1932

Abstract

Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-032320-094706
2020-10-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-032320-094706.html?itemId=/content/journals/10.1146/annurev-cellbio-032320-094706&mimeType=html&fmt=ahah

Literature Cited

  1. Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG 2020. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife 9:e49840 https://doi.org/10.7554/eLife.49840
    [Crossref] [Google Scholar]
  2. Akin O, Mullins RD. 2008. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133:841–51 https://doi.org/10.1016/j.cell.2008.04.011
    [Crossref] [Google Scholar]
  3. Amatruda JF, Cannon JF, Tatchell K, Hug C, Cooper JA 1990. Disruption of the actin cytoskeleton in yeast capping protein mutants. Nature 344:352–54 https://doi.org/10.1038/344352a0
    [Crossref] [Google Scholar]
  4. Anderson KL, Page C, Swift MF, Suraneni P, Janssen MEW et al. 2017. Nano-scale actin-network characterization of fibroblast cells lacking functional Arp2/3 complex. J. Struct. Biol. 197:312–21 https://doi.org/10.1016/j.jsb.2016.12.010
    [Crossref] [Google Scholar]
  5. Antkowiak A, Guillotin A, Sanders MB, Colombo J, Vincentelli R, Michelot A 2019. Sizes of actin networks sharing a common environment are determined by the relative rates of assembly. PLOS Biol 17:e3000317 https://doi.org/10.1371/journal.pbio.3000317
    [Crossref] [Google Scholar]
  6. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA et al. 1998. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–9 https://doi.org/10.1038/31729
    [Crossref] [Google Scholar]
  7. Balasubramanian MK, Bi E, Glotzer M 2004. Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Curr. Biol. 14:R806–18 https://doi.org/10.1016/j.cub.2004.09.022
    [Crossref] [Google Scholar]
  8. Balasubramanian MK, Feoktistova A, McCollum D, Gould KL 1996. Fission yeast Sop2p: a novel and evolutionarily conserved protein that interacts with Arp3p and modulates profilin function. EMBO J 15:6426–37
    [Google Scholar]
  9. Balcer HI, Goodman AL, Rodal AA, Smith E, Kugler J et al. 2003. Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr. Biol. 13:2159–69 https://doi.org/10.1016/j.cub.2003.11.051
    [Crossref] [Google Scholar]
  10. Bamburg JR. 1999. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15:185–230 https://doi.org/10.1146/annurev.cellbio.15.1.185
    [Crossref] [Google Scholar]
  11. Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ et al. 2002. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–21 https://doi.org/10.1016/s0092-8674(02)00731-6
    [Crossref] [Google Scholar]
  12. Bentley D, Toroian-Raymond A. 1986. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323:712–15 https://doi.org/10.1038/323712a0
    [Crossref] [Google Scholar]
  13. Berro J, Pollard TD. 2014. Local and global analysis of endocytic patch dynamics in fission yeast using a new “temporal superresolution” realignment method. Mol. Biol. Cell 25:3501–14 https://doi.org/10.1091/mbc.E13-01-0004
    [Crossref] [Google Scholar]
  14. Bezanilla M, Gladfelter AS, Kovar DR, Lee W-L 2015. Cytoskeletal dynamics: a view from the membrane. J. Cell Biol. 209:329–37 https://doi.org/10.1083/jcb.201502062
    [Crossref] [Google Scholar]
  15. Bieling P, Hansen SD, Akin O, Li T-D, Hayden CC et al. 2018. WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation. EMBO J 37:102–21 https://doi.org/10.15252/embj.201797039
    [Crossref] [Google Scholar]
  16. Billault-Chaumartin I, Martin SG. 2019. Capping protein insulates Arp2/3-assembled actin patches from formins. Curr. Biol. 29:3165–76.e6. https://doi.org/10.1016/j.cub.2019.07.088
    [Crossref] [Google Scholar]
  17. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J 2014. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94:235–63 https://doi.org/10.1152/physrev.00018.2013
    [Crossref] [Google Scholar]
  18. Blanchoin L, Pollard TD. 1999. Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J. Biol. Chem. 274:15538–46 https://doi.org/10.1074/jbc.274.22.15538
    [Crossref] [Google Scholar]
  19. Bombardier JP, Eskin JA, Jaiswal R, Corrêa IR, Xu M-Q et al. 2015. Single-molecule visualization of a formin-capping protein ‘decision complex’ at the actin filament barbed end. Nat. Commun. 6:8707 https://doi.org/10.1038/ncomms9707
    [Crossref] [Google Scholar]
  20. Boujemaa-Paterski R, Suarez C, Klar T, Zhu J, Guérin C et al. 2017. Network heterogeneity regulates steering in actin-based motility. Nat. Commun. 8:655 https://doi.org/10.1038/s41467-017-00455-1
    [Crossref] [Google Scholar]
  21. Bovellan M, Romeo Y, Biro M, Boden A, Chugh P et al. 2014. Cellular control of cortical actin nucleation. Curr. Biol. 24:1628–35 https://doi.org/10.1016/j.cub.2014.05.069
    [Crossref] [Google Scholar]
  22. Breitsprecher D, Koestler SA, Chizhov I, Nemethova M, Mueller J et al. 2011. Cofilin cooperates with fascin to disassemble filopodial actin filaments. J. Cell Sci. 124:3305–18 https://doi.org/10.1242/jcs.086934
    [Crossref] [Google Scholar]
  23. Brieher WM, Kueh HY, Ballif BA, Mitchison TJ 2006. Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J. Cell Biol. 175:315–24 https://doi.org/10.1083/jcb.200603149
    [Crossref] [Google Scholar]
  24. Burke TA, Christensen JR, Barone E, Suarez C, Sirotkin V, Kovar DR 2014. Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers. Curr. Biol. 24:579–85 https://doi.org/10.1016/j.cub.2014.01.072
    [Crossref] [Google Scholar]
  25. Burnette DT, Manley S, Sengupta P, Sougrat R, Davidson MW et al. 2011. A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 13:371–82 https://doi.org/10.1038/ncb2205
    [Crossref] [Google Scholar]
  26. Cameron LA, Footer MJ, van Oudenaarden A, Theriot JA 1999. Motility of ActA protein-coated microspheres driven by actin polymerization. PNAS 96:4908–13 https://doi.org/10.1073/pnas.96.9.4908
    [Crossref] [Google Scholar]
  27. Campellone KG, Welch MD. 2010. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11:237–51 https://doi.org/10.1038/nrm2867
    [Crossref] [Google Scholar]
  28. Carlier MF, Laurent V, Santolini J, Melki R, Didry D et al. 1997. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136:1307–22 https://doi.org/10.1083/jcb.136.6.1307
    [Crossref] [Google Scholar]
  29. Carlier M-F, Shekhar S. 2017. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat. Rev. Mol. Cell Biol. 18:389–401 https://doi.org/10.1038/nrm.2016.172
    [Crossref] [Google Scholar]
  30. Chan F-Y, Silva AM, Saramago J, Pereira-Sousa J, Brighton HE et al. 2019. The ARP2/3 complex prevents excessive formin activity during cytokinesis. Mol. Biol. Cell 30:96–107 https://doi.org/10.1091/mbc.E18-07-0471
    [Crossref] [Google Scholar]
  31. Chen A, Arora PD, Lai CC, Copeland JW, Moraes TF et al. 2020. The scaffold-protein IQGAP1 enhances and spatially restricts the actin-nucleating activity of Diaphanous-related formin 1 (DIAPH1). J. Biol. Chem. 295:3134–47 https://doi.org/10.1074/jbc.RA119.010476
    [Crossref] [Google Scholar]
  32. Chen A, Arora PD, McCulloch CA, Wilde A 2017. Cytokinesis requires localized β-actin filament production by an actin isoform specific nucleator. Nat. Commun. 8:1530 https://doi.org/10.1038/s41467-017-01231-x
    [Crossref] [Google Scholar]
  33. Chen Q, Pollard TD. 2011. Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring. J. Cell Biol. 195:485–98 https://doi.org/10.1083/jcb.201103067
    [Crossref] [Google Scholar]
  34. Chesarone MA, Goode BL. 2009. Actin nucleation and elongation factors: mechanisms and interplay. Curr. Opin. Cell Biol. 21:28–37 https://doi.org/10.1016/j.ceb.2008.12.001
    [Crossref] [Google Scholar]
  35. Chhabra ES, Higgs HN. 2007. The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9:1110–21 https://doi.org/10.1038/ncb1007-1110
    [Crossref] [Google Scholar]
  36. Christensen JR, Hocky GM, Homa KE, Morganthaler AN, Hitchcock-DeGregori SE et al. 2017. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks. eLife 6:e23152 https://doi.org/10.7554/eLife.23152
    [Crossref] [Google Scholar]
  37. Christensen JR, Homa KE, Morganthaler AN, Brown RR, Suarez C et al. 2019. Cooperation between tropomyosin and α-actinin inhibits fimbrin association with actin filament networks in fission yeast. eLife 8:e47279 https://doi.org/10.7554/eLife.47279
    [Crossref] [Google Scholar]
  38. Clayton JE, Sammons MR, Stark BC, Hodges AR, Lord M 2010. Differential regulation of unconventional fission yeast myosins via the actin track. Curr. Biol. 20:1423–31 https://doi.org/10.1016/j.cub.2010.07.026
    [Crossref] [Google Scholar]
  39. Coffman VC, Nile AH, Lee I-J, Liu H, Wu J-Q 2009. Roles of formin nodes and myosin motor activity in Mid1p-dependent contractile-ring assembly during fission yeast cytokinesis. Mol. Biol. Cell 20:5195–210 https://doi.org/10.1091/mbc.e09-05-0428
    [Crossref] [Google Scholar]
  40. Condeelis J, Singer RH. 2005. How and why does β-actin mRNA target. ? Biol. Cell 97:97–110 https://doi.org/10.1042/BC20040063
    [Crossref] [Google Scholar]
  41. Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP 2010. The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J. Cell Sci. 123:3235–43 https://doi.org/10.1242/jcs.069971
    [Crossref] [Google Scholar]
  42. Davidson AJ, Amato C, Thomason PA, Insall RH 2018. WASP family proteins and formins compete in pseudopod- and bleb-based migration. J. Cell Biol. 217:701–14 https://doi.org/10.1083/jcb.201705160
    [Crossref] [Google Scholar]
  43. Davies T, Jordan SN, Chand V, Sees JA, Laband K et al. 2014. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis. Dev. Cell 30:209–23 https://doi.org/10.1016/j.devcel.2014.05.009
    [Crossref] [Google Scholar]
  44. Dimchev G, Steffen A, Kage F, Dimchev V, Pernier J et al. 2017. Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly. Mol. Biol. Cell 28:1311–25 https://doi.org/10.1091/mbc.e16-05-0334
    [Crossref] [Google Scholar]
  45. Dundr M, Misteli T, Olson MO 2000. The dynamics of postmitotic reassembly of the nucleolus. J. Cell Biol. 150:433–46 https://doi.org/10.1083/jcb.150.3.433
    [Crossref] [Google Scholar]
  46. Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA 2014. Capping protein regulators fine-tune actin assembly dynamics. Nat. Rev. Mol. Cell Biol. 15:677–89 https://doi.org/10.1038/nrm3869
    [Crossref] [Google Scholar]
  47. Elam WA, Cao W, Kang H, Huehn A, Hocky GM et al. 2017. Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. J. Biol. Chem. 292:19565–79 https://doi.org/10.1074/jbc.M117.808378
    [Crossref] [Google Scholar]
  48. Elam WA, Kang H, De La Cruz EM 2013. Biophysics of actin filament severing by cofilin. FEBS Lett 587:1215–19 https://doi.org/10.1016/j.febslet.2013.01.062
    [Crossref] [Google Scholar]
  49. Fatunmbi O, Bradley RP, Kandy SK, Bucki R, Janmey PA, Radhakrishnan R 2020. A multiscale biophysical model for the recruitment of actin nucleating proteins at the membrane interface. Soft Matter 16:4941–54 https://doi.org/10.1039/D0SM00267D
    [Crossref] [Google Scholar]
  50. Faust JJ, Millis BA, Tyska MJ 2019. Profilin-mediated actin allocation regulates the growth of epithelial microvilli. Curr. Biol. 29:3457–65.e3 https://doi.org/10.1016/j.cub.2019.08.051
    [Crossref] [Google Scholar]
  51. Feierbach B, Chang F. 2001. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr. Biol. 11:1656–65
    [Google Scholar]
  52. Funk J, Merino F, Venkova L, Heydenreich L, Kierfeld J et al. 2019. Profilin and formin constitute a pacemaker system for robust actin filament growth. eLife 8:e50963 https://doi.org/10.7554/eLife.50963
    [Crossref] [Google Scholar]
  53. Gachet Y, Hyams JS. 2005. Endocytosis in fission yeast is spatially associated with the actin cytoskeleton during polarised cell growth and cytokinesis. J. Cell Sci. 118:4231–42 https://doi.org/10.1242/jcs.02530
    [Crossref] [Google Scholar]
  54. Gandhi M, Achard V, Blanchoin L, Goode BL 2009. Coronin switches roles in actin disassembly depending on the nucleotide state of actin. Mol. Cell 34:364–74 https://doi.org/10.1016/j.molcel.2009.02.029
    [Crossref] [Google Scholar]
  55. Gandhi M, Smith BA, Bovellan M, Paavilainen V, Daugherty-Clarke K et al. 2010. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol. 20:861–67 https://doi.org/10.1016/j.cub.2010.03.026
    [Crossref] [Google Scholar]
  56. Gao L, Bretscher A. 2008. Analysis of unregulated formin activity reveals how yeast can balance F-actin assembly between different microfilament-based organizations. Mol. Biol. Cell 19:1474–84 https://doi.org/10.1091/mbc.E07-05-0520
    [Crossref] [Google Scholar]
  57. Gateva G, Kremneva E, Reindl T, Kotila T, Kogan K et al. 2017. Tropomyosin isoforms specify functionally distinct actin filament populations in vitro. Curr. Biol. 27:705–13 https://doi.org/10.1016/j.cub.2017.01.018
    [Crossref] [Google Scholar]
  58. Glick BS. 2002. Can the Golgi form de novo. ? Nat. Rev. Mol. Cell Biol. 3:615–19 https://doi.org/10.1038/nrm877
    [Crossref] [Google Scholar]
  59. Gorelik R, Yang C, Kameswaran V, Dominguez R, Svitkina T 2011. Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol. Biol. Cell 22:189–201 https://doi.org/10.1091/mbc.e10-03-0256
    [Crossref] [Google Scholar]
  60. Gressin L, Guillotin A, Guérin C, Blanchoin L, Michelot A 2015. Architecture dependence of actin filament network disassembly. Curr. Biol. 25:1437–47 https://doi.org/10.1016/j.cub.2015.04.011
    [Crossref] [Google Scholar]
  61. Hammer JA, Wang JC, Saeed M, Pedrosa AT 2019. Origin, organization, dynamics, and function of actin and actomyosin networks at the T cell immunological synapse. Annu. Rev. Immunol. 37:201–24 https://doi.org/10.1146/annurev-immunol-042718-041341
    [Crossref] [Google Scholar]
  62. Harris ES, Li F, Higgs HN 2004. The mouse formin, FRLα, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments. J. Biol. Chem. 279:20076–87 https://doi.org/10.1074/jbc.M312718200
    [Crossref] [Google Scholar]
  63. Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P et al. 1996. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–25 https://doi.org/10.1038/382420a0
    [Crossref] [Google Scholar]
  64. Higashida C, Kiuchi T, Akiba Y, Mizuno H, Maruoka M et al. 2013. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat. Cell Biol. 15:395–405 https://doi.org/10.1038/ncb2693
    [Crossref] [Google Scholar]
  65. Hilton DM, Aguilar RM, Johnston AB, Goode BL 2018. Species-specific functions of twinfilin in actin filament depolymerization. J. Mol. Biol. 430:3323–36 https://doi.org/10.1016/j.jmb.2018.06.025
    [Crossref] [Google Scholar]
  66. Hotulainen P, Lappalainen P. 2006. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173:383–94 https://doi.org/10.1083/jcb.200511093
    [Crossref] [Google Scholar]
  67. Isogai T, Danuser G. 2018. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system. Philos. Trans. R. Soc. B 373: https://doi.org/10.1098/rstb.2017.0110
    [Crossref] [Google Scholar]
  68. Janmey PA, Bucki R, Radhakrishnan R 2018. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: an update on possible mechanisms. Biochem. Biophys. Res. Commun. 506:307–14 https://doi.org/10.1016/j.bbrc.2018.07.155
    [Crossref] [Google Scholar]
  69. Jansen S, Collins A, Chin SM, Ydenberg CA, Gelles J, Goode BL 2015. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat. Commun. 6:7202 https://doi.org/10.1038/ncomms8202
    [Crossref] [Google Scholar]
  70. Jansen S, Collins A, Yang C, Rebowski G, Svitkina T, Dominguez R 2011. Mechanism of actin filament bundling by fascin. J. Biol. Chem. 286:30087–96 https://doi.org/10.1074/jbc.M111.251439
    [Crossref] [Google Scholar]
  71. Jegou A, Romet-Lemonne G. 2019. The many implications of actin filament helicity. Semin. Cell Dev. Biol. 102:65–72 https://doi.org/10.1016/j.semcdb.2019.10.018
    [Crossref] [Google Scholar]
  72. Johnson M, East DA, Mulvihill DP 2014. Formins determine the functional properties of actin filaments in yeast. Curr. Biol. 24:1525–30 https://doi.org/10.1016/j.cub.2014.05.034
    [Crossref] [Google Scholar]
  73. Johnston AB, Collins A, Goode BL 2015. High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP. Nat. Cell Biol. 17:1504–11 https://doi.org/10.1038/ncb3252
    [Crossref] [Google Scholar]
  74. Johnston AB, Hilton DM, McConnell P, Johnson B, Harris MT et al. 2018. A novel mode of capping protein-regulation by twinfilin. eLife 7:e41313 https://doi.org/10.7554/eLife.41313
    [Crossref] [Google Scholar]
  75. Kage F, Winterhoff M, Dimchev V, Mueller J, Thalheim T et al. 2017. FMNL formins boost lamellipodial force generation. Nat. Commun. 8:14832 https://doi.org/10.1038/ncomms14832
    [Crossref] [Google Scholar]
  76. Kaiser DA, Vinson VK, Murphy DB, Pollard TD 1999. Profilin is predominantly associated with monomeric actin in Acanthamoeba. J. . Cell Sci 112:Part 213779–90
    [Google Scholar]
  77. Kamasaki T, Arai R, Osumi M, Mabuchi I 2005. Directionality of F-actin cables changes during the fission yeast cell cycle. Nat. Cell Biol. 7:916–17 https://doi.org/10.1038/ncb1295
    [Crossref] [Google Scholar]
  78. Karsenti E. 2008. Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9:255–62 https://doi.org/10.1038/nrm2357
    [Crossref] [Google Scholar]
  79. Karsenti E, Vernos I. 2001. The mitotic spindle: a self-made machine. Science 294:543–47 https://doi.org/10.1126/science.1063488
    [Crossref] [Google Scholar]
  80. Kettenbach AN, Deng L, Wu Y, Baldissard S, Adamo ME et al. 2015. Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1. Mol. Cell Proteom. 14:1275–87 https://doi.org/10.1074/mcp.M114.045245
    [Crossref] [Google Scholar]
  81. Kotila T, Wioland H, Enkavi G, Kogan K, Vattulainen I et al. 2019. Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nat. Commun. 10:5320 https://doi.org/10.1038/s41467-019-13213-2
    [Crossref] [Google Scholar]
  82. Kovar DR, Kuhn JR, Tichy AL, Pollard TD 2003. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161:875–87 https://doi.org/10.1083/jcb.200211078
    [Crossref] [Google Scholar]
  83. Kovar DR, Sirotkin V, Lord M 2011. Three's company: the fission yeast actin cytoskeleton. Trends Cell Biol 21:177–87 https://doi.org/10.1016/j.tcb.2010.11.001
    [Crossref] [Google Scholar]
  84. Kovar DR, Wu J-Q, Pollard TD 2005. Profilin-mediated competition between capping protein and formin Cdc12p during cytokinesis in fission yeast. Mol. Biol. Cell 16:2313–24 https://doi.org/10.1091/mbc.E04-09-0781
    [Crossref] [Google Scholar]
  85. Kueh HY, Brieher WM, Mitchison TJ 2008. Dynamic stabilization of actin filaments. PNAS 105:16531–36 https://doi.org/10.1073/pnas.0807394105
    [Crossref] [Google Scholar]
  86. Kumari R, Jiu Y, Carman PJ, Tojkander S, Kogan K et al. 2020. Tropomodulins control the balance between protrusive and contractile structures by stabilizing actin-tropomyosin filaments. Curr. Biol. 30:767–78.e5 https://doi.org/10.1016/j.cub.2019.12.049
    [Crossref] [Google Scholar]
  87. Lacy MM, Baddeley D, Berro J 2019. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 8:e52355 https://doi.org/10.7554/eLife.52355
    [Crossref] [Google Scholar]
  88. Laporte D, Coffman VC, Lee I-J, Wu J-Q 2011. Assembly and architecture of precursor nodes during fission yeast cytokinesis. J. Cell Biol. 192:1005–21 https://doi.org/10.1083/jcb.201008171
    [Crossref] [Google Scholar]
  89. Lappalainen P, Drubin DG. 1997. Cofilin promotes rapid actin filament turnover in vivo. Nature 388:78–82 https://doi.org/10.1038/40418
    [Crossref] [Google Scholar]
  90. Lassing I, Lindberg U. 1985. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–74 https://doi.org/10.1038/314472a0
    [Crossref] [Google Scholar]
  91. Li Y, Christensen JR, Homa KE, Hocky GM, Fok A et al. 2016. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast. Mol. Biol. Cell 27:1821–33 https://doi.org/10.1091/mbc.E16-01-0010
    [Crossref] [Google Scholar]
  92. Lomakin AJ, Lee K-C, Han SJ, Bui DA, Davidson M et al. 2015. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat. Cell Biol. 17:1435–45 https://doi.org/10.1038/ncb3246
    [Crossref] [Google Scholar]
  93. Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L et al. 1999. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. PNAS 96:3739–44 https://doi.org/10.1073/pnas.96.7.3739
    [Crossref] [Google Scholar]
  94. Manhart A, Icheva TA, Guerin C, Klar T, Boujemaa-Paterski R et al. 2019. Quantitative regulation of the dynamic steady state of actin networks. eLife 8:e42413 https://doi.org/10.7554/eLife.42413
    [Crossref] [Google Scholar]
  95. Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG 2004. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118:363–73
    [Google Scholar]
  96. Miao Y, Han X, Zheng L, Xie Y, Mu Y et al. 2016. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat. Commun. 7:11265 https://doi.org/10.1038/ncomms11265
    [Crossref] [Google Scholar]
  97. Miao Y, Wong CCL, Mennella V, Michelot A, Agard DA et al. 2013. Cell-cycle regulation of formin-mediated actin cable assembly. PNAS 110:E4446–55 https://doi.org/10.1073/pnas.1314000110
    [Crossref] [Google Scholar]
  98. Michelot A, Berro J, Guérin C, Boujemaa-Paterski R, Staiger CJ et al. 2007. Actin-filament stochastic dynamics mediated by ADF/cofilin. Curr. Biol. 17:825–33 https://doi.org/10.1016/j.cub.2007.04.037
    [Crossref] [Google Scholar]
  99. Michelot A, Costanzo M, Sarkeshik A, Boone C, Yates JR, Drubin DG 2010. Reconstitution and protein composition analysis of endocytic actin patches. Curr. Biol. 20:1890–99 https://doi.org/10.1016/j.cub.2010.10.016
    [Crossref] [Google Scholar]
  100. Michelot A, Drubin DG. 2011. Building distinct actin filament networks in a common cytoplasm. Curr. Biol. 21:R560–69 https://doi.org/10.1016/j.cub.2011.06.019
    [Crossref] [Google Scholar]
  101. Mishra M, Huang J, Balasubramanian MK 2014. The yeast actin cytoskeleton. FEMS Microbiol. Rev. 38:213–27 https://doi.org/10.1111/1574-6976.12064
    [Crossref] [Google Scholar]
  102. Misteli T. 2001. The concept of self-organization in cellular architecture. J. Cell Biol. 155:181–86 https://doi.org/10.1083/jcb.200108110
    [Crossref] [Google Scholar]
  103. Miyoshi T, Watanabe N. 2013. Can filament treadmilling alone account for the F-actin turnover in lamellipodia. ? Cytoskeleton 70:179–90 https://doi.org/10.1002/cm.21098
    [Crossref] [Google Scholar]
  104. Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N 2011. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science 331:80–83 https://doi.org/10.1126/science.1197692
    [Crossref] [Google Scholar]
  105. Mizuno H, Tanaka K, Yamashiro S, Narita A, Watanabe N 2018. Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin. PNAS 115:E5000–7 https://doi.org/10.1073/pnas.1803415115
    [Crossref] [Google Scholar]
  106. Mohapatra L, Lagny TJ, Harbage D, Jelenkovic PR, Kondev J 2017. The limiting-pool mechanism fails to control the size of multiple organelles. Cell Syst 4:559–67.e14 https://doi.org/10.1016/j.cels.2017.04.011
    [Crossref] [Google Scholar]
  107. Moseley JB, Sagot I, Manning AL, Xu Y, Eck MJ et al. 2004. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol. Biol. Cell 15:896–907 https://doi.org/10.1091/mbc.E03-08-0621
    [Crossref] [Google Scholar]
  108. Nakano K, Imai J, Arai R, Toh-e A, Matsui Y, Mabuchi I 2002. The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast. J. Cell Sci. 115:4629–39
    [Google Scholar]
  109. Nakano K, Mabuchi I. 2006. Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Mol. Biol. Cell 17:1933–45 https://doi.org/10.1091/mbc.e05-09-0900
    [Crossref] [Google Scholar]
  110. Neidt EM, Scott BJ, Kovar DR 2009. Formin differentially utilizes profilin isoforms to rapidly assemble actin filaments. J. Biol. Chem. 284:673–84 https://doi.org/10.1074/jbc.M804201200
    [Crossref] [Google Scholar]
  111. Nicholson-Dykstra SM, Higgs HN. 2008. Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cell Motil. Cytoskelet. 65:904–22 https://doi.org/10.1002/cm.20312
    [Crossref] [Google Scholar]
  112. Nishida E, Maekawa S, Sakai H 1984. Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23:5307–13 https://doi.org/10.1021/bi00317a032
    [Crossref] [Google Scholar]
  113. Okada K, Obinata T, Abe H 1999. XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. J. Cell Sci. 112:Part 101553–65
    [Google Scholar]
  114. Palani S, Köster DV, Hatano T, Kamnev A, Kanamaru T et al. 2019. Phosphoregulation of tropomyosin is crucial for actin cable turnover and division site placement. J. Cell Biol. 218:3548–59 https://doi.org/10.1083/jcb.201809089
    [Crossref] [Google Scholar]
  115. Pernier J, Shekhar S, Jegou A, Guichard B, Carlier M-F 2016. Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching, and motility. Dev. Cell 36:201–14 https://doi.org/10.1016/j.devcel.2015.12.024
    [Crossref] [Google Scholar]
  116. Pollard TD. 2016. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8:a018226 https://doi.org/10.1101/cshperspect.a018226
    [Crossref] [Google Scholar]
  117. Reymann A-C, Martiel J-L, Cambier T, Blanchoin L, Boujemaa-Paterski R, Théry M 2010. Nucleation geometry governs ordered actin networks structures. Nat. Mater. 9:827–32 https://doi.org/10.1038/nmat2855
    [Crossref] [Google Scholar]
  118. Ritter AT, Asano Y, Stinchcombe JC, Dieckmann NMG, Chen B-C et al. 2015. Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity 42:864–76 https://doi.org/10.1016/j.immuni.2015.04.013
    [Crossref] [Google Scholar]
  119. Ritter AT, Kapnick SM, Murugesan S, Schwartzberg PL, Griffiths GM, Lippincott-Schwartz J 2017. Cortical actin recovery at the immunological synapse leads to termination of lytic granule secretion in cytotoxic T lymphocytes. PNAS 114:E6585–94 https://doi.org/10.1073/pnas.1710751114
    [Crossref] [Google Scholar]
  120. Rodal AA, Tetreault JW, Lappalainen P, Drubin DG, Amberg DC 1999. Aip1p interacts with cofilin to disassemble actin filaments. J. Cell Biol. 145:1251–64 https://doi.org/10.1083/jcb.145.6.1251
    [Crossref] [Google Scholar]
  121. Rotty JD, Wu C, Haynes EM, Suarez C, Winkelman JD et al. 2015. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev. Cell 32:54–67 https://doi.org/10.1016/j.devcel.2014.10.026
    [Crossref] [Google Scholar]
  122. Saarikangas J, Zhao H, Lappalainen P 2010. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90:259–89 https://doi.org/10.1152/physrev.00036.2009
    [Crossref] [Google Scholar]
  123. Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D 2002. An actin nucleation mechanism mediated by Bni1 and profilin. Nat. Cell Biol. 4:626–31 https://doi.org/10.1038/ncb834
    [Crossref] [Google Scholar]
  124. Sarmiento C, Wang W, Dovas A, Yamaguchi H, Sidani M et al. 2008. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J. Cell Biol. 180:1245–60 https://doi.org/10.1083/jcb.200708123
    [Crossref] [Google Scholar]
  125. Schafer DA, Jennings PB, Cooper JA 1996. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135:169–79 https://doi.org/10.1083/jcb.135.1.169
    [Crossref] [Google Scholar]
  126. Schiffhauer ES, Luo T, Mohan K, Srivastava V, Qian X et al. 2016. Mechanoaccumulative elements of the mammalian actin cytoskeleton. Curr. Biol. 26:1473–79 https://doi.org/10.1016/j.cub.2016.04.007
    [Crossref] [Google Scholar]
  127. Senju Y, Kalimeri M, Koskela EV, Somerharju P, Zhao H et al. 2017. Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. PNAS 114:E8977–86 https://doi.org/10.1073/pnas.1705032114
    [Crossref] [Google Scholar]
  128. Senju Y, Lappalainen P. 2019. Regulation of actin dynamics by PI(4,5)P2 in cell migration and endocytosis. Curr. Opin. Cell Biol. 56:7–13 https://doi.org/10.1016/j.ceb.2018.08.003
    [Crossref] [Google Scholar]
  129. Shekhar S, Chung J, Kondev J, Gelles J, Goode BL 2019. Synergy between Cyclase-associated protein and Cofilin accelerates actin filament depolymerization by two orders of magnitude. Nat. Commun. 10:5319 https://doi.org/10.1038/s41467-019-13268-1
    [Crossref] [Google Scholar]
  130. Shekhar S, Kerleau M, Kühn S, Pernier J, Romet-Lemonne G et al. 2015. Formin and capping protein together embrace the actin filament in a ménage à trois. Nat. Commun. 6:8730 https://doi.org/10.1038/ncomms9730
    [Crossref] [Google Scholar]
  131. Sinnar SA, Antoku S, Saffin J-M, Cooper JA, Halpain S 2014. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics. Mol. Biol. Cell 25:2152–60 https://doi.org/10.1091/mbc.E13-12-0749
    [Crossref] [Google Scholar]
  132. Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD 2010. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell 21:2894–904 https://doi.org/10.1091/mbc.e10-02-0157
    [Crossref] [Google Scholar]
  133. Sizonenko GI, Karpova TS, Gattermeir DJ, Cooper JA 1996. Mutational analysis of capping protein function in Saccharomyces cerevisiae. Mol. Biol. Cell 7:1–15 https://doi.org/10.1091/mbc.7.1.1
    [Crossref] [Google Scholar]
  134. Skau CT, Kovar DR. 2010. Fimbrin and tropomyosin competition regulates endocytosis and cytokinesis kinetics in fission yeast. Curr. Biol. 20:1415–22 https://doi.org/10.1016/j.cub.2010.06.020
    [Crossref] [Google Scholar]
  135. Skruber K, Read T-A, Vitriol EA 2018. Reconsidering an active role for G-actin in cytoskeletal regulation. J. Cell Sci. 131:jcs203760 https://doi.org/10.1242/jcs.203760
    [Crossref] [Google Scholar]
  136. Ströhl F, Lin JQ, Laine RF, Wong HH-W, Urbančič V et al. 2017. Single molecule translation imaging visualizes the dynamics of local β-actin synthesis in retinal axons. Sci. Rep. 7:709 https://doi.org/10.1038/s41598-017-00695-7
    [Crossref] [Google Scholar]
  137. Suarez C, Carroll RT, Burke TA, Christensen JR, Bestul AJ et al. 2015. Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex. Dev. Cell 32:43–53 https://doi.org/10.1016/j.devcel.2014.10.027
    [Crossref] [Google Scholar]
  138. Suarez C, Kovar DR. 2016. Internetwork competition for monomers governs actin cytoskeleton organization. Nat. Rev. Mol. Cell Biol. 17:799–810 https://doi.org/10.1038/nrm.2016.106
    [Crossref] [Google Scholar]
  139. Suarez C, McCall PM, Gardel ML, Kovar DR 2017. When is “enough” enough. ? Cell Syst 4:480–82 https://doi.org/10.1016/j.cels.2017.05.007
    [Crossref] [Google Scholar]
  140. Suarez C, Roland J, Boujemaa-Paterski R, Kang H, McCullough BR et al. 2011. Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries. Curr. Biol. 21:862–68 https://doi.org/10.1016/j.cub.2011.03.064
    [Crossref] [Google Scholar]
  141. Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, Li R 2012. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197:239–51 https://doi.org/10.1083/jcb.201112113
    [Crossref] [Google Scholar]
  142. Suzuki EL, Chikireddy J, Dmitrieff S, Guichard B, Romet-Lemonne G, Jégou A 2020. Geometrical constraints greatly hinder formin mDia1 activity. Nano Lett 20:22–32 https://doi.org/10.1021/acs.nanolett.9b02241
    [Crossref] [Google Scholar]
  143. Svitkina TM, Borisy GG. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145:1009–26
    [Google Scholar]
  144. Theriot JA. 1997. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J. Cell Biol. 136:1165–68 https://doi.org/10.1083/jcb.136.6.1165
    [Crossref] [Google Scholar]
  145. Tilney LG, Tilney MS. 1984. Observations on how actin filaments become organized in cells. J. Cell Biol. 99:76s–82s https://doi.org/10.1083/jcb.99.1.76s
    [Crossref] [Google Scholar]
  146. Ueno T, Falkenburger BH, Pohlmeyer C, Inoue T 2011. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization. Sci. Signal. 4:ra87 https://doi.org/10.1126/scisignal.2002033
    [Crossref] [Google Scholar]
  147. Vavylonis D, Wu J-Q, Hao S, O'Shaughnessy B, Pollard TD 2008. Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319:97–100 https://doi.org/10.1126/science.1151086
    [Crossref] [Google Scholar]
  148. Vedula P, Kashina A. 2018. The makings of the ‘actin code’: regulation of actin's biological function at the amino acid and nucleotide level. J. Cell Sci. 131:jcs215509 https://doi.org/10.1242/jcs.215509
    [Crossref] [Google Scholar]
  149. Velarde N, Gunsalus KC, Piano F 2007. Diverse roles of actin in C. elegans early embryogenesis. BMC Dev. Biol. 7:142 https://doi.org/10.1186/1471-213X-7-142
    [Crossref] [Google Scholar]
  150. Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T, Borisy GG 2006. Role of fascin in filopodial protrusion. J. Cell Biol. 174:863–75 https://doi.org/10.1083/jcb.200603013
    [Crossref] [Google Scholar]
  151. Wang H, Vavylonis D. 2008. Model of For3p-mediated actin cable assembly in fission yeast. PLOS ONE 3:e4078 https://doi.org/10.1371/journal.pone.0004078
    [Crossref] [Google Scholar]
  152. Washington RW, Knecht DA. 2008. Actin binding domains direct actin-binding proteins to different cytoskeletal locations. BMC Cell Biol 9:10 https://doi.org/10.1186/1471-2121-9-10
    [Crossref] [Google Scholar]
  153. Watanabe N, Tohyama K, Yamashiro S 2018. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochem. Biophys. Res. Commun. 506:323–29 https://doi.org/10.1016/j.bbrc.2018.09.189
    [Crossref] [Google Scholar]
  154. Wedlich-Söldner R, Betz T. 2018. Self-organization: the fundament of cell biology. Philos. Trans. R. Soc. B 373: https://doi.org/10.1098/rstb.2017.0103
    [Crossref] [Google Scholar]
  155. Wiggan O, Shaw AE, DeLuca JG, Bamburg JR 2012. ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev. Cell 22:530–43 https://doi.org/10.1016/j.devcel.2011.12.026
    [Crossref] [Google Scholar]
  156. Willis JH, Munro E, Lyczak R, Bowerman B 2006. Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Mol. Biol. Cell 17:1051–64 https://doi.org/10.1091/mbc.e05-09-0886
    [Crossref] [Google Scholar]
  157. Winkelman JD, Suarez C, Hocky GM, Harker AJ, Morganthaler AN et al. 2016. Fascin- and α-actinin-bundled networks contain intrinsic structural features that drive protein sorting. Curr. Biol. 26:2697–706 https://doi.org/10.1016/j.cub.2016.07.080
    [Crossref] [Google Scholar]
  158. Wioland H, Guichard B, Senju Y, Myram S, Lappalainen P et al. 2017. ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr. Biol. 27:1956–67.e7 https://doi.org/10.1016/j.cub.2017.05.048
    [Crossref] [Google Scholar]
  159. Wioland H, Jegou A, Romet-Lemonne G 2019. Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. PNAS 116:2595–602 https://doi.org/10.1073/pnas.1812053116
    [Crossref] [Google Scholar]
  160. Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE et al. 2012. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:973–87 https://doi.org/10.1016/j.cell.2011.12.034
    [Crossref] [Google Scholar]
  161. Wu J-Q, Bähler J, Pringle JR 2001. Roles of a fimbrin and an α-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol. Biol. Cell 12:1061–77
    [Google Scholar]
  162. Wu J-Q, Kuhn JR, Kovar DR, Pollard TD 2003. Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev. Cell 5:723–34
    [Google Scholar]
  163. Wu J-Q, Pollard TD. 2005. Counting cytokinesis proteins globally and locally in fission yeast. Science 310:310–14 https://doi.org/10.1126/science.1113230
    [Crossref] [Google Scholar]
  164. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A et al. 1998. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–12 https://doi.org/10.1038/31735
    [Crossref] [Google Scholar]
  165. Yonetani A, Chang F. 2010. Regulation of cytokinesis by the formin cdc12p. Curr. Biol. 20:561–66 https://doi.org/10.1016/j.cub.2010.01.061
    [Crossref] [Google Scholar]
  166. Yu M, Le S, Efremov AK, Zeng X, Bershadsky A, Yan J 2018. Effects of mechanical stimuli on profilin- and formin-mediated actin polymerization. Nano Lett 18:5239–47 https://doi.org/10.1021/acs.nanolett.8b02211
    [Crossref] [Google Scholar]
  167. Yu M, Yuan X, Lu C, Le S, Kawamura R et al. 2017. mDia1 senses both force and torque during F-actin filament polymerization. Nat. Commun. 8:1650 https://doi.org/10.1038/s41467-017-01745-4
    [Crossref] [Google Scholar]
  168. Zigmond SH, Evangelista M, Boone C, Yang C, Dar AC et al. 2003. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13:1820–23
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-032320-094706
Loading
/content/journals/10.1146/annurev-cellbio-032320-094706
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error