1932

Abstract

Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060447
2017-10-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-100616-060447.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060447&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad K, Henikoff S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9:1191–200 [Google Scholar]
  2. Alabert C, Barth TK, Reveron-Gomez N, Sidoli S, Schmidt A. et al. 2015. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:585–90 [Google Scholar]
  3. Alabert C, Groth A. 2012. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol. 13:153–67 [Google Scholar]
  4. Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y. et al. 2009. DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. PNAS 106:17101–4 [Google Scholar]
  5. Allis CD, Jenuwein T. 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17:487–500 [Google Scholar]
  6. Annunziato AT. 2013. Assembling chromatin: the long and winding road. Biochim. Biophys. Acta 1819:196–210 [Google Scholar]
  7. Arcangioli B, De Lahondès R. 2000. Fission yeast switches mating type by a replication–recombination coupled process. EMBO J 19:1389–96 [Google Scholar]
  8. Armakolas A, Klar AJ. 2006. Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis. Science 311:1146–49 [Google Scholar]
  9. Armakolas A, Klar AJ. 2007. Left-right dynein motor implicated in selective chromatid segregation in mouse cells. Science 315:100–1 [Google Scholar]
  10. Audergon PNCB, Catania S, Kagansky A, Tong P, Shukla M. et al. 2015. Restricted epigenetic inheritance of H3K9 methylation. Science 348:132–35 [Google Scholar]
  11. Avery OT, MacLeod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79:137–58 [Google Scholar]
  12. Ayyanathan K, Lechner MS, Bell P, Maul GG, Schultz DC. et al. 2003. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 17:1855–69 [Google Scholar]
  13. Balakrishnan L, Bambara RA. 2013. Okazaki fragment metabolism. Cold Spring Harb. Perspect. Biol. 5:a010173 [Google Scholar]
  14. Bambara RA, Murante RS, Henricksen LA. 1997. Enzymes and reactions at the eukaryotic DNA replication fork. J. Biol. Chem. 272:4647–50 [Google Scholar]
  15. Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res 21:381–95 [Google Scholar]
  16. Bell SP, Stillman B. 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–34 [Google Scholar]
  17. Bessman MJ, Kornberg A, Lehman IR, Simms ES. 1956. Enzymic synthesis of deoxyribonucleic acid. Biochim. Biophys. Acta 21:197–98 [Google Scholar]
  18. Bessman MJ, Lehman IR, Simms ES, Kornberg A. 1958. Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J. Biol. Chem. 233:171–77 [Google Scholar]
  19. Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21 [Google Scholar]
  20. Brennan LD, Forties RA, Patel SS, Wang MD. 2016. DNA looping mediates nucleosome transfer. Nat. Commun. 7:13337 [Google Scholar]
  21. Buratowski S, Kim T. 2010. The role of cotranscriptional histone methylations. Cold Spring Harb. Symp. Quant. Biol. 75:95–102 [Google Scholar]
  22. Burgess RJ, Zhang Z. 2013. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20:14–22 [Google Scholar]
  23. Cairns J. 1975. Mutation selection and the natural history of cancer. Nature 255:197–200 [Google Scholar]
  24. Cairns J. 2006. Cancer and the immortal strand hypothesis. Genetics 174:1069–72 [Google Scholar]
  25. Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O. et al. 2011. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 21:1438–49 [Google Scholar]
  26. Cerritelli SM, Crouch RJ. 2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–505 [Google Scholar]
  27. Chen P, Zhao J, Wang Y, Wang M, Long H. et al. 2013. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 27:2109–24 [Google Scholar]
  28. Chen X, Xiong J, Xu M, Chen S, Zhu B. 2011. Symmetrical modification within a nucleosome is not required globally for histone lysine methylation. EMBO Rep 12:244–51 [Google Scholar]
  29. Comings DE. 1970. The distribution of sister chromatids at mitosis in Chinese hamster cells. Chromosoma 29:428–33 [Google Scholar]
  30. Conboy MJ, Karasov AO, Rando TA. 2007. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. PLOS Biol 5:e102 [Google Scholar]
  31. Dalgaard JZ, Klar AJ. 1999. Orientation of DNA replication establishes mating-type switching pattern in S. pombe. Nature 400:181–84 [Google Scholar]
  32. Dalgaard JZ, Klar AJS. 2001. Does S. pombe exploit the intrinsic asymmetry of DNA synthesis to imprint daughter cells for mating-type switching?. Trends Genet 17:153–57 [Google Scholar]
  33. Egel R. 2004. DNA replication: stalling a fork for imprinting and switching. Curr. Biol. 14:R915–17 [Google Scholar]
  34. Ferraro T, Esposito E, Mancini L, Ng S, Lucas T. et al. 2016. Transcriptional memory in the Drosophila embryo. Curr. Biol. 26:212–18 [Google Scholar]
  35. Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM. 1998. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. PNAS 95:10020–25 [Google Scholar]
  36. Francino MP, Ochman H. 1997. Strand asymmetries in DNA evolution. Trends Genet 13:240–45 [Google Scholar]
  37. Franklin RE, Gosling RG. 1953a. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 172:156–57 [Google Scholar]
  38. Franklin RE, Gosling RG. 1953b. Molecular configuration in sodium thymonucleate. Nature 171:740–41 [Google Scholar]
  39. Fuller RS, Funnell BE, Kornberg A. 1984. The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38:889–900 [Google Scholar]
  40. Furusawa M. 2012. Implications of fidelity difference between the leading and the lagging strand of DNA for the acceleration of evolution. Front. Oncol. 2:144 [Google Scholar]
  41. Furusawa M. 2014. The disparity mutagenesis model predicts rescue of living things from catastrophic errors. Front. Genet. 5:421 [Google Scholar]
  42. Furusawa M, Doi H. 1992. Promotion of evolution: disparity in the frequency of strand-specific misreading between the lagging and leading DNA strands enhances disproportionate accumulation of mutations. J. Theor. Biol. 157:127–33 [Google Scholar]
  43. Furusawa M, Doi H. 1998. Asymmetrical DNA replication promotes evolution: disparity theory of evolution. Genetica 102–103:333–47 [Google Scholar]
  44. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, Van Deursen F. et al. 2006. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8:358–66 [Google Scholar]
  45. Geard CR. 1973. Chromatid distribution at mitosis in cultured Wallabia bicolor cells. Chromosoma 44:301–8 [Google Scholar]
  46. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J. et al. 2015. DNA methylation on N6-adenine in C. elegans. Cell 161:868–78 [Google Scholar]
  47. Haber JE. 2012. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191:33–64 [Google Scholar]
  48. Hammond CM, Stromme CB, Huang H, Patel DJ, Groth A. 2017. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18:141–58 [Google Scholar]
  49. Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS. et al. 2008. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10:1291–300 [Google Scholar]
  50. Hanson SJ, Wolfe KH. 2017. An evolutionary perspective on yeast mating-type switching. Genetics 206:9–32 [Google Scholar]
  51. Hateboer G, Wobst A, Petersen BO, Le Cam L, Vigo E. et al. 1998. Cell cycle–regulated expression of mammalian CDC6 is dependent on E2F. Mol. Cell. Biol. 18:6679–97 [Google Scholar]
  52. Helmrich A, Ballarino M, Nudler E, Tora L. 2013. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20:412–18 [Google Scholar]
  53. Helmrich A, Ballarino M, Tora L. 2011. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44:966–77 [Google Scholar]
  54. Herz HM, Morgan M, Gao X, Jackson J, Rickels R. et al. 2014. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345:1065–70 [Google Scholar]
  55. Holmes AM, Kaykov A, Arcangioli B. 2005. Molecular and cellular dissection of mating-type switching steps in Schizosaccharomyces pombe. Mol. Cell. Biol. 25:303–11 [Google Scholar]
  56. Huang C, Zhang Z, Xu M, Li Y, Li Z. et al. 2013. H3.3-H4 tetramer splitting events feature cell-type specific enhancers. PLOS Genet 9:e1003558 [Google Scholar]
  57. Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A. et al. 2015. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22:618–26 [Google Scholar]
  58. Hübscher U, Maga G, Spadari S. 2001. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71:133–63 [Google Scholar]
  59. Izumi K. 2016. Disorders of transcriptional regulation: an emerging category of multiple malformation syndromes. Mol. Syndromol. 7:262–73 [Google Scholar]
  60. Jackson V, Chalkley R. 1981. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell 23:121–34 [Google Scholar]
  61. Jackson V, Chalkley R. 1985. Histone segregation on replicating chromatin. Biochemistry 24:6930–38 [Google Scholar]
  62. Johnson RE, Klassen R, Prakash L, Prakash S. 2015. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands. Mol. Cell 59:163–75 [Google Scholar]
  63. Klar AJ. 1987. Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast. Nature 326:466–70 [Google Scholar]
  64. Klar AJ. 1990. The developmental fate of fission yeast cells is determined by the pattern of inheritance of parental and grandparental DNA strands. EMBO J 9:1407–15 [Google Scholar]
  65. Klar AJ. 1994. A model for specification of the left-right axis in vertebrates. Trends Genet 10:392–96 [Google Scholar]
  66. Klar AJ. 2008. Support for the selective chromatid segregation hypothesis advanced for the mechanism of left-right body axis development in mice. Breast Dis 29:47–56 [Google Scholar]
  67. Klar AJ, Bonaduce MJ, Cafferkey R. 1991. The mechanism of fission yeast mating type interconversion: seal/replicate/cleave model of replication across the double-stranded break site at mat1. Genetics 127:489–96 [Google Scholar]
  68. Klar AJS. 2010. The yeast mating-type switching mechanism: a memoir. Genetics 186:443–49 [Google Scholar]
  69. Klar AJS. 2014. Selective chromatid segregation mechanism invoked for the human congenital mirror hand movement disorder development by RAD51 mutations: a hypothesis. Int. J. Biol. Sci. 10:1018–23 [Google Scholar]
  70. Kornberg A. 1989. An early history of DNA polymerase: a commentary by Arthur Kornberg on ‘Enzymic synthesis of deoxyribonucleic acid’. by A Kornberg, IR Lehman, MJ Bessman and ES Simms Biochim. Biophys Acta 21:1956197–198 Biochim. Biophys. Acta 1000:57–58 [Google Scholar]
  71. Korona DA, Lecompte KG, Pursell ZF. 2011. The high fidelity and unique error signature of human DNA polymerase ε. Nucleic Acids Res 39:1763–73 [Google Scholar]
  72. Kulis M, Esteller M. 2010. DNA methylation and cancer. Adv. Genet. 70:27–56 [Google Scholar]
  73. Kunkel TA. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. PNAS 82:488–92 [Google Scholar]
  74. Kuroki T, Murakami Y. 1989. Random segregation of DNA strands in epidermal basal cells. Jpn. J. Cancer Res. 80:637–42 [Google Scholar]
  75. Labib K, Tercero JA, Diffley JFX. 2000. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288:1643 [Google Scholar]
  76. Lansdorp PM. 2007. Immortal strands? Give me a break. Cell 129:1244–47 [Google Scholar]
  77. Lansdorp PM. 2012. Epigenetic differences between sister chromatids. Ann. N. Y. Acad. Sci. 1266:1–6 [Google Scholar]
  78. Lark KG. 1972a. Evidence for the direct involvement of RNA in the initiation of DNA replication in Escherichia coli 15T. J. Mol. Biol. 64:47–60 [Google Scholar]
  79. Lark KG. 1972b. Genetic control over the initiation of the synthesis of the short deoxynucleotide chains in E. coli. Nat. New Biol. 240:237–40 [Google Scholar]
  80. Lark KG, Consigli RA, Minocha HC. 1966. Segregation of sister chromatids in mammalian cells. Science 154:1202–5 [Google Scholar]
  81. Leffak IM, Grainger R, Weintraub H. 1977. Conservative assembly and segregation of nucleosomal histories. Cell 12:837–45 [Google Scholar]
  82. Lehman IR, Bessman MJ, Simms ES, Kornberg A. 1958. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233:163–70 [Google Scholar]
  83. Leonhardt H, Rahn HP, Weinzierl P, Sporbert A, Cremer T. et al. 2000. Dynamics of DNA replication factories in living cells. J. Cell Biol. 149:271–80 [Google Scholar]
  84. Lew DJ, Burke DJ, Dutta A. 2008. The immortal strand hypothesis: How could it work. Cell 133:21–23 [Google Scholar]
  85. Lin S, Yuan ZF, Han Y, Marchione DM, Garcia BA. 2016. Preferential phosphorylation on old histones during early mitosis in human cells. J. Biol. Chem. 291:15342–57 [Google Scholar]
  86. Liu B, Alberts B. 1995. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267:1131–37 [Google Scholar]
  87. Low DA, Weyand NJ, Mahan MJ. 2001. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69:7197–204 [Google Scholar]
  88. Luebben WR, Sharma N, Nyborg JK. 2010. Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14. PNAS 107:19254–59 [Google Scholar]
  89. Margueron R, Justin N, Ohno K, Sharpe ML, Son J. et al. 2009. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–67 [Google Scholar]
  90. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. 2010. Eukaryotic chromosome DNA replication: where, when, and how. Annu. Rev. Biochem. 79:89–130 [Google Scholar]
  91. McKinley KL, Cheeseman IM. 2016. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17:16–29 [Google Scholar]
  92. McKnight SL, Miller OL Jr. 1977. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12:795–804 [Google Scholar]
  93. Meselson M, Stahl FW. 1958. The replication of DNA in Escherichia coli. PNAS 44:671–82 [Google Scholar]
  94. Moldovan G-L, Pfander B, Jentsch S. 2007. PCNA, the maestro of the replication fork. Cell 129:665–79 [Google Scholar]
  95. Moyer SE, Lewis PW, Botchan MR. 2006. Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. PNAS 103:10236–41 [Google Scholar]
  96. Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H. 2010. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ɛ, and GINS in budding yeast. Genes Dev 24:602–12 [Google Scholar]
  97. Muramoto T, Muller I, Thomas G, Melvin A, Chubb JR. 2010. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr. Biol. 20:397–406 [Google Scholar]
  98. Nakano S, Stillman B, Horvitz HR. 2011. Replication-coupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans. Cell 147:1525–36 [Google Scholar]
  99. Nakayama J, Allshire RC, Klar AJ, Grewal SI. 2001. A role for DNA polymerase alpha in epigenetic control of transcriptional silencing in fission yeast. EMBO J 20:2857–66 [Google Scholar]
  100. Nasmyth K, Haering CH. 2009. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43:525–58 [Google Scholar]
  101. Nishitani H, Lygerou Z, Nishimoto T, Nurse P. 2000. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404:625–28 [Google Scholar]
  102. Nougarede R, Della Seta F, Zarzov P, Schwob E. 2000. Hierarchy of S-phase-promoting factors: Yeast Dbf4-Cdc7 kinase requires prior S-phase cyclin-dependent kinase activation. Mol. Cell. Biol. 20:3795–806 [Google Scholar]
  103. O'Donnell M, Langston L, Stillman B. 2013. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb. Perspect. Biol. 5:a010108 [Google Scholar]
  104. Ogawa T, Okazaki T. 1980. Discontinuous DNA replication. Annu. Rev. Biochem. 49:421–57 [Google Scholar]
  105. Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A. 1968. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. PNAS 59:598–605 [Google Scholar]
  106. Onn I, Heidinger-Pauli JM, Guacci V, Ünal E, Koshland DE. 2008. Sister chromatid cohesion: a simple concept with a complex reality. Annu. Rev. Cell Dev. Biol. 24:105–29 [Google Scholar]
  107. Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 2013. Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–15 [Google Scholar]
  108. Prindle MJ, Loeb LA. 2012. DNA polymerase delta in DNA replication and genome maintenance. Environ. Mol. Mutagen. 53:666–82 [Google Scholar]
  109. Probst AV, Dunleavy E, Almouzni G. 2009. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10:192–206 [Google Scholar]
  110. Pursell ZF, Isoz I, Lundström E-B, Johansson E, Kunkel TA. 2007. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:127–30 [Google Scholar]
  111. Ragunathan K, Jih G, Moazed D. 2015. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348:1258699 [Google Scholar]
  112. Rando TA. 2007. The immortal strand hypothesis: segregation and reconstruction. Cell 129:1239–43 [Google Scholar]
  113. Reijns MAM. 2015. Lagging strand replication shapes the mutational landscape of the genome. Nature 518:502–6 [Google Scholar]
  114. Riley D, Weintraub H. 1979. Conservative segregation of parental histones during replication in the presence of cycloheximide. PNAS 76:328–32 [Google Scholar]
  115. Rocha EP, Danchin A. 2003. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 31:6570–77 [Google Scholar]
  116. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S. 2012. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148:112–25 [Google Scholar]
  117. Rossi ML, Pike JE, Wang W, Burgers PM, Campbell JL, Bambara RA. 2008. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J. Biol. Chem. 283:27483–93 [Google Scholar]
  118. Roufa DJ, Marchionni MA. 1982. Nucleosome segregation at a defined mammalian chromosomal site. PNAS 79:1810–14 [Google Scholar]
  119. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M. et al. 2010. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:761–70 [Google Scholar]
  120. Sakabe K, Okazaki R. 1966. A unique property of the replicating region of chromosomal DNA. Biochim. Biophys. Acta 129:651–54 [Google Scholar]
  121. Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD. 2016. The nature of mutations induced by replication–transcription collisions. Nature 535:178–81 [Google Scholar]
  122. Seale RL. 1976. Studies on the mode of segregation of histone nu bodies during replication in HeLa cells. Cell 9:423–29 [Google Scholar]
  123. Seidman MM, Levine AJ, Weintraub H. 1979. The asymmetric segregation of parental nucleosomes during chrosome replication. Cell 18:439–49 [Google Scholar]
  124. Sequeira-Mendes J, Diaz-Uriarte R, Apedaile A, Huntley D, Brockdorff N, Gomez M. 2009. Transcription initiation activity sets replication origin efficiency in mammalian cells. PLOS Genet 5:e1000446 [Google Scholar]
  125. Shibahara K, Stillman B. 1999. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96:575–85 [Google Scholar]
  126. Shimoda C, Itadani A, Sugino A, Furusawa M. 2006. Isolation of thermotolerant mutants by using proofreading-deficient DNA polymerase delta as an effective mutator in Saccharomyces cerevisiae. Genes Genet. Syst. 81:391–97 [Google Scholar]
  127. Smith DJ, Whitehouse I. 2012. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483:434–38 [Google Scholar]
  128. Smith ZD, Meissner A. 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14:204–20 [Google Scholar]
  129. Sogo JM, Stahl H, Koller T, Knippers R. 1986. Structure of replicating simian virus 40 minichromosomes: the replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189:189–204 [Google Scholar]
  130. Spitz F, Furlong EEM. 2012. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13:613–26 [Google Scholar]
  131. Stancheva I, Koller T, Sogo JM. 1999. Asymmetry of Dam remethylation on the leading and lagging arms of plasmid replicative intermediates. EMBO J 18:6542–51 [Google Scholar]
  132. Sulston JE, Schierenberg E, White JG, Thomson JN. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100:64–119 [Google Scholar]
  133. Tajbakhsh S, Gonzalez C. 2009. Biased segregation of DNA and centrosomes—moving together or drifting apart. Nat. Rev. Mol. Cell Biol. 10:804–10 [Google Scholar]
  134. Tanabe K, Kondo T, Onodera Y, Furusawa M. 1999. A conspicuous adaptability to antibiotics in the Escherichiacoli mutator strain, dnaQ49. FEMS Microbiol. Lett. 176:191–96 [Google Scholar]
  135. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT. et al. 2012. The accessible chromatin landscape of the human genome. Nature 489:75–82 [Google Scholar]
  136. Tran V, Lim C, Xie J, Chen X. 2012. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338:679–82 [Google Scholar]
  137. Tsakraklides V, Bell SP. 2010. Dynamics of pre-replicative complex assembly. J. Biol. Chem. 285:9437–43 [Google Scholar]
  138. Van Rossum B, Fischle W, Selenko P. 2012. Asymmetrically modified nucleosomes expand the histone code. Nat. Struct. Mol. Biol. 19:1064–66 [Google Scholar]
  139. Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC. 2003. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17:1894–908 [Google Scholar]
  140. Vasseur P, Tonazzini S, Ziane R, Camasses A, Rando OJ, Radman-Livaja M. 2016. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep 16:2651–65 [Google Scholar]
  141. Voigt P, Leroy G, Drury WJ III, Zee BM, Son J. et al. 2012. Asymmetrically modified nucleosomes. Cell 151:181–93 [Google Scholar]
  142. Waga S, Stillman B. 1998. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67:721–51 [Google Scholar]
  143. Watson JD, Crick FHC. 1953a. Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–67 [Google Scholar]
  144. Watson JD, Crick FHC. 1953b. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–38 [Google Scholar]
  145. Weintraub H. 1976. Cooperative alignment of nu bodies during chromosome replication in the presence of cycloheximide. Cell 9:419–22 [Google Scholar]
  146. Wilkins MHF, Stokes AR, Wilson HR. 1953. Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature 171:738–40 [Google Scholar]
  147. Wohlschlegel JA, Dhar SK, Prokhorova TA, Dutta A, Walter JC. 2002. Xenopus Mcm10 binds to origins of DNA replication after Mcm2–7 and stimulates origin binding of Cdc45. Mol. Cell 9:233–40 [Google Scholar]
  148. Wu TP, Wang T, Seetin MG, Lai Y, Zhu S. et al. 2016. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532:329–33 [Google Scholar]
  149. Xie J, Wooten M, Tran V, Chen BC, Pozmanter C. et al. 2015. Histone H3 threonine phosphorylation regulates asymmetric histone inheritance in the Drosophila male germline. Cell 163:920–33 [Google Scholar]
  150. Xu M, Long C, Chen X, Huang C, Chen S, Zhu B. 2010. Partitioning of histone H3-H4 tetramers during DNA replication–dependent chromatin assembly. Science 328:94–98 [Google Scholar]
  151. Yadlapalli S, Yamashita YM. 2013. Chromosome-specific nonrandom sister chromatid segregation during stem-cell division. Nature 498:251–54 [Google Scholar]
  152. Yamada-Inagawa T, Klar AJS, Dalgaard JZ. 2007. Schizosaccharomyces pombe switches mating type by the synthesis-dependent strand-annealing mechanism. Genetics 177:255–65 [Google Scholar]
  153. Yamashita YM. 2013. Nonrandom template segregation: a way to break the symmetry of stem cells. J. Cell Biol. 203:7–9 [Google Scholar]
  154. Yan J, Enge M, Whitington T, Dave K, Liu J. et al. 2013. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154:801–13 [Google Scholar]
  155. Yennek S, Tajbakhsh S. 2013. DNA asymmetry and cell fate regulation in stem cells. Semin. Cell Dev. Biol. 24:627–42 [Google Scholar]
  156. Yu C, Gan H, Han J, Zhou ZX, Jia S. et al. 2014. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56:551–63 [Google Scholar]
  157. Zhang G, Huang H, Liu D, Cheng Y, Liu X. et al. 2015. N6-Methyladenine DNA modification in Drosophila. Cell 161:893–906 [Google Scholar]
  158. Zhu B, Reinberg D. 2011. Epigenetic inheritance: uncontested. Cell Res 21:435–41 [Google Scholar]
  159. Zou L, Mitchell J, Stillman B. 1997. CDC45, a novel yeast gene that functions with the origin recognition complex and Mcm proteins in initiation of DNA replication. Mol. Cell. Biol. 17:553–63 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060447
Loading
/content/journals/10.1146/annurev-cellbio-100616-060447
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error