1932

Abstract

An explosion of findings driven by powerful new technologies has expanded our understanding of microglia, the resident immune cells of the central nervous system (CNS). This wave of discoveries has fueled a growing interest in the roles that these cells play in the development of the CNS and in the neuropathology of a diverse array of disorders. In this review, we discuss the crucial roles that microglia play in shaping the brain—from their influence on neurons and glia within the developing CNS to their roles in synaptic maturation and brain wiring—as well as some of the obstacles to overcome when assessing their contributions to normal brain development. Furthermore, we examine how normal developmental functions of microglia are perturbed or remerge in neurodevelopmental and neurodegenerative disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060509
2018-10-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100616-060509.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060509&mimeType=html&fmt=ahah

Literature Cited

  1. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH et al. 2017. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94:278–93.e9
    [Google Scholar]
  2. Acaz-Fonseca E, Duran JC, Carrero P, Garcia-Segura LM, Arevalo MA 2015. Sex differences in glia reactivity after cortical brain injury. Glia 63:1966–81
    [Google Scholar]
  3. Agid O, Shapira B, Zislin J, Ritsner M, Hanin B et al. 1999. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol. Psychiatry 4:163–72
    [Google Scholar]
  4. Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM 2013. Gonadal hormones and the control of reactive gliosis. Horm. Behav. 63:216–21
    [Google Scholar]
  5. Arno B, Grassivaro F, Rossi C, Bergamaschi A, Castiglioni V et al. 2014. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5:5611
    [Google Scholar]
  6. Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S et al. 2010. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 40:1423–30
    [Google Scholar]
  7. Barron KD 1995. The microglial cell. A historical review. J. Neurol. Sci. 134:Suppl.57–68
    [Google Scholar]
  8. Bessis A, Bechade C, Bernard D, Roumier A 2007. Microglial control of neuronal death and synaptic properties. Glia 55:233–38
    [Google Scholar]
  9. Bianchin MM, Capella HM, Chaves DL, Steindel M, Grisard EC et al. 2004. Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy–PLOSL): a dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell. Mol. Neurobiol. 24:1–24
    [Google Scholar]
  10. Bliss TV, Collingridge GL, Morris RG 2014. Synaptic plasticity in health and disease: introduction and overview. Philos. Trans. R. Soc. B 369:20130129
    [Google Scholar]
  11. Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA 2017. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94:759–73.e8
    [Google Scholar]
  12. Boksa P 2010. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav. Immun. 24:881–97
    [Google Scholar]
  13. Bollinger JL, Bergeon Burns CM, Wellman CL 2016. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav. Immun. 52:88–97
    [Google Scholar]
  14. Bolton JL, Marinero S, Hassanzadeh T, Natesan D, Le D et al. 2017. Gestational exposure to air pollution alters cortical volume, microglial morphology, and microglia-neuron interactions in a sex-specific manner. Front. Synaptic Neurosci. 9:10
    [Google Scholar]
  15. Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM et al. 2012. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J 26:4743–54
    [Google Scholar]
  16. Brown AS 2012. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev. Neurobiol. 72:1272–76
    [Google Scholar]
  17. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ et al. 2014. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat. Neurosci. 17:131–43
    [Google Scholar]
  18. Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H et al. 2006. Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J. Clin. Investig. 116:905–15
    [Google Scholar]
  19. Caetano L, Pinheiro H, Patricio P, Mateus-Pinheiro A, Alves ND et al. 2017. Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Mol. Psychiatry 22:1035–43
    [Google Scholar]
  20. Casano AM, Albert M, Peri F 2016. Developmental apoptosis mediates entry and positioning of microglia in the zebrafish brain. Cell Rep 16:897–906
    [Google Scholar]
  21. Casano AM, Peri F 2015. Microglia: multitasking specialists of the brain. Dev. Cell 32:469–77
    [Google Scholar]
  22. Cheepsunthorn P, Palmer C, Connor JR 1998. Cellular distribution of ferritin subunits in postnatal rat brain. J. Comp. Neurol. 400:73–86
    [Google Scholar]
  23. Chen SK, Tvrdik P, Peden E, Cho S, Wu S et al. 2010. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–85
    [Google Scholar]
  24. Chu Y, Jin X, Parada I, Pesic A, Stevens B et al. 2010. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. PNAS 107:7975–80
    [Google Scholar]
  25. Connor JR, Menzies SL 1996. Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93
    [Google Scholar]
  26. Cunningham CL, Martinez-Cerdeno V, Noctor SC 2013. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33:4216–33
    [Google Scholar]
  27. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:752–58
    [Google Scholar]
  28. Davies LC, Taylor PR 2015. Tissue-resident macrophages: then and now. Immunology 144:541–48
    [Google Scholar]
  29. De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA et al. 2017. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95:341–56.e6
    [Google Scholar]
  30. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB et al. 2012. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 484:105–9
    [Google Scholar]
  31. Di Marco B, Bonaccorso CM, Aloisi E, D'Antoni S, Catania MV 2016. Neuro-inflammatory mechanisms in developmental disorders associated with intellectual disability and autism spectrum disorder: a neuro-immune perspective. CNS Neurol. Disord. Drug Targets 15:448–63
    [Google Scholar]
  32. Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA 2014. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 34:10511–27
    [Google Scholar]
  33. Drozdowicz LB, Bostwick JM 2014. Psychiatric adverse effects of pediatric corticosteroid use. Mayo Clin. Proc. 89:817–34
    [Google Scholar]
  34. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O 2003. Inflammation is detrimental for neurogenesis in adult brain. PNAS 100:13632–37
    [Google Scholar]
  35. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE et al. 2014. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–97
    [Google Scholar]
  36. Estes ML, McAllister AK 2016. Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–77
    [Google Scholar]
  37. Eyo UB, Gu N, De S, Dong H, Richardson JR, Wu LJ 2015. Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium. J. Neurosci. 35:2417–22
    [Google Scholar]
  38. Feinberg I 1982. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?. J. Psychiatr. Res. 17:319–34
    [Google Scholar]
  39. Fu H, Liu B, Frost JL, Hong S, Jin M et al. 2012. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia 60:993–1003
    [Google Scholar]
  40. Garay PA, Hsiao EY, Patterson PH, McAllister AK 2013. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun. 31:54–68
    [Google Scholar]
  41. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–45
    [Google Scholar]
  42. Ginhoux F, Prinz M 2015. Origin of microglia: current concepts and past controversies. Cold Spring Harb. Perspect. Biol. 7:a020537
    [Google Scholar]
  43. Giovanoli S, Engler H, Engler A, Richetto J, Voget M et al. 2013. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339:1095–99
    [Google Scholar]
  44. Giugliano D, Ceriello A, Esposito K 2006. The effects of diet on inflammation: emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 48:677–85
    [Google Scholar]
  45. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–40
    [Google Scholar]
  46. Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM et al. 2017. An environment-dependent transcriptional network specifies human microglia identity. Science 356:eaal3222
    [Google Scholar]
  47. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK et al. 2016. Microglial brain region–dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19:504–16
    [Google Scholar]
  48. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS et al. 2014. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5:5748
    [Google Scholar]
  49. Hagemeyer N, Goebbels S, Papiol S, Kastner A, Hofer S et al. 2012. A myelin gene causative of a catatonia-depression syndrome upon aging. EMBO Mol. Med. 4:528–39
    [Google Scholar]
  50. Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES et al. 2017. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 134:441–58
    [Google Scholar]
  51. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD 2017. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia 65:1504–20
    [Google Scholar]
  52. Hanamsagar R, Bilbo SD 2016. Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and neuroinflammation during development. J. Steroid Biochem. Mol. Biol. 160:127–33
    [Google Scholar]
  53. Hanisch UK, Kettenmann H 2007. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10:1387–94
    [Google Scholar]
  54. Hensch TK 2004. Critical period regulation. Annu. Rev. Neurosci. 27:549–79
    [Google Scholar]
  55. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S et al. 2016.a Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–16
    [Google Scholar]
  56. Hong S, Dissing-Olesen L, Stevens B 2016.b New insights on the role of microglia in synaptic pruning in health and disease. Curr. Opin. Neurobiol. 36:128–34
    [Google Scholar]
  57. Ji K, Akgul G, Wollmuth LP, Tsirka SE 2013.a Microglia actively regulate the number of functional synapses. PLOS ONE 8:e56293
    [Google Scholar]
  58. Ji K, Miyauchi J, Tsirka SE 2013.b Microglia: an active player in the regulation of synaptic activity. Neural Plast 2013:627325
    [Google Scholar]
  59. Karperien A, Ahammer H, Jelinek HF 2013. Quantitating the subtleties of microglial morphology with fractal analysis. Front. Cell. Neurosci. 7:3
    [Google Scholar]
  60. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R et al. 2017. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169:1276–90.e17
    [Google Scholar]
  61. Kettenmann H 2007. Neuroscience: the brain's garbage men. Nature 446:987–89
    [Google Scholar]
  62. Kettenmann H, Kirchhoff F, Verkhratsky A 2013. Microglia: new roles for the synaptic stripper. Neuron 77:10–18
    [Google Scholar]
  63. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C et al. 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16:273–80
    [Google Scholar]
  64. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG 2009. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29:13435–44
    [Google Scholar]
  65. Kinney DK, Munir KM, Crowley DJ, Miller AM 2008. Prenatal stress and risk for autism. Neurosci. Biobehav. Rev. 32:1519–32
    [Google Scholar]
  66. Koeglsperger T, Li S, Brenneis C, Saulnier JL, Mayo L et al. 2013. Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-β1 in the CNS. Glia 61:985–1002
    [Google Scholar]
  67. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K et al. 2007. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446:1091–95
    [Google Scholar]
  68. Kuan CY, Roth KA, Flavell RA, Rakic P 2000. Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–97
    [Google Scholar]
  69. Lauber K, Blumenthal SG, Waibel M, Wesselborg S 2004. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell 14:277–87
    [Google Scholar]
  70. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–26
    [Google Scholar]
  71. Lee AS, Azmitia EC, Whitaker-Azmitia PM 2017. Developmental microglial priming in postmortem autism spectrum disorder temporal cortex. Brain Behav. Immun. 62:193–202
    [Google Scholar]
  72. Li K, Cheng X, Jiang J, Wang J, Xie J et al. 2017. The toxic influence of paraquat on hippocampal neurogenesis in adult mice. Food Chem. Toxicol. 106:356–66
    [Google Scholar]
  73. Li Q, Barres BA 2017. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18:225–42
    [Google Scholar]
  74. Lucassen PJ, Oomen CA, Naninck EF, Fitzsimons CP, van Dam AM et al. 2015. Regulation of adult neurogenesis and plasticity by (early) stress, glucocorticoids, and inflammation. Cold Spring Harb. Perspect. Biol. 7:a021303
    [Google Scholar]
  75. MacMillan HL, Fleming JE, Streiner DL, Lin E, Boyle MH et al. 2001. Childhood abuse and lifetime psychopathology in a community sample. Am. J. Psychiatry 158:1878–83
    [Google Scholar]
  76. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  77. Madry C, Kyrargyri V, Arancibia-Carcamo IL, Jolivet R, Kohsaka S et al. 2018. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97:299–312.e6
    [Google Scholar]
  78. Maezawa I, Jin LW 2010. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30:5346–56
    [Google Scholar]
  79. Maier M, Peng Y, Jiang L, Seabrook TJ, Carroll MC, Lemere CA 2008. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J. Neurosci. 28:6333–41
    [Google Scholar]
  80. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M 2004. Microglia promote the death of developing Purkinje cells. Neuron 41:535–47
    [Google Scholar]
  81. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A et al. 2016. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:aad8670
    [Google Scholar]
  82. McCarthy MM 2016. Multifaceted origins of sex differences in the brain. Philos. Trans. R. Soc. B 371:20150106
    [Google Scholar]
  83. McCullough LD, Mirza MA, Xu Y, Bentivegna K, Steffens EB et al. 2016. Stroke sensitivity in the aged: sex chromosome complement vs. gonadal hormones. Aging 8:1432–41
    [Google Scholar]
  84. Merlot E, Couret D, Otten W 2008. Prenatal stress, fetal imprinting and immunity. Brain Behav. Immun. 22:42–51
    [Google Scholar]
  85. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16:1211–18
    [Google Scholar]
  86. Monje ML, Toda H, Palmer TD 2003. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–65
    [Google Scholar]
  87. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K et al. 2010. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68:368–76
    [Google Scholar]
  88. Morsch M, Radford R, Lee A, Don EK, Badrock AP et al. 2015. In vivo characterization of microglial engulfment of dying neurons in the zebrafish spinal cord. Front. Cell. Neurosci. 9:321
    [Google Scholar]
  89. Muffat J, Li Y, Yuan B, Mitalipova M, Omer A et al. 2016. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22:1358–67
    [Google Scholar]
  90. Nelson LH, Lenz KM 2017. The immune system as a novel regulator of sex differences in brain and behavioral development. J. Neurosci. Res. 95:447–61
    [Google Scholar]
  91. Nicholas RS, Wing MG, Compston A 2001. Nonactivated microglia promote oligodendrocyte precursor survival and maturation through the transcription factor NF-κB. Eur. J. Neurosci. 13:959–67
    [Google Scholar]
  92. Nijhawan D, Honarpour N, Wang X 2000. Apoptosis in neural development and disease. Annu. Rev. Neurosci. 23:73–87
    [Google Scholar]
  93. Nimmerjahn A, Kirchhoff F, Helmchen F 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18
    [Google Scholar]
  94. Okabe Y, Medzhitov R 2016. Tissue biology perspective on macrophages. Nat. Immunol. 17:9–17
    [Google Scholar]
  95. Paloneva J, Autti T, Raininko R, Partanen J, Salonen O et al. 2001. CNS manifestations of Nasu-Hakola disease: a frontal dementia with bone cysts. Neurology 56:1552–58
    [Google Scholar]
  96. Pang Y, Fan LW, Tien LT, Dai X, Zheng B et al. 2013. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 3:503–14
    [Google Scholar]
  97. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–58
    [Google Scholar]
  98. Pardo CA, Vargas DL, Zimmerman AW 2005. Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry 17:485–95
    [Google Scholar]
  99. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd et al. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–609
    [Google Scholar]
  100. Patterson PH 2011. Maternal infection and immune involvement in autism. Trends Mol. Med. 17:389–94
    [Google Scholar]
  101. Pedersen CB, Mortensen PB 2001. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch. Gen. Psychiatry 58:1039–46
    [Google Scholar]
  102. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM 2011. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14:285–93
    [Google Scholar]
  103. Peri F, Nüsslein-Volhard C 2008. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–27
    [Google Scholar]
  104. Platt N, da Silva RP, Gordon S 1998. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol 8:365–72
    [Google Scholar]
  105. Poggi G, Boretius S, Mobius W, Moschny N, Baudewig J et al. 2016. Cortical network dysfunction caused by a subtle defect of myelination. Glia 64:2025–40
    [Google Scholar]
  106. Ransohoff RM, Perry VH 2009. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27:119–45
    [Google Scholar]
  107. Ribeiro Xavier AL, Kress BT, Goldman SA, Lacerda de Menezes JR, Nedergaard M 2015. A distinct population of microglia supports adult neurogenesis in the subventricular zone. J. Neurosci. 35:11848–61
    [Google Scholar]
  108. Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL et al. 1992. Complement activation by beta-amyloid in Alzheimer disease. PNAS 89:10016–20
    [Google Scholar]
  109. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM et al. 2011. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci. 31:16241–50
    [Google Scholar]
  110. Salter MW, Beggs S 2014. Sublime microglia: expanding roles for the guardians of the CNS. Cell 158:15–24
    [Google Scholar]
  111. Salter MW, Stevens B 2017. Microglia emerge as central players in brain disease. Nat. Med. 23:1018–27
    [Google Scholar]
  112. Schafer DP, Heller CT, Gunner G, Heller M, Gordon C et al. 2016. Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. eLife 5:e15224
    [Google Scholar]
  113. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705
    [Google Scholar]
  114. Schwarz JM, Sholar PW, Bilbo SD 2012. Sex differences in microglial colonization of the developing rat brain. J. Neurochem. 120:948–63
    [Google Scholar]
  115. Shi Q, Chowdhury S, Ma R, Le KX, Hong S et al. 2017. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl. Med. 9:eaaf6295
    [Google Scholar]
  116. Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K 2014. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 34:2231–43
    [Google Scholar]
  117. Sierra A, Tremblay ME, Wake H 2014. Never-resting microglia: physiological roles in the healthy brain and pathological implications. Front. Cell. Neurosci. 8:240
    [Google Scholar]
  118. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P et al. 2014. Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–79
    [Google Scholar]
  119. St. Clair MC, Croudace T, Dunn VJ, Jones PB, Herbert J, Goodyer IM 2015. Childhood adversity subtypes and depressive symptoms in early and late adolescence. Dev. Psychopathol. 27:885–99
    [Google Scholar]
  120. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78
    [Google Scholar]
  121. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M et al. 2013. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 70:49–58
    [Google Scholar]
  122. Takano T 2015. Role of microglia in autism: recent advances. Dev. Neurosci. 37:195–202
    [Google Scholar]
  123. Takata K, Kozaki T, Lee CZW, Thion MS, Otsuka M et al. 2017. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 47:183–98.e6
    [Google Scholar]
  124. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay ME 2017. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 595:1929–45
    [Google Scholar]
  125. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E et al. 2012. Microglia in the cerebral cortex in autism. J. Autism Dev. Disord. 42:2569–84
    [Google Scholar]
  126. Todorich B, Pasquini JM, Garcia CI, Paez PM, Connor JR 2009. Oligodendrocytes and myelination: the role of iron. Glia 57:467–78
    [Google Scholar]
  127. Torres L, Danver J, Ji K, Miyauchi JT, Chen D et al. 2016. Dynamic microglial modulation of spatial learning and social behavior. Brain Behav. Immun. 55:6–16
    [Google Scholar]
  128. Tremblay ME, Lowery RL, Majewska AK 2010. Microglial interactions with synapses are modulated by visual experience. PLOS Biol 8:e1000527
    [Google Scholar]
  129. Tronnes AA, Koschnitzky J, Daza R, Hitti J, Ramirez JM, Hevner R 2016. Effects of lipopolysaccharide and progesterone exposures on embryonic cerebral cortex development in mice. Reprod. Sci. 23:771–78
    [Google Scholar]
  130. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S et al. 2003. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–83
    [Google Scholar]
  131. van Lookeren Campagne M, Wiesmann C, Brown EJ 2007. Macrophage complement receptors and pathogen clearance. Cell. Microbiol. 9:2095–102
    [Google Scholar]
  132. Varese F, Smeets F, Drukker M, Lieverse R, Lataster T et al. 2012. Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr. Bull. 38:661–71
    [Google Scholar]
  133. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA 2005. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57:67–81
    [Google Scholar]
  134. Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG 2008. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 11:429–39
    [Google Scholar]
  135. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y et al. 2011. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474:380–84
    [Google Scholar]
  136. Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R 2013. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 70:71–77
    [Google Scholar]
  137. Voss EV, Skuljec J, Gudi V, Skripuletz T, Pul R et al. 2012. Characterisation of microglia during de- and remyelination: Can they create a repair promoting environment?. Neurobiol. Dis. 45:519–28
    [Google Scholar]
  138. Walker DG, McGeer PL 1992. Complement gene expression in human brain: comparison between normal and Alzheimer disease cases. Brain Res. Mol. Brain Res. 14:109–16
    [Google Scholar]
  139. Walton NM, Sutter BM, Laywell ED, Levkoff LH, Kearns SM et al. 2006. Microglia instruct subventricular zone neurogenesis. Glia 54:815–25
    [Google Scholar]
  140. Wang J, Wegener JE, Huang TW, Sripathy S, De Jesus-Cortes H et al. 2015. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature 521:E1–4
    [Google Scholar]
  141. Wlodarczyk A, Holtman IR, Krueger M, Yogev N, Bruttger J et al. 2017. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J 36:3292–308
    [Google Scholar]
  142. Wong K, Noubade R, Manzanillo P, Ota N, Foreman O et al. 2017. Mice deficient in NRROS show abnormal microglial development and neurological disorders. Nat. Immunol. 18:633–41
    [Google Scholar]
  143. Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B 2015. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36:605–13
    [Google Scholar]
  144. Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ et al. 2002. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. PNAS 99:10837–42
    [Google Scholar]
  145. Xavier AL, Lima FR, Nedergaard M, Menezes JR 2015. Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone. Front. Cell. Neurosci. 9:37
    [Google Scholar]
  146. Xu J, Wang T, Wu Y, Jin W, Wen Z 2016. Microglia colonization of developing zebrafish midbrain is promoted by apoptotic neuron and lysophosphatidylcholine. Dev. Cell 38:214–22
    [Google Scholar]
  147. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G et al. 2014. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17:400–6
    [Google Scholar]
  148. Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR 2006. Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia 54:795–804
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060509
Loading
/content/journals/10.1146/annurev-cellbio-100616-060509
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error