1932

Abstract

Uncovering the mechanisms that underlie the biogenesis and maintenance of eukaryotic organelles is a vibrant and essential area of biological research. In comparison, little attention has been paid to the process of compartmentalization in bacteria and archaea. This lack of attention is in part due to the common misconception that organelles are a unique evolutionary invention of the “complex” eukaryotic cell and are absent from the “primitive” bacterial and archaeal cells. Comparisons across the tree of life are further complicated by the nebulous criteria used to designate subcellular structures as organelles. Here, with the aid of a unified definition of a membrane-bounded organelle, we present some of the recent findings in the study of lipid-bounded organelles in bacteria and archaea.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Organelle Formation in Bacteria and Archaea
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060908
2018-10-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100616-060908.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060908&mimeType=html&fmt=ahah

Literature Cited

  1. Abreu N, Mannoubi S, Ozyamak E, Pignol D, Ginet N, Komeili A 2014. Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1. J. Bacteriol. 196:3111–21
    [Google Scholar]
  2. Alphandery E 2014. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front. Bioeng. Biotechnol. 2:5
    [Google Scholar]
  3. Arakaki A, Kikuchi D, Tanaka M, Yamagishi A, Yoda T, Matsunaga T 2016. Comparative subcellular localization analysis of magnetosome proteins reveals a unique localization behavior of Mms6 protein onto magnetite crystals. J. Bacteriol. 198:2794–802
    [Google Scholar]
  4. Balkwill DL, Maratea D, Blakemore RP 1980. Ultrastructure of a magnetotactic spirillum. J. Bacteriol. 141:1399–408
    [Google Scholar]
  5. Barber-Zucker S, Zarivach R 2017. A look into the biochemistry of magnetosome biosynthesis in magnetotactic bacteria. ACS Chem. Biol. 12:13–22
    [Google Scholar]
  6. Bazylinski DA, Frankel RB 2004. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2:217–30
    [Google Scholar]
  7. Bergeron JR, Hutto R, Ozyamak E, Hom N, Hansen J et al. 2017. Structure of the magnetosome-associated actin-like MamK filament at subnanometer resolution. Protein Sci 26:93–102
    [Google Scholar]
  8. Blakemore R 1975. Magnetotactic bacteria. Science 190:377–79
    [Google Scholar]
  9. Blakemore RP 1982. Magnetotactic bacteria. Annu. Rev. Microbiol. 36:217–38
    [Google Scholar]
  10. Blakemore RP, Maratea D, Wolfe RS 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140:720–29
    [Google Scholar]
  11. Bobik TA, Lehman BP, Yeates TO 2015. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol. Microbiol. 98:193–207
    [Google Scholar]
  12. Boedeker C, Schüler M, Reintjes G, Jeske O, van Teeseling MC et al. 2017. Determining the bacterial cell biology of Planctomycetes. Nat. Commun. 8:14853
    [Google Scholar]
  13. Byrne ME, Ball DA, Guerquin-Kern JL, Rouiller I, Wu TD et al. 2010. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. PNAS 107:12263–68
    [Google Scholar]
  14. Cornejo E, Abreu N, Komeili A 2014. Compartmentalization and organelle formation in bacteria. Curr. Opin. Cell Biol. 26:132–38
    [Google Scholar]
  15. Cornejo E, Subramanian P, Li Z, Jensen GJ, Komeili A 2016. Dynamic remodeling of the magnetosome membrane is triggered by the initiation of biomineralization. MBio 7:e01898–15
    [Google Scholar]
  16. de Almeida NM, Neumann S, Mesman RJ, Ferousi C, Keltjens JT et al. 2015. Immunogold localization of key metabolic enzymes in the anammoxosome and on the tubule-like structures of Kuenenia stuttgartiensis. J. Bacteriol 197:2432–41
    [Google Scholar]
  17. Diekmann Y, Pereira-Leal JB 2013. Evolution of intracellular compartmentalization. Biochem. J. 449:319–31
    [Google Scholar]
  18. Dobro MJ, Oikonomou CM, Piper A, Cohen J, Guo K et al. 2017. Uncharacterized bacterial structures revealed by electron cryotomography. J. Bacteriol. 199:e00100
    [Google Scholar]
  19. Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN 2005. Acidocalcisomes—conserved from bacteria to man. Nat. Rev. Microbiol. 3:251–61
    [Google Scholar]
  20. Docampo R, Scott DA, Vercesi AE, Moreno SN 1995. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem. J 310:Pt 31005–12
    [Google Scholar]
  21. Draper O, Byrne ME, Li Z, Keyhani S, Barrozo JC et al. 2011. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol. Microbiol. 82:342–54
    [Google Scholar]
  22. Dworkin M 2012. Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol. Rev. 36:364–79
    [Google Scholar]
  23. Erbilgin O, McDonald K, Kerfeld CA 2014. Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl. Environ. Microbiol. 80:2193–205
    [Google Scholar]
  24. Faivre D, Godec TU 2015. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. Angew. Chem. Int. Ed. Engl. 54:4728–47
    [Google Scholar]
  25. Felfoul O, Mohammadi M, Taherkhani S, de Lanauze D, Xu YZ et al. 2016. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11:941–47
    [Google Scholar]
  26. Fenchel T, Thar R 2004. Candidatus Ovobacter propellens”: a large conspicuous prokaryote with an unusual motility behaviour. FEMS Microbiol. Ecol. 48:231–38
    [Google Scholar]
  27. Ferousi C, Lindhoud S, Baymann F, Kartal B, Jetten MS, Reimann J 2017. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Curr. Opin. Chem. Biol. 37:129–36
    [Google Scholar]
  28. Frankel RB 2009. The discovery of magnetotactic/magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27:1–2
    [Google Scholar]
  29. Fuerst JA, Webb RI 1991. Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. . PNAS 88:8184–88
    [Google Scholar]
  30. Giessen TW, Silver PA 2017. Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat. Microbiol. 2:17029
    [Google Scholar]
  31. Glasauer S, Langley S, Beveridge TJ 2002. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295:117–19
    [Google Scholar]
  32. Glasauer S, Langley S, Boyanov M, Lai B, Kemner K, Beveridge TJ 2007. Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration. Appl. Environ. Microbiol. 73:993–96
    [Google Scholar]
  33. Gorby YA, Beveridge TJ, Blakemore RP 1988. Characterization of the bacterial magnetosome membrane. J. Bacteriol. 170:834–41
    [Google Scholar]
  34. Grunberg K, Muller EC, Otto A, Reszka R, Linder D et al. 2004. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ. Microbiol 70:1040–50
    [Google Scholar]
  35. Grunberg K, Wawer C, Tebo BM, Schüler D 2001. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 67:4573–82
    [Google Scholar]
  36. Güven D, Dapena A, Kartal B, Schmid MC, Maas B et al. 2005. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 71:1066–71
    [Google Scholar]
  37. He D, Hughes S, Vanden-Hehir S, Georgiev A, Altenbach K et al. 2016. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. eLife 5:e18972
    [Google Scholar]
  38. Heimerl T, Flechsler J, Pickl C, Heinz V, Salecker B et al. 2017. A complex endomembrane system in the archaeon Ignicoccus hospitalis tapped by Nanoarchaeum equitans. Front. Microbiol 8:1072
    [Google Scholar]
  39. Hershey DM, Browne PJ, Iavarone AT, Teyra J, Lee EH et al. 2016.a Magnetite biomineralization in Magnetospirillum magneticum is regulated by a switch-like behavior in the HtrA protease MamE. J. Biol. Chem. 291:17941–52
    [Google Scholar]
  40. Hershey DM, Ren X, Melnyk RA, Browne PJ, Ozyamak E et al. 2016.b MamO is a repurposed serine protease that promotes magnetite biomineralization through direct transition metal binding in magnetotactic bacteria. PLOS Biol 14:e1002402
    [Google Scholar]
  41. Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO 2000. Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int. J. Syst. Evol. Microbiol 50:Pt 62093–100
    [Google Scholar]
  42. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67
    [Google Scholar]
  43. Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C et al. 2015. Planctomycetes do possess a peptidoglycan cell wall. Nat. Commun. 6:7116
    [Google Scholar]
  44. Jogler C, Glockner FO, Kolter R 2011. Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl. Environ. Microbiol. 77:5826–29
    [Google Scholar]
  45. Karlsson R, Karlsson A, Backman O, Johansson BR, Hulth S 2014. Subcellular localization of an ATPase in anammox bacteria using proteomics and immunogold electron microscopy. FEMS Microbiol. Lett. 354:10–18
    [Google Scholar]
  46. Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJ, Jetten MS, Keltjens JT 2013. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37:428–61
    [Google Scholar]
  47. Kartal B, Maalcke WJ, de Almeida NM, Cirpus I, Gloerich J et al. 2011. Molecular mechanism of anaerobic ammonium oxidation. Nature 479:127–30
    [Google Scholar]
  48. Kartal B, van Niftrik L, Keltjens JT, Op den Camp HJ, Jetten MS 2012. Anammox—growth physiology, cell biology, and metabolism. Adv. Microb. Physiol. 60:211–62
    [Google Scholar]
  49. Katzmann E, Muller FD, Lang C, Messerer M, Winklhofer M et al. 2011. Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol. Microbiol. 82:1316–29
    [Google Scholar]
  50. Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D 2010. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol. Microbiol 77:208–24
    [Google Scholar]
  51. Kolinko I, Lohsse A, Borg S, Raschdorf O, Jogler C et al. 2014. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9:193–97
    [Google Scholar]
  52. Komeili A, Li Z, Newman DK, Jensen GJ 2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–45
    [Google Scholar]
  53. Komeili A, Vali H, Beveridge TJ, Newman DK 2004. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. PNAS 101:3839–44
    [Google Scholar]
  54. Kuper U, Meyer C, Muller V, Rachel R, Huber H 2010. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. . PNAS 107:3152–56
    [Google Scholar]
  55. Lefevre CT, Bazylinski DA 2013. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. Rev. 77:497–526
    [Google Scholar]
  56. Lefevre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C et al. 2013. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ. Microbiol. 15:2712–35
    [Google Scholar]
  57. Lieber A, Leis A, Kushmaro A, Minsky A, Medalia O 2009. Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus. J. Bacteriol 191:1439–45
    [Google Scholar]
  58. Lin W, Pan Y, Bazylinski DA 2017. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ. Microbiol. Rep. 9:345–56
    [Google Scholar]
  59. Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK et al. 2001. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175:413–29
    [Google Scholar]
  60. Lohsse A, Ullrich S, Katzmann E, Borg S, Wanner G et al. 2011. Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: The mamAB operon is sufficient for magnetite biomineralization. PLOS ONE 6:e25561
    [Google Scholar]
  61. Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J et al. 2010. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. . PNAS 107:12883–88
    [Google Scholar]
  62. Lopez-Marques RL, Perez-Castineira JR, Losada M, Serrano A 2004. Differential regulation of soluble and membrane-bound inorganic pyrophosphatases in the photosynthetic bacterium Rhodospirillum rubrum provides insights into pyrophosphate-based stress bioenergetics. J. Bacteriol. 186:5418–26
    [Google Scholar]
  63. Lowe J, He S, Scheres SH, Savva CG 2016. X-ray and cryo-EM structures of monomeric and filamentous actin-like protein MamK reveal changes associated with polymerization. PNAS 113:13396–401
    [Google Scholar]
  64. Mahat R, Seebart C, Basile F, Ward NL 2015. Global and targeted lipid analysis of Gemmata obscuriglobus reveals the presence of lipopolysaccharide, a signature of the classical gram-negative outer membrane. J. Bacteriol. 198:221–36
    [Google Scholar]
  65. Matsunaga T, Sakaguchi T, Tadakoro F 1991. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol. 35:651–55
    [Google Scholar]
  66. Mayer F, Kuper U, Meyer C, Daxer S, Muller V et al. 2012. AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J. Bacteriol 194:1572–81
    [Google Scholar]
  67. McHugh CA, Fontana J, Nemecek D, Cheng N, Aksyuk AA et al. 2014. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress. EMBO J 33:1896–911
    [Google Scholar]
  68. Muller FD, Raschdorf O, Nudelman H, Messerer M, Katzmann E et al. 2014. The FtsZ-like protein FtsZm of Magnetospirillum gryphiswaldense likely interacts with its generic homolog and is required for biomineralization under nitrate deprivation. J. Bacteriol. 196:650–59
    [Google Scholar]
  69. Murat D, Byrne M, Komeili A 2010.a Cell biology of prokaryotic organelles. Cold Spring Harb. Perspect. Biol. 2:a000422
    [Google Scholar]
  70. Murat D, Falahati V, Bertinetti L, Csencsits R, Kornig A et al. 2012. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1. Mol. Microbiol. 85:684–99
    [Google Scholar]
  71. Murat D, Quinlan A, Vali H, Komeili A 2010.b Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. PNAS 107:5593–98
    [Google Scholar]
  72. National Academy of Sciences 2008. Identifying a carbon fixation pathway. PNAS 1057625
    [Google Scholar]
  73. Neumann S, Wessels HJ, Rijpstra WI, Sinninghe Damsté JS, Kartal B et al. 2014. Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis. Mol. Microbiol 94:794–802
    [Google Scholar]
  74. Nichols RJ, Cassidy-Amstutz C, Chaijarasphong T, Savage DF 2017. Encapsulins: molecular biology of the shell. Crit. Rev. Biochem. Mol. Biol. 52:583–94
    [Google Scholar]
  75. Okuda Y, Denda K, Fukumori Y 1996. Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. . Gene 171:99–102
    [Google Scholar]
  76. Ozyamak E, Kollman J, Agard DA, Komeili A 2013.a The bacterial actin MamK: in vitro assembly behavior and filament architecture. J. Biol. Chem. 288:4265–77
    [Google Scholar]
  77. Ozyamak E, Kollman JM, Komeili A 2013.b Bacterial actins and their diversity. Biochemistry 52:6928–39
    [Google Scholar]
  78. Paper W, Jahn U, Hohn MJ, Kronner M, Nather DJ et al. 2007. Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int. J. Syst. Evol. Microbiol. 57:803–8
    [Google Scholar]
  79. Quinlan A, Murat D, Vali H, Komeili A 2011. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol. Microbiol. 80:1075–87
    [Google Scholar]
  80. Rachel R, Wyschkony I, Riehl S, Huber H 2002. The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1:9–18
    [Google Scholar]
  81. Rahn-Lee L, Byrne ME, Zhang M, Le Sage D, Glenn DR et al. 2015. A genetic strategy for probing the functional diversity of magnetosome formation. PLOS Genet 11:e1004811
    [Google Scholar]
  82. Raschdorf O, Forstner Y, Kolinko I, Uebe R, Plitzko JM, Schüler D 2016. Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLOS Genet 12:e1006101
    [Google Scholar]
  83. Raschdorf O, Muller FD, Posfai M, Plitzko JM, Schüler D 2013. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol. Microbiol. 89:872–86
    [Google Scholar]
  84. Rioux JB, Philippe N, Pereira S, Pignol D, Wu LF, Ginet N 2010. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLOS ONE 5:e9151
    [Google Scholar]
  85. Rivas-Marín E, Canosa I, Santero E, Devos DP 2016. Development of genetic tools for the manipulation of the planctomycetes. Front. Microbiol. 7:914
    [Google Scholar]
  86. Sagulenko E, Nouwens A, Webb RI, Green K, Yee B et al. 2017. Nuclear pore–like structures in a compartmentalized bacterium. PLOS ONE 12:e0169432
    [Google Scholar]
  87. Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U et al. 2010. The compartmentalized bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum have membrane coat-like proteins. PLOS Biol 8:e1000281
    [Google Scholar]
  88. Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP 2013. Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLOS Biol 11:e1001565
    [Google Scholar]
  89. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D 2006. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–14
    [Google Scholar]
  90. Scheffel A, Schüler D 2007. The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J. Bacteriol. 189:6437–46
    [Google Scholar]
  91. Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R et al. 1991. The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst. Appl. Microbiol. 14:379–85
    [Google Scholar]
  92. Schouten S, Strous M, Kuypers MM, Rijpstra WI, Baas M et al. 2004. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 70:3785–88
    [Google Scholar]
  93. Seufferheld M, Lea CR, Vieira M, Oldfield E, Docampo R 2004. The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J. Biol. Chem. 279:51193–202
    [Google Scholar]
  94. Seufferheld M, Vieira MC, Ruiz FA, Rodrigues CO, Moreno SN, Docampo R 2003. Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J. Biol. Chem. 278:29971–78
    [Google Scholar]
  95. Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ 2004. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl. Environ. Microbiol. 70:6230–39
    [Google Scholar]
  96. Sinninghe Damsté JS, Strous M, Rijpstra WI, Hopmans EC, Geenevasen JA et al. 2002. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–12
    [Google Scholar]
  97. Speth DR, van Teeseling MC, Jetten MS 2012. Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in Planctomycetes and Verrucomicrobia. Front. Microbiol. 3:304
    [Google Scholar]
  98. Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY et al. 2012. Membrane bending by protein-protein crowding. Nat. Cell Biol. 14:944–49
    [Google Scholar]
  99. Stanier RY, Van Niel CB 1962. The concept of a bacterium. Arch. Mikrobiol. 42:17–35
    [Google Scholar]
  100. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A et al. 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–94
    [Google Scholar]
  101. Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D et al. 2008. Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat. Struct. Mol. Biol. 15:939–47
    [Google Scholar]
  102. Tanaka M, Arakaki A, Matsunaga T 2010. Identification and functional characterization of liposome tubulation protein from magnetotactic bacteria. Mol. Microbiol. 76:480–88
    [Google Scholar]
  103. Tanaka M, Mazuyama E, Arakaki A, Matsunaga T 2011. MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo. J. Biol. Chem. 286:6386–92
    [Google Scholar]
  104. Taoka A, Kiyokawa A, Uesugi C, Kikuchi Y, Oestreicher Z et al. 2017. Tethered magnets are the key to magnetotaxis: Direct observations of Magnetospirillum magneticum AMB-1 show that MamK distributes magnetosome organelles equally to daughter cells. MBio 8:e00679–17
    [Google Scholar]
  105. Toro-Nahuelpan M, Muller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D 2016. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol 14:88
    [Google Scholar]
  106. Uebe R, Junge K, Henn V, Poxleitner G, Katzmann E et al. 2011. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82:818–35
    [Google Scholar]
  107. Uebe R, Keren-Khadmy N, Zeytuni N, Katzmann E, Navon Y et al. 2018. The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization. Mol. Microbiol. 107:542–57
    [Google Scholar]
  108. Uebe R, Schüler D 2016. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14:621–37
    [Google Scholar]
  109. van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology 143:2415–21
    [Google Scholar]
  110. van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Webb RI et al. 2008.a Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome c proteins. J. Bacteriol. 190:708–17
    [Google Scholar]
  111. van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Webb RI et al. 2009. Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes. Mol. Microbiol. 73:1009–19
    [Google Scholar]
  112. van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Yakushevska A et al. 2008.b Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. J. Struct. Biol. 161:401–10
    [Google Scholar]
  113. van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR et al. 2010. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium ‘Candidatus Kuenenia stuttgartiensis’. Mol. Microbiol. 77:701–15
    [Google Scholar]
  114. van Teeseling MC, Mesman RJ, Kuru E, Espaillat A, Cava F et al. 2015. Anammox Planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6:6878
    [Google Scholar]
  115. Vercesi AE, Moreno SN, Docampo R 1994. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem. J 304:Pt 1227–33
    [Google Scholar]
  116. Winogradsky S 1887. Ueber Schwefelbacterien. Bot. Zeit. 45:489–610
    [Google Scholar]
  117. Yamamoto D, Taoka A, Uchihashi T, Sasaki H, Watanabe H et al. 2010. Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. PNAS 107:9382–87
    [Google Scholar]
  118. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L et al. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–58
    [Google Scholar]
  119. Zeytuni N, Ozyamak E, Ben-Harush K, Davidov G, Levin M et al. 2011. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. PNAS 108:E480–87
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060908
Loading
/content/journals/10.1146/annurev-cellbio-100616-060908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error