1932

Abstract

A majority of T cells bearing the αβ T cell receptor (TCR) are specific for peptides bound to polymorphic classical major histocompatibility complex (MHC) molecules. Smaller subsets of T cells are reactive toward various nonpeptidic ligands associated with nonpolymorphic MHC class-Ib (MHC-Ib) molecules. These cells have been termed unconventional for decades, even though only the composite antigen is different from the one seen by classical T cells. Herein, we discuss the identity of these particular T cells in light of the coevolution of their TCR and MHC-Ib restricting elements. We examine their original thymic development: selection on hematopoietic cells leading to the acquisition of an original differentiation program. Most of these cells acquire memory cell features during thymic maturation and exhibit unique patterns of migration into peripheral nonlymphoid tissues to become tissue resident. Thus, these cells are termed preset T cells, as they also display a variety of effector functions. They may act as microbial or danger sentinels, fight microbes, or regulate tissue homeostasis.

Keyword(s): CD1H2-M3MAITMHC class IbMR1NKT
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060725
2017-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-100616-060725.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060725&mimeType=html&fmt=ahah

Literature Cited

  1. Adams EJ, Luoma AM. 2013. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I–like molecules. Annu. Rev. Immunol. 31:529–61 [Google Scholar]
  2. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S. et al. 2015. A distinct function of regulatory T cells in tissue protection. Cell 162:1078–89 [Google Scholar]
  3. Atherly LO, Lucas JA, Felices M, Yin CC, Reiner SL, Berg LJ. 2006. The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells. Immunity 25:79–91 [Google Scholar]
  4. Barral DC, Brenner MB. 2007. CD1 antigen presentation: how it works. Nat. Rev. Immunol. 7:929–41 [Google Scholar]
  5. Bedel R, Berry R, Mallevaey T, Matsuda JL, Zhang J. et al. 2014. Effective functional maturation of invariant natural killer T cells is constrained by negative selection and T-cell antigen receptor affinity. PNAS 111:E119–28 [Google Scholar]
  6. Bediako Y, Bian Y, Zhang H, Cho H, Stein PL, Wang CR. 2012. SAP is required for the development of innate phenotype in H2-M3–restricted Cd8+ T cells. J. Immunol. 189:4787–96 [Google Scholar]
  7. Bendelac A. 1995. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182:2091–96 [Google Scholar]
  8. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A. 2000. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191:1895–903 [Google Scholar]
  9. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA. et al. 2016. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532:512–16 [Google Scholar]
  10. Billerbeck E, Kang YH, Walker L, Lockstone H, Grafmueller S. et al. 2010. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. PNAS 107:3006–11 [Google Scholar]
  11. Boudinot P, Mondot S, Jouneau L, Teyton L, Lefranc MP, Lantz O. 2016. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. PNAS 113:E2983–92 [Google Scholar]
  12. Bourgeois EA, Subramaniam S, Cheng TY, De Jong A, Layre E. et al. 2015. Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med. 212:149–63 [Google Scholar]
  13. Branda RF, Eaton JW. 1978. Skin color and nutrient photolysis: an evolutionary hypothesis. Science 201:625–26 [Google Scholar]
  14. Brigl M, Tatituri RV, Watts GF, Bhowruth V, Leadbetter EA. et al. 2011. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208:1163–77 [Google Scholar]
  15. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G. et al. 1998. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188:1521–28 [Google Scholar]
  16. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M. et al. 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–95 [Google Scholar]
  17. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C. et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–72 [Google Scholar]
  18. Carolan E, Tobin LM, Mangan BA, Corrigan M, Gaoatswe G. et al. 2015. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J. Immunol. 194:5775–80 [Google Scholar]
  19. Chandra S, Kronenberg M. 2015. Activation and function of iNKT and MAIT cells. Adv. Immunol. 127:145–201 [Google Scholar]
  20. Chen Z, Wang H, D'Souza C, Sun S, Kostenko L. et al. 2017. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol 10:58–68 [Google Scholar]
  21. Chiu NM, Wang B, Kerksiek KM, Kurlander R, Pamer EG, Wang CR. 1999. The selection of M3-restricted T cells is dependent on M3 expression and presentation of N-formylated peptides in the thymus. J. Exp. Med. 190:1869–78 [Google Scholar]
  22. Cho H, Bediako Y, Xu H, Choi HJ, Wang CR. 2011. Positive selecting cell type determines the phenotype of MHC class Ib–restricted CD8+ T cells. PNAS 108:13241–46 [Google Scholar]
  23. Choi EY, Jung KC, Park HJ, Chung DH, Song JS. et al. 2005. Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23:387–96 [Google Scholar]
  24. Chua WJ, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. 2012. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect. Immun. 80:3256–67 [Google Scholar]
  25. Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R. 2005. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174:3153–57 [Google Scholar]
  26. Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O. et al. 2014. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:361–65 [Google Scholar]
  27. Cruz Tleugabulova M, Escalante NK, Deng S, Fieve S, Ereno-Orbea J. et al. 2016. Discrete TCR binding kinetics control invariant NKT cell selection and central priming. J. Immunol. 197:3959–69 [Google Scholar]
  28. Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L. et al. 2015. Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation. J. Clin. Investig. 125:4171–85 [Google Scholar]
  29. D'Andrea A, Goux D, De Lalla C, Koezuka Y, Montagna D. et al. 2000. Neonatal invariant Vα24+ NKT lymphocytes are activated memory cells. Eur. J. Immunol. 30:1544–50 [Google Scholar]
  30. de Jong A. 2015. Activation of human T cells by CD1 and self-lipids. Immunol. Rev. 267:16–29 [Google Scholar]
  31. de Jong A, Cheng TY, Huang S, Gras S, Birkinshaw RW. et al. 2014. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15:177–85 [Google Scholar]
  32. de Jong A, Pena-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB. 2010. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11:1102–9 [Google Scholar]
  33. de Lalla C, Lepore M, Piccolo FM, Rinaldi A, Scelfo A. et al. 2011. High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur. J. Immunol. 41:602–10 [Google Scholar]
  34. Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A. 1994. An invariant V alpha 24–J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD48 T cells. J. Exp. Med. 180:1171–76 [Google Scholar]
  35. Dobenecker MW, Kim JK, Marcello J, Fang TC, Prinjha R. et al. 2015. Coupling of T cell receptor specificity to natural killer T cell development by bivalent histone H3 methylation. J. Exp. Med. 212:297–306 [Google Scholar]
  36. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V. et al. 2011. Human MAIT cells are xenobiotic resistant, tissue-targeted, CD161hi IL-17 secreting T cells. Blood 117:1250–59 [Google Scholar]
  37. Eckle SB, Corbett AJ, Keller AN, Chen Z, Godfrey DI. et al. 2015. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J. Biol. Chem. 290:30204–11 [Google Scholar]
  38. Enders A, Stankovic S, Teh C, Uldrich AP, Yabas M. et al. 2012. ZBTB7B (Th-POK) regulates the development of IL-17-producing CD1d-restricted mouse NKT cells. J. Immunol. 189:5240–49 [Google Scholar]
  39. Engel I, Hammond K, Sullivan BA, He X, Taniuchi I. et al. 2010. Co-receptor choice by Vα14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection. J. Exp. Med. 207:1015–29 [Google Scholar]
  40. Engel I, Seumois G, Chavez L, Samaniego-Castruita D, White B. et al. 2016. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat. Immunol. 17:728–39 [Google Scholar]
  41. Engel I, Zhao M, Kappes D, Taniuchi I, Kronenberg M. 2012. The transcription factor Th-POK negatively regulates Th17 differentiation in Vα14i NKT cells. Blood 120:4524–32 [Google Scholar]
  42. Fan X, Rudensky AY. 2016. Hallmarks of tissue-resident lymphocytes. Cell 164:1198–211 [Google Scholar]
  43. Felio K, Nguyen H, Dascher CC, Choi HJ, Li S. et al. 2009. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J. Exp. Med. 206:2497–509 [Google Scholar]
  44. Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y. et al. 2016. MHC class I–related molecule, MR1, and mucosal-associated invariant T cells. Immunol. Rev. 272:120–38 [Google Scholar]
  45. Gapin L. 2016. Development of invariant natural killer T cells. Curr. Opin. Immunol. 39:68–74 [Google Scholar]
  46. Georgel P, Radosavljevic M, Macquin C, Bahram S. 2011. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol. Immunol. 48:769–75 [Google Scholar]
  47. Gerart S, Siberil S, Martin E, Lenoir C, Aguilar C. et al. 2013. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 121:614–23 [Google Scholar]
  48. Gherardin NA, Keller AN, Woolley RE, Le Nours J, Ritchie DS. et al. 2016. Diversity of T cells restricted by the MHC class I–related molecule MR1 facilitates differential antigen recognition. Immunity 44:32–45 [Google Scholar]
  49. Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K. et al. 2017. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol 10:35–45 [Google Scholar]
  50. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. 2015. The burgeoning family of unconventional T cells. Nat. Immunol. 16:1114–23 [Google Scholar]
  51. Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM. et al. 2013. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 6:35–44 [Google Scholar]
  52. Gold MC, McLaren JE, Reistetter JA, Smyk-Pearson S, Ladell K. et al. 2014. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J. Exp. Med. 211:1601–10 [Google Scholar]
  53. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A. et al. 2007. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27:751–62 [Google Scholar]
  54. Grimaldi D, Le Bourhis L, Sauneuf B, Dechartres A, Rousseau C. et al. 2014. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med 40:192–201 [Google Scholar]
  55. Gumperz JE, Miyake S, Yamamura T, Brenner MB. 2002. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195:625–36 [Google Scholar]
  56. Hansen TH, Huang S, Arnold PL, Fremont DH. 2007. Patterns of nonclassical MHC antigen presentation. Nat. Immunol. 8:563–68 [Google Scholar]
  57. Hashimoto K. 2016. MR1 discovery. Immunogenetics 68:491–98 [Google Scholar]
  58. Hinks TS, Zhou X, Staples KJ, Dimitrov BD, Manta A. et al. 2015. Innate and adaptive T cells in asthmatic patients: relationship to severity and disease mechanisms. J. Allergy Clin. Immunol. 136:323–33 [Google Scholar]
  59. Hiromatsu K, Dascher CC, LeClair KP, Sugita M, Furlong ST. et al. 2002. Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J. Immunol. 169:330–39 [Google Scholar]
  60. Howson LJ, Salio M, Cerundolo V. 2015. MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front. Immunol. 6:303 [Google Scholar]
  61. Huang S. 2016. Targeting innate-like T cells in tuberculosis. Front. Immunol. 7:594 [Google Scholar]
  62. Huang S, Martin E, Kim S, Yu L, Soudais C. et al. 2009. MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. PNAS 106:8290–95 [Google Scholar]
  63. Huang S, Moody DB. 2016. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 68:577–96 [Google Scholar]
  64. Jo J, Tan AT, Ussher JE, Sandalova E, Tang XZ. et al. 2014. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLOS Pathog 10:e1004210 [Google Scholar]
  65. Juno JA, Keynan Y, Fowke KR. 2012. Invariant NKT cells: regulation and function during viral infection. PLOS Pathog 8:e1002838 [Google Scholar]
  66. Kain L, Costanzo A, Webb B, Holt M, Bendelac A. et al. 2015. Endogenous ligands of natural killer T cells are alpha-linked glycosylceramides. Mol. Immunol. 68:94–97 [Google Scholar]
  67. Kain L, Webb B, Anderson BL, Deng S, Holt M. et al. 2014. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity 41:543–54 [Google Scholar]
  68. Kasmar AG, van Rhijn I, Cheng TY, Turner M, Seshadri C. et al. 2011. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J. Exp. Med. 208:1741–47 [Google Scholar]
  69. Kasmar AG, Van Rhijn I, Magalhaes KG, Young DC, Cheng TY. et al. 2013. Cutting edge: CD1a tetramers and dextramers identify human lipopeptide–specific T cells ex vivo. J. Immunol. 191:4499–503 [Google Scholar]
  70. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y. et al. 1997. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278:1626–29 [Google Scholar]
  71. Keller AN, Eckle SB, Xu W, Liu L, Hughes VA. et al. 2017. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat. Immunol. 18:402–11 [Google Scholar]
  72. Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE. et al. 2003. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol. 171:1775–79 [Google Scholar]
  73. Koay HF, Gherardin NA, Enders A, Loh L, Mackay LK. et al. 2016. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 17:1300–11 [Google Scholar]
  74. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W. et al. 2008. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9:1055–64 [Google Scholar]
  75. Kronenberg M, Kinjo Y. 2009. Innate-like recognition of microbes by invariant natural killer T cells. Curr. Opin. Immunol. 21:391–96 [Google Scholar]
  76. Krovi SH, Gapin L. 2016. Structure and function of the non-classical major histocompatibility complex molecule MR1. Immunogenetics 68:549–59 [Google Scholar]
  77. Lantz O, Bendelac A. 1994. An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I–specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180:1097–106 [Google Scholar]
  78. Le Bourhis L, Guerri L, Dusseaux M, Martin E, Soudais C, Lantz O. 2011. Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol 32:212–18 [Google Scholar]
  79. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N. et al. 2010. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11:701–8 [Google Scholar]
  80. Le Bourhis L, Mburu YK, Lantz O. 2013. MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 25:174–80 [Google Scholar]
  81. Lee PT, Benlagha K, Teyton L, Bendelac A. 2002. Distinct functional lineages of human Vα24 natural killer T cells. J. Exp. Med. 195:637–41 [Google Scholar]
  82. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. 2013. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14:1146–54 [Google Scholar]
  83. Lee YJ, Starrett GJ, Lee ST, Yang R, Henzler CM. et al. 2016. Lineage-specific effector signatures of invariant NKT cells are shared amongst γδ T, innate lymphoid, and Th cells. J. Immunol. 197:1460–70 [Google Scholar]
  84. Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA. 2015. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43:566–78 [Google Scholar]
  85. Leeansyah E, Svard J, Dias J, Buggert M, Nystrom J. et al. 2015. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLOS Pathog 11:e1005072 [Google Scholar]
  86. Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A. et al. 2014. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat. Commun. 5:3866 [Google Scholar]
  87. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. PNAS 102:11070–75 [Google Scholar]
  88. Li W, Kim MG, Gourley TS, McCarthy BP, Sant'Angelo DB, Chang CH. 2005. An alternate pathway for CD4 T cell development: Thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23:375–86 [Google Scholar]
  89. Li W, Sofi MH, Rietdijk S, Wang N, Terhorst C, Chang CH. 2007. The SLAM-associated protein signaling pathway is required for development of CD4+ T cells selected by homotypic thymocyte interaction. Immunity 27:763–74 [Google Scholar]
  90. Lindahl KF, Byers DE, Dabhi VM, Hovik R, Jones EP. et al. 1997. H2-M3, a full-service class Ib histocompatibility antigen. Annu. Rev. Immunol. 15:851–79 [Google Scholar]
  91. Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S. et al. 2016. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. PNAS 113:10133–38 [Google Scholar]
  92. Luckey MA, Kimura MY, Waickman AT, Feigenbaum L, Singer A, Park JH. 2014. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nat. Immunol. 15:638–45 [Google Scholar]
  93. Ly D, Kasmar AG, Cheng TY, de Jong A, Huang S. et al. 2013. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. J. Exp. Med. 210:729–41 [Google Scholar]
  94. Lynch L, Michelet X, Zhang S, Brennan PJ, Moseman A. et al. 2015. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat. Immunol. 16:85–95 [Google Scholar]
  95. Lynch L, Nowak M, Varghese B, Clark J, Hogan AE. et al. 2012. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37:574–87 [Google Scholar]
  96. Lynch L, O'Shea D, Winter DC, Geoghegan J, Doherty DG, O'Farrelly C. 2009. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur. J. Immunol. 39:1893–901 [Google Scholar]
  97. Mackay LK, Minnich M, Kragten NA, Liao Y, Nota B. et al. 2016. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352:459–63 [Google Scholar]
  98. Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N. et al. 2015. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Investig. 125:1752–62 [Google Scholar]
  99. Mao AP, Constantinides MG, Mathew R, Zuo Z, Chen X. et al. 2016. Multiple layers of transcriptional regulation by PLZF in NKT-cell development. PNAS 113:7602–7 [Google Scholar]
  100. Martin E, Treiner E, Duban L, Guerri L, Laude H. et al. 2009. Stepwise development of MAIT cells in mouse and human. PLOS Biol 7:e54 [Google Scholar]
  101. Mattner J, Debord KL, Ismail N, Goff RD, 3rd Cantu C. et al. 2005. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–29 [Google Scholar]
  102. McWilliam HE, Eckle SB, Theodossis A, Liu L, Chen Z. et al. 2016. The intracellular pathway for the presentation of vitamin B–related antigens by the antigen-presenting molecule MR1. Nat. Immunol. 17:531–37 [Google Scholar]
  103. Meermeier EW, Laugel BF, Sewell AK, Corbett AJ, Rossjohn J. et al. 2016. Human TRAV1-2-negative MR1-restricted T cells detect S.pyogenes and alternatives to MAIT riboflavin-based antigens. Nat. Commun. 7:12506 [Google Scholar]
  104. Meierovics A, Yankelevich WJ, Cowley SC. 2013. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. PNAS 110:E3119–28 [Google Scholar]
  105. Meierovics AI, Cowley SC. 2016. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. J. Exp. Med. 213:2793–809 [Google Scholar]
  106. Meunier L, Vian L, Lagoueyte C, Lavabre-Bertrand T, Duperray C. et al. 1996. Quantification of CD1a, HLA-DR, and HLA class I expression on viable human Langerhans cells and keratinocytes. Cytometry 26:260–64 [Google Scholar]
  107. Michel ML, Lenoir C, Massot B, Diem S, Pasquier B. et al. 2016. SLAM-associated protein favours the development of iNKT2 over iNKT17 cells. Eur. J. Immunol. 46:2162–74 [Google Scholar]
  108. Mondot S, Boudinot P, Lantz O. 2016. MAIT, MR1, microbes and riboflavin: a paradigm for the co-evolution of invariant TCRs and restricting MHCI-like molecules. Immunogenetics 68:537–48 [Google Scholar]
  109. Montamat-Sicotte DJ, Millington KA, Willcox CR, Hingley-Wilson S, Hackforth S. et al. 2011. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J. Clin. Investig. 121:2493–503 [Google Scholar]
  110. Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS. et al. 2011. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208:1279–89 [Google Scholar]
  111. Nagarajan NA, Kronenberg M. 2007. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J. Immunol. 178:2706–13 [Google Scholar]
  112. Napier RJ, Adams EJ, Gold MC, Lewinsohn DM. 2015. The role of mucosal associated invariant T cells in antimicrobial immunity. Front. Immunol. 6:344 [Google Scholar]
  113. Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS. et al. 2005. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11:340–45 [Google Scholar]
  114. Park SH, Bae YM, Kim TJ, Ha IS, Kim S. et al. 1992. HLA-DR expression in human fetal thymocytes. Hum. Immunol. 33:294–98 [Google Scholar]
  115. Pasquier B, Yin L, Fondaneche MC, Relouzat F, Bloch-Queyrat C. et al. 2005. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201:695–701 [Google Scholar]
  116. Ploss A, Lauvau G, Contos B, Kerksiek KM, Guirnalda PD. et al. 2003. Promiscuity of MHC class Ib–restricted T cell responses. J. Immunol. 171:5948–55 [Google Scholar]
  117. Porcelli S, Morita CT, Brenner MB. 1992. CD1b restricts the response of human CD48 T lymphocytes to a microbial antigen. Nature 360:593–97 [Google Scholar]
  118. Porcelli S, Yockey CE, Brenner MB, Balk SP. 1993. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCRα chain. J. Exp. Med. 178:1–16 [Google Scholar]
  119. Prussin C, Foster B. 1997. TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J. Immunol. 159:5862–70 [Google Scholar]
  120. Qiao Y, Zhu L, Sofi H, Lapinski PE, Horai R. et al. 2012. Development of promyelocytic leukemia zinc finger–expressing innate CD4 T cells requires stronger T-cell receptor signals than conventional CD4 T cells. PNAS 109:16264–69 [Google Scholar]
  121. Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SB. et al. 2015. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212:1095–108 [Google Scholar]
  122. Reantragoon R, Boonpattanaporn N, Corbett AJ, McCluskey J. 2016. Mucosal-associated invariant T cells in clinical diseases. Asian Pac. J. Allergy Immunol. 34:3–10 [Google Scholar]
  123. Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB. et al. 2013. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210:2305–20 [Google Scholar]
  124. Reinink P, Van Rhijn I. 2016. Mammalian CD1 and MR1 genes. Immunogenetics 68:515–23 [Google Scholar]
  125. Riegert P, Wanner V, Bahram S. 1998. Genomics, isoforms, expression, and phylogeny of the MHC class I–related MR1 gene. J. Immunol. 161:4066–77 [Google Scholar]
  126. Sakala IG, Kjer-Nielsen L, Eickhoff CS, Wang X, Blazevic A. et al. 2015. Functional heterogeneity and antimycobacterial effects of mouse mucosal-associated invariant T cells specific for riboflavin metabolites. J. Immunol. 195:587–601 [Google Scholar]
  127. Savage AK, Constantinides MG, Han J, Picard D, Martin E. et al. 2008. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403 [Google Scholar]
  128. Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y. et al. 2013. Double-positive thymocytes select mucosal-associated invariant T cells. J. Immunol. 191:6002–9 [Google Scholar]
  129. Seiler MP, Mathew R, Liszewski MK, Spooner C, Barr K. et al. 2012. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat. Immunol. 13:264–71 [Google Scholar]
  130. Seshadri C, Thuong NT, Mai NT, Bang ND, Chau TT. et al. 2017. A polymorphism in human MR1 is associated with mRNA expression and susceptibility to tuberculosis. Genes Immun 18:8–14 [Google Scholar]
  131. Seshadri C, Thuong NT, Yen NT, Bang ND, Chau TT. et al. 2014. A polymorphism in human CD1A is associated with susceptibility to tuberculosis. Genes Immun 15:195–98 [Google Scholar]
  132. Soudais C, Samassa F, Sarkis M, Le Bourhis L, Bessoles S. et al. 2015. In vitro and in vivo analysis of the gram-negative bacteria–derived riboflavin precursor derivatives activating mouse MAIT cells. J. Immunol. 194:4641–49 [Google Scholar]
  133. Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SM. 2015. CD1d- and MR1-restricted T cells in sepsis. Front. Immunol. 6:401 [Google Scholar]
  134. Tang XZ, Jo J, Tan AT, Sandalova E, Chia A. et al. 2013. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190:3142–52 [Google Scholar]
  135. Thedrez A, de Lalla C, Allain S, Zaccagnino L, Sidobre S. et al. 2007. CD4 engagement by CD1d potentiates activation of CD4+ invariant NKT cells. Blood 110:251–58 [Google Scholar]
  136. Thomas SY, Scanlon ST, Griewank KG, Constantinides MG, Savage AK. et al. 2011. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208:1179–88 [Google Scholar]
  137. Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F. et al. 1999. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib–restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189:1907–21 [Google Scholar]
  138. Turtle CJ, Delrow J, Joslyn RC, Swanson HM, Basom R. et al. 2011. Innate signals overcome acquired TCR signaling pathway regulation and govern the fate of human CD161hi CD8α+ semi-invariant T cells. Blood 118:2752–62 [Google Scholar]
  139. Urdahl KB, Sun JC, Bevan MJ. 2002. Positive selection of MHC class Ib–restricted CD8+ T cells on hematopoietic cells. Nat. Immunol. 3:772–79 [Google Scholar]
  140. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R. et al. 2014. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 44:195–203 [Google Scholar]
  141. Ussher JE, van Wilgenburg B, Hannaway RF, Ruustal K, Phalora P. et al. 2016. TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur. J. Immunol. 46:1600–14 [Google Scholar]
  142. Vahl JC, Heger K, Knies N, Hein MY, Boon L. et al. 2013. NKT cell–TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology. PLOS Biol 11:e1001589 [Google Scholar]
  143. van der Vliet HJ, Nishi N, de Gruijl TD, von Blomberg BM, van den Eertwegh AJ. et al. 2000. Human natural killer T cells acquire a memory-activated phenotype before birth. Blood 95:2440–42 [Google Scholar]
  144. Van Kaer L, Wu L, Joyce S. 2016. Mechanisms and consequences of antigen presentation by CD1. Trends Immunol 37:738–54 [Google Scholar]
  145. Van Rhijn I, Gherardin NA, Kasmar A, de Jager W, Pellicci DG. et al. 2014. TCR bias and affinity define two compartments of the CD1b-glycolipid-specific T cell repertoire. J. Immunol. 192:4054–60 [Google Scholar]
  146. Van Rhijn I, Godfrey DI, Rossjohn J, Moody DB. 2015. Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol. 15:643–54 [Google Scholar]
  147. Van Rhijn I, Kasmar A, de Jong A, Gras S, Bhati M. et al. 2013. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat. Immunol. 14:706–13 [Google Scholar]
  148. Van Rhijn I, Moody DB. 2015. CD1 and mycobacterial lipids activate human T cells. Immunol. Rev. 264:138–53 [Google Scholar]
  149. van Schaik B, Klarenbeek P, Doorenspleet M, van Kampen A, Moody DB. et al. 2014. Discovery of invariant T cells by next-generation sequencing of the human TCR α-chain repertoire. J. Immunol. 193:5338–44 [Google Scholar]
  150. van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A. et al. 2016. MAIT cells are activated during human viral infections. Nat. Commun. 7:11653 [Google Scholar]
  151. Verykokakis M, Boos MD, Bendelac A, Kee BL. 2010. SAP protein-dependent natural killer T-like cells regulate the development of CD8+ T cells with innate lymphocyte characteristics. Immunity 33:203–15 [Google Scholar]
  152. Walker LJ, Kang YH, Smith MO, Tharmalingham H, Ramamurthy N. et al. 2012. Human MAIT and CD8αα cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 119:422–33 [Google Scholar]
  153. Wang CR, Castano AR, Peterson PA, Slaughter C, Lindahl KF, Deisenhofer J. 1995. Nonclassical binding of formylated peptide in crystal structure of the MHC class Ib molecule H2-M3. Cell 82:655–64 [Google Scholar]
  154. Wang L, Carr T, Xiong Y, Wildt KF, Zhu J. et al. 2010. The sequential activity of Gata3 and Thpok is required for the differentiation of CD1d-restricted CD4+ NKT cells. Eur. J. Immunol. 40:2385–90 [Google Scholar]
  155. Weinreich MA, Odumade OA, Jameson SC, Hogquist KA. 2010. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11:709–16 [Google Scholar]
  156. Zajonc DM, Striegl H, Dascher CC, Wilson IA. 2008. The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1. PNAS 105:17925–30 [Google Scholar]
  157. Zhang S, Laouar A, Denzin LK, Sant'Angelo DB. 2015. Zbtb16 (PLZF) is stably suppressed and not inducible in non-innate T cells via T cell receptor–mediated signaling. Sci. Rep. 5:12113 [Google Scholar]
  158. Zhu L, Qiao Y, Choi ES, Das J, Sant'angelo DB, Chang CH. 2013. A transgenic TCR directs the development of IL-4+ and PLZF+ innate CD4 T cells. J. Immunol. 191:737–44 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060725
Loading
/content/journals/10.1146/annurev-cellbio-100616-060725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error