoto T 2006. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol. Biol. Cell 17:62674–83
    [Google Scholar]
  116. Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T 2008. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J. Cell Sci. 121:Part 142415–22
    [Google Scholar]
  117. Okreglak V, Walter P. 2014. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. PNAS 111:228019–24
    [Google Scholar]
  118. Oku M, Maeda Y, Kagohashi Y, Kondo T, Yamada M et al. 2017. Evidence for ESCRT- and clathrin-dependent microautophagy. J. Cell Biol. 216:103263–74
    [Google Scholar]
  119. Olzmann JA, Carvalho P. 2019. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20:3137–55
    [Google Scholar]
  120. Olzmann JA, Kopito RR. 2011. Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J. Biol. Chem. 286:3227872–74
    [Google Scholar]
  121. Olzmann JA, Kopito RR, Christianson JC 2013a. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb. Perspect. Biol. 5:9a013185
    [Google Scholar]
  122. Olzmann JA, Richter CM, Kopito RR 2013b. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. PNAS 110:41345–50
    [Google Scholar]
  123. Outeiro TF, Lindquist S. 2003. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302:56511772–75
    [Google Scholar]
  124. Patel S, Yang W, Kozusko K, Saudek V, Savage DB 2014. Perilipins 2 and 3 lack a carboxy-terminal domain present in perilipin 1 involved in sequestering ABHD5 and suppressing basal lipolysis. PNAS 111:259163–68
    [Google Scholar]
  125. Petrasek J, Erhartova D, Levine B 2019. Protective effect of SMAD-specific E3 ubiquitin protein ligase 1 in alcoholic steatohepatitis in mice. Hepatol. Commun. 3:111450–58
    [Google Scholar]
  126. Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF et al. 2009. Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J. Biol. Chem. 284:4530981–93
    [Google Scholar]
  127. Pickles S, Vigié P, Youle RJ 2018. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28:4R170–85
    [Google Scholar]
  128. Pineau L, Colas J, Dupont S, Beney L, Fleurat-Lessard P et al. 2009. Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids. Traffic 10:6673–90
    [Google Scholar]
  129. Prévost C, Sharp ME, Kory N, Lin Q, Voth GA et al. 2018. Mechanism and determinants of amphipathic helix-containing protein targeting to lipid droplets. Dev. Cell 44:173–86.e4
    [Google Scholar]
  130. Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y 2011. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol. Biol. Cell 22:183520–32
    [Google Scholar]
  131. Qi J, Gong J, Zhao T, Zhao J, Lam P et al. 2008. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J 27:111537–48
    [Google Scholar]
  132. Qian H, Chen Y, Nian Z, Su L, Yu H et al. 2017. HDAC6-mediated acetylation of lipid droplet-binding protein CIDEC regulates fat-induced lipid storage. J. Clin. Invest. 127:41353–69
    [Google Scholar]
  133. Renne MF, Klug YA, Carvalho P 2020. Lipid droplet biogenesis: a mystery “unmixing”. ? Semin. Cell Dev. Biol. In press. https://doi.org/10.1016/j.semcdb.2020.03.001
    [Crossref] [Google Scholar]
  134. Rowe ER, Mimmack ML, Barbosa AD, Haider A, Isaac I et al. 2016. Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1–3. J. Biol. Chem. 291:136664–78
    [Google Scholar]
  135. Ruggiano A, Mora G, Buxó L, Carvalho P 2016. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J 35:151644–55
    [Google Scholar]
  136. Santinho A, Salo VT, Chorlay A, Li S, Zhou X et al. 2020. Membrane curvature catalyzes lipid droplet assembly. Curr. Biol. 30:13248194.e6
    [Google Scholar]
  137. Sathyanarayan A, Mashek MT, Mashek DG 2017. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep 19:11–9
    [Google Scholar]
  138. Schott MB, Weller SG, Schulze RJ, Krueger EW, Drizyte-Miller K et al. 2019. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J. Cell Biol. 218:103320–35
    [Google Scholar]
  139. Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA, McNiven MA 2015. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61:61896–907
    [Google Scholar]
  140. Schrul B, Kopito RR. 2016. Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat. Cell Biol. 18:7740–51
    [Google Scholar]
  141. Schulze RJ, Sathyanarayan A, Mashek DG 2017. Breaking fat: the regulation and mechanisms of lipophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1862:10 Part B1178–87
    [Google Scholar]
  142. Seo AY, Lau P-W, Feliciano D, Sengupta P, Le Gros MA et al. 2017. AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation. eLife 6:e21690
    [Google Scholar]
  143. Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE et al. 2019. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22:71099–109
    [Google Scholar]
  144. Shao S, Hegde RS. 2011. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27:25–56
    [Google Scholar]
  145. Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ 2003. The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37:4583–95
    [Google Scholar]
  146. Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ 2001. α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. PNAS 98:169110–15
    [Google Scholar]
  147. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I et al. 2009. Autophagy regulates lipid metabolism. Nature 458:72421131–35
    [Google Scholar]
  148. Soste M, Charmpi K, Lampert F, Gerez JA, van Oostrum M et al. 2019. Proteomics-based monitoring of pathway activity reveals that blocking diacylglycerol biosynthesis rescues from alpha-synuclein toxicity. Cell Syst 9:3309–20.e8
    [Google Scholar]
  149. Spandl J, Lohmann D, Kuerschner L, Moessinger C, Thiele C 2011. Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J. Biol. Chem. 286:75599–606
    [Google Scholar]
  150. Stefanovic-Barrett S, Dickson AS, Burr SP, Williamson JC, Lobb IT et al. 2018. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins. EMBO Rep 19:5e45603
    [Google Scholar]
  151. Stöckl M, Fischer P, Wanker E, Herrmann A 2008. α-Synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. J. Mol. Biol. 375:51394–404
    [Google Scholar]
  152. Stone SJ, Levin MC, Farese RV Jr 2006. Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. J. Biol. Chem. 281:5240273–82
    [Google Scholar]
  153. Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese RV Jr 2009. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J. Biol. Chem. 284:85352–61
    [Google Scholar]
  154. Su W, Wang Y, Jia X, Wu W, Li L et al. 2014. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. PNAS 111:3111437–42
    [Google Scholar]
  155. Sugihara M, Morito D, Ainuki S, Hirano Y, Ogino K et al. 2019. The AAA+ ATPase/ubiquitin ligase mysterin stabilizes cytoplasmic lipid droplets. J. Cell Biol. 218:3949–60
    [Google Scholar]
  156. Suzuki M, Murakami T, Cheng J, Kano H, Fukata M, Fujimoto T 2015. ELMOD2 is anchored to lipid droplets by palmitoylation and regulates adipocyte triglyceride lipase recruitment. Mol. Biol. Cell 26:122333–42
    [Google Scholar]
  157. Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T et al. 2012. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol. Biol. Cell 23:5800–10
    [Google Scholar]
  158. Takahashi Y, Shinoda A, Kamada H, Shimizu M, Inoue J, Sato R 2016. Perilipin2 plays a positive role in adipocytes during lipolysis by escaping proteasomal degradation. Sci. Rep. 6:20975
    [Google Scholar]
  159. Tapia D, Jiménez T, Zamora C, Espinoza J, Rizzo R et al. 2019. KDEL receptor regulates secretion by lysosome relocation- and autophagy-dependent modulation of lipid-droplet turnover. Nat. Commun. 10:1735
    [Google Scholar]
  160. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T 2002. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem. 277:4644507–12
    [Google Scholar]
  161. Thibault G, Shui G, Kim W, McAlister GC, Ismail N et al. 2012. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol. Cell 48:116–27
    [Google Scholar]
  162. To M, Peterson CWH, Roberts MA, Counihan JL, Wu TT et al. 2017. Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. Mol. Biol. Cell 28:2270–84
    [Google Scholar]
  163. Tokunaga M, Shiheido H, Hayakawa I, Utsumi A, Takashima H et al. 2013. Hereditary spastic paraplegia protein spartin is an FK506-binding protein identified by mRNA display. Chem. Biol. 20:7935–42
    [Google Scholar]
  164. Toulmay A, Prinz WA. 2013. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J. Cell Biol. 202:135–44
    [Google Scholar]
  165. Tsuji T, Fujimoto M, Tatematsu T, Cheng J, Orii M et al. 2017. Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole. eLife 6:e25960
    [Google Scholar]
  166. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U et al. 2017. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:7656162–67
    [Google Scholar]
  167. Valverde DP, Yu S, Boggavarapu V, Kumar N, Lees JA et al. 2019. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218:61787–98
    [Google Scholar]
  168. van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF et al. 2014. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25:2290–301
    [Google Scholar]
  169. Varshavsky A. 2019. N-degron and C-degron pathways of protein degradation. PNAS 116:2358–66
    [Google Scholar]
  170. Vevea JD, Garcia EJ, Chan RB, Zhou B, Schultz M et al. 2015. Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast. Dev. Cell 35:5584–99
    [Google Scholar]
  171. Vincent BM, Tardiff DF, Piotrowski JS, Aron R, Lucas MC et al. 2018. Inhibiting stearoyl-CoA desaturase ameliorates α-synuclein cytotoxicity. Cell Rep 25:102742–54.e31
    [Google Scholar]
  172. Volmer R, van der Ploeg K, Ron D 2013. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. PNAS 110:124628–33
    [Google Scholar]
  173. Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:60591081–86
    [Google Scholar]
  174. Walther TC, Chung J, Farese RV Jr 2017. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33:491–510
    [Google Scholar]
  175. Wang C-W, Miao Y-H, Chang Y-S 2014. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J. Cell Biol. 206:3357–66
    [Google Scholar]
  176. Wang L, Zhou J, Yan S, Lei G, Lee C-H, Yin X-M 2017. Ethanol-triggered lipophagy requires SQSTM1 in AML12 hepatic cells. Sci. Rep 7:112307
    [Google Scholar]
  177. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ et al. 2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24:4384–99
    [Google Scholar]
  178. Xie X, Yi Z, Sinha S, Madan M, Bowen BP et al. 2016. Proteomics analyses of subcutaneous adipocytes reveal novel abnormalities in human insulin resistance. Obesity 24:71506–14
    [Google Scholar]
  179. Xu D, Li Y, Wu L, Li Y, Zhao D et al. 2018. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J. Cell Biol. 217:3975–95
    [Google Scholar]
  180. Xu G, Sztalryd C, Londos C 2006. Degradation of perilipin is mediated through ubiquitination-proteasome pathway. Biochim. Biophys. Acta. 1761. 1:83–90
    [Google Scholar]
  181. Xu G, Sztalryd C, Lu X, Tansey JT, Gan J et al. 2005. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway. J. Biol. Chem. 280:5242841–47
    [Google Scholar]
  182. Xu S, Zhang X, Liu P 2018. Lipid droplet proteins and metabolic diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1864:5 Part B1968–83
    [Google Scholar]
  183. Yamamoto K, Takahara K, Oyadomari S, Okada T, Sato T et al. 2010. Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell 21:172975–86
    [Google Scholar]
  184. Yan Y, Wang H, Wei C, Xiang Y, Liang X et al. 2019. HDAC6 regulates lipid droplet turnover in response to nutrient deprivation via p62-mediated selective autophagy. J. Genet. Genom. 46:4221–29
    [Google Scholar]
  185. Yang X, Zhang X, Heckmann BL, Lu X, Liu J 2011. Relative contribution of adipose triglyceride lipase and hormone-sensitive lipase to tumor necrosis factor-α (TNF-α)-induced lipolysis in adipocytes. J. Biol. Chem. 286:4740477–85
    [Google Scholar]
  186. Zechner R, Madeo F, Kratky D 2017. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18:11671–84
    [Google Scholar]
  187. Zehmer JK, Bartz R, Liu P, Anderson RGW 2008. Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J. Cell Sci. 121:111852–60
    [Google Scholar]
  188. Zhang C, Liu P. 2019. The new face of the lipid droplet: lipid droplet proteins. Proteomics 19:10e1700223
    [Google Scholar]
  189. Zhang K, Wang S, Malhotra J, Hassler JR, Back SH et al. 2011. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J 30:71357–75
    [Google Scholar]
  190. Zhang S, Wang Y, Cui L, Deng Y, Xu S et al. 2016. Morphologically and functionally distinct lipid droplet subpopulations. Sci. Rep. 6:29539
    [Google Scholar]
  191. Zhang X, Heckmann BL, Xie X, Saarinen AM, Liu J 2014. Regulation of FSP27 protein stability by AMPK and HSC70. Am. J. Physiol. Endocrinol. Metab. 307:11E1047–56
    [Google Scholar]
  192. Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R, Vanni S 2020. Lipid droplet biogenesis is driven by liquid-liquid phase separation. bioRxiv 777466. https://doi.org/10.1101/777466
    [Crossref]
/content/journals/10.1146/annurev-cellbio-031320-101827
Loading
/content/journals/10.1146/annurev-cellbio-031320-101827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error