1932

Abstract

Molecular biologists and chemists alike have long sought to modify proteins with substituents that cannot be installed by standard or even advanced genetic approaches. We here describe the use of transpeptidases to achieve these goals. Living systems encode a variety of transpeptidases and peptide ligases that allow for the enzyme-catalyzed formation of peptide bonds, and protein engineers have used directed evolution to enhance these enzymes for biological applications. We focus primarily on the transpeptidase sortase A, which has become popular over the past few years for its ability to perform a remarkably wide variety of protein modifications, both in vitro and in living cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062527
2018-10-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062527.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062527&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahmsén L, Tom J, Burnier J, Butcher KA, Kossiakoff A, Wells JA 1991. Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30:174151–59
    [Google Scholar]
  2. Agard NJ, Mahrus S, Trinidad JC, Lynn A, Burlingame AL, Wells JA 2012. Global kinetic analysis of proteolysis via quantitative targeted proteomics. PNAS 109:61913–18
    [Google Scholar]
  3. Antos JM, Chew G-L, Guimaraes CP, Yoder NC, Grotenbreg GM et al. 2009.a Site-specific N- and C-terminal labeling of a single polypeptide using sortases of different specificity. J. Am. Chem. Soc. 131:3110800–1
    [Google Scholar]
  4. Antos JM, Miller GM, Grotenbreg GM, Ploegh HL 2008. Lipid modification of proteins through sortase-catalyzed transpeptidation. J. Am. Chem. Soc. 130:4816338–43
    [Google Scholar]
  5. Antos JM, Popp MW-L, Ernst R, Chew G-L, Spooner E, Ploegh HL 2009.b A straight path to circular proteins. J. Biol. Chem. 284:2316028–36
    [Google Scholar]
  6. Antos JM, Truttmann MC, Ploegh HL 2016. Recent advances in sortase-catalyzed ligation methodology. Curr. Opin. Struct. Biol. 38:111–18
    [Google Scholar]
  7. Beerli RR, Hell T, Merkel AS, Grawunder U 2015. Sortase enzyme–mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLOS ONE 10:7e0131177
    [Google Scholar]
  8. Bellucci JJ, Amiram M, Bhattacharyya J, McCafferty D, Chilkoti A 2013. Three-in-one chromatography-free purification, tag, removal, and site-specific modification of recombinant fusion proteins using sortase A and elastion-like polypeptides. Angew. Chem. Int. Ed. Engl. 52:3703–8
    [Google Scholar]
  9. Berkers CR, de Jong A, Ovaa H, Rodenko B 2009. Transpeptidation and reverse proteolysis and their consequences for immunity. Int. J. Biochem. Cell Biol. 41:166–71
    [Google Scholar]
  10. Bi X, Yin J, Nguyen GKT, Rao C, Halim NBA et al. 2017. Enzymatic engineering of live bacterial cell surfaces using butelase 1. Angew. Chem. 129:277930–33
    [Google Scholar]
  11. Bolscher JGM, Oudhoff MJ, Nazmi K, Antos JM, Guimaraes CP et al. 2011. Sortase A as a tool for high-yield histatin cyclization. FASEB J 25:82650–58
    [Google Scholar]
  12. Buskirk AR, Ong Y-C, Gartner ZJ, Liu DR 2004. Directed evolution of ligand dependence: small-molecule-activated protein splicing. PNAS 101:2910505–10
    [Google Scholar]
  13. Cascio S, Finn O 2016. Intra- and extra-cellular events related to altered glycosylation of MUC1 promote chronic inflammation, tumor progression, invasion, and metastasis. Biomolecules 6:4E39
    [Google Scholar]
  14. Chang TK, Jackson DY, Burnier JP, Wells JA 1994. Subtiligase: a tool for semisynthesis of proteins. PNAS 91:2612544–48
    [Google Scholar]
  15. Chen I, Dorr BM, Liu DR 2011. A general strategy for the evolution of bond-forming enzymes using yeast display. PNAS 108:2811399–404
    [Google Scholar]
  16. Chen I, Howarth M, Lin W, Ting AY 2005. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2:299–104
    [Google Scholar]
  17. Chen L, Cohen J, Song X, Zhao A, Ye Z et al. 2016. Improved variants of SrtA for site-specific conjugation on antibodies and proteins with high efficiency. Sci. Rep. 6:31899
    [Google Scholar]
  18. Claessen JHL, Witte MD, Yoder NC, Zhu AY, Spooner E, Ploegh HL 2013. Catch-and-release probes applied to semi-intact cells reveal ubiquitin-specific protease expression in Chlamydia trachomatis infection. ChemBioChem 14:3343–52
    [Google Scholar]
  19. Cozzi R, Nuccitelli A, D'Onofrio M, Necchi F, Rosini R et al. 2012. New insights into the role of the glutamic acid of the E-box motif in group B Streptococcus pilus 2a assembly. FASEB J 26:52008–18
    [Google Scholar]
  20. Dorr BM, Ham HO, An C, Chaikof EL, Liu DR 2014. Reprogramming the specificity of sortase enzymes. PNAS 111:3713343–48
    [Google Scholar]
  21. Duarte JN, Cragnolini JJ, Swee LK, Bilate AM, Bader J et al. 2016. Generation of immunity against pathogens via single-domain antibody-antigen constructs. J. Immunol. 197:124838–47
    [Google Scholar]
  22. Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL, Fink GR 2011. Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. PNAS 108:3414270–75
    [Google Scholar]
  23. Fang T, Duarte JN, Ling J, Li Z, Guzman JS, Ploegh HL 2016. Structurally defined αMHC-II nanobody-drug conjugates: a therapeutic and imaging system for B-cell lymphoma. Angew. Chem. 128:72462–66
    [Google Scholar]
  24. Fang T, Van Elssen CHMJ, Duarte JN, Guzman JS, Chahal JS et al. 2017. Targeted antigen delivery by an anti-class II MHC VHH elicits focused αMUC1(Tn) immunity. Chem. Sci. 8:5591–97
    [Google Scholar]
  25. Fawzi Hussain A, Amoury M, Barth S 2013. SNAP-tag technology: a powerful tool for site specific conjugation of therapeutic and imaging agents. Curr. Pharm. Des. 19:305437–42
    [Google Scholar]
  26. Freiburger L, Sonntag M, Hennig J, Li J, Zou P, Sattler M 2015. Efficient segmental isotope labeling of multi-domain proteins using Sortase A. J. Biomol. NMR 63:11–8
    [Google Scholar]
  27. Gianella P, Snapp E, Levy M 2016. An in vitro compartmentalization based method for the selection of bond-forming enzymes from large libraries. Biotechnol. Bioeng. 113:81647–57
    [Google Scholar]
  28. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:2442–45
    [Google Scholar]
  29. Glasgow JE, Salit ML, Cochran JR 2016. In vivo site-specific protein tagging with diverse amines using an engineered sortase variant. J. Am. Chem. Soc. 138:247496–99
    [Google Scholar]
  30. Goswami A, Van Lanen SG 2015. Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome. Mol. BioSyst. 11:338–53
    [Google Scholar]
  31. Guimaraes CP, Carette JE, Varadarajan M, Antos J, Popp MW et al. 2011. Identification of host cell factors required for intoxication through use of modified cholera toxin. J. Cell Biol. 195:5751–64
    [Google Scholar]
  32. Heck T, Pham P-H, Yerlikaya A, Thöny-Meyer L, Richter M 2014. Sortase A catalyzed reaction pathways: a comparative study with six SrtA variants. Catal. Sci. Tech. 4:2946–56
    [Google Scholar]
  33. Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK et al. 2012. M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjug. Chem. 23:1478–87
    [Google Scholar]
  34. Hess GT, Guimaraes CP, Spooner E, Ploegh HL, Belcher AM 2013. Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multiphage structures. ACS Synth. Biol 2:490–96
    [Google Scholar]
  35. Hirakawa H, Ishikawa S 2012. Design of Ca2+‐independent Staphylococcus aureus sortase A mutants. Biotechnol. Bioeng. 109:122955–61
    [Google Scholar]
  36. Hirakawa H, Ishikawa S, Nagamune T 2015. Ca2+-independent sortase-A exhibits high selective protein ligation activity in the cytoplasm of E. coli. Biotechnol. J 10:91487–92
    [Google Scholar]
  37. Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y 1990. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem 265:126726–33
    [Google Scholar]
  38. Ilangovan U, Ton-That H, Iwahara J, Schneewind O, Clubb RT 2001. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. . PNAS 98:116056–61
    [Google Scholar]
  39. Jacobitz AW, Kattke MD, Wereszczynski J, Clubb RT 2017. Sortase Transpeptidases: Structural Biology and Catalytic Mechanism 109 Amsterdam: Elsevier, 1st ed..
  40. Jeong H-J, Abhiraman GC, Story CM, Ingram JR, Dougan SK 2017. Generation of Ca2+-independent sortase A mutants with enhanced activity for protein and cell surface labeling. PLOS ONE 12:12e0189068
    [Google Scholar]
  41. Jia X, Kwon S, Wang C-IA, Huang Y-H, Chan LY et al. 2014. Semienzymatic cyclization of disulfide-rich peptides using sortase A. J. Biol. Chem. 289:106627–38
    [Google Scholar]
  42. Kaslow HR, Burns DL 1992. Pertussis toxin and target eukaryotic cells: binding, entry, and activation. FASEB J 6:92684–90
    [Google Scholar]
  43. Khare B, Narayana SVL 2017. Pilus biogenesis of gram-positive bacteria: roles of sortases and implications for assembly. Protein Sci 26:81458–73
    [Google Scholar]
  44. Kish-Trier E, Hill CP 2013. Structural biology of the proteasome. Annu. Rev. Biophys. 42:29–49
    [Google Scholar]
  45. Kornberger P, Skerra A 2014. Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin. mAbs 6:2354–66
    [Google Scholar]
  46. Kruger RG, Otvos B, Frankel BA, Bentley M, Dostal P et al. 2004. Analysis of the substrate specificity of the Staphylococcus aureus sortase transpeptidase SrtA. Biochemistry 43:1541–51
    [Google Scholar]
  47. Li Z, Theile CS, Chen GY, Bilate AM et al. 2015. Fluorophore-conjugated Holliday junctions for generating super-bright antibodies and antibody fragments. Angew. Chem. Int. Ed. Engl. 54:4011706–10
    [Google Scholar]
  48. Liu F, Luo EY, Flora DB, Mezo AR 2014. Irreversible sortase A–mediated ligation driven by diketopiperazine formation. J. Org. Chem. 79:2487–92
    [Google Scholar]
  49. Madej MP, Coia G, Williams CC, Caine JM, Pearce LA et al. 2011. Engineering of an anti–epidermal growth factor receptor antibody to single chain format and labeling by sortase A–mediated protein ligation. Biotechnol. Bioeng. 109:61461–70
    [Google Scholar]
  50. Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA 2008. Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:5866–76
    [Google Scholar]
  51. Mao H, Hart SA, Schink A, Pollok BA 2004. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 126:92670–71
    [Google Scholar]
  52. Marraffini LA, Dedent AC, Schneewind O 2006. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 70:1192–221
    [Google Scholar]
  53. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33:5538–42
    [Google Scholar]
  54. Matsumoto T, Takase R, Tanaka T, Fukuda H, Kondo A 2012. Site-specific protein labeling with amine-containing molecules using Lactobacillus plantarum sortase. Biotechnol. J. 7:642–48
    [Google Scholar]
  55. Mazmanian SK, Liu G, Ton-That H, Schneewind O 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:5428760–63
    [Google Scholar]
  56. McCluskey AJ, Collier RJ 2013. Receptor-directed chimeric toxins created by sortase-mediated protein fusion. Mol. Cancer Ther. 12:102273–81
    [Google Scholar]
  57. Merritt EA, Hol WG 1995. AB5 toxins. Curr. Opin. Struct. Biol. 5:2165–71
    [Google Scholar]
  58. Nasr ML, Baptista D, Strauss M, Sun Z-YJ, Grigoriu S et al. 2016. Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Methods 14:149–52
    [Google Scholar]
  59. Nchinda G, Kuroiwa J, Oks M, Trumpfheller C, Park CG et al. 2008. The efficacy of DNA vaccination is enhanced in mice by targeting the encoded protein to dendritic cells. J. Clin. Investig. 118:41427–36
    [Google Scholar]
  60. Nguyen GKT, Qiu Y, Cao Y, Hemu X, Liu C-F, Tam JP 2016. Butelase-mediated cyclization and ligation of peptides and proteins. Nat. Protoc. 11:101977–88
    [Google Scholar]
  61. Nguyen GKT, Wang S, Qiu Y, Hemu X, Lian Y, Tam JP 2014. Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat. Chem. Biol. 10:9732–38
    [Google Scholar]
  62. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:5481920–30
    [Google Scholar]
  63. Noren C, Wang J, Perler F 2000. Dissecting the chemistry of protein splicing and its applications. Angew. Chem. Int. Ed. Engl. 39:3450–66
    [Google Scholar]
  64. Palchaudhuri R, Saez B, Hoggatt J, Schajnovitz A, Sykes DB et al. 2016. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat. Biotechnol. 34:7738–45
    [Google Scholar]
  65. Park HE, Gruenke JA, White JM 2003. Leash in the groove mechanism of membrane fusion. Nat. Struct. Biol. 10:121048–53
    [Google Scholar]
  66. Peaper DR, Cresswell P 2008. Regulation of MHC class I assembly and peptide binding. Annu. Rev. Cell Dev. Biol. 24:343–68
    [Google Scholar]
  67. Perler FB 1999. InBase, the New England Biolabs Intein Database. Nucleic Acids Res 27:1346–47
    [Google Scholar]
  68. Piotukh K, Geltinger B, Heinrich N, Gerth F, Beyermann M et al. 2011. Directed evolution of sortase A mutants with altered substrate selectivity profiles. J. Am. Chem. Soc. 133:17536–39
    [Google Scholar]
  69. Pishesha N, Bilate AM, Wibowo MC, Huang N-J, Li Z et al. 2017. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. PNAS 114:123157–62
    [Google Scholar]
  70. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL 2007. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3:11707–8
    [Google Scholar]
  71. Popp MW, Dougan SK, Chuang TY 2011. Sortase-catalyzed transformations that improve the properties of cytokines. PNAS 108:83169–74
    [Google Scholar]
  72. Popp MW-L 2014. Site-specific labeling of proteins via sortase: protocols for the molecular biologist. Methods Mol. Biol 1266:185–98
    [Google Scholar]
  73. Popp MW-L, Karssemeijer RA, Ploegh HL 2012. Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time. PLOS Pathog 8:3e1002604
    [Google Scholar]
  74. Popp MW-L, Ploegh HL 2011. Making and breaking peptide bonds: protein engineering using sortase. Angew. Chem. Int. Ed. Engl. 50:225024–32
    [Google Scholar]
  75. Rabideau AE, Pentelute BL 2016. Delivery of non-native cargo into mammalian cells using anthrax lethal toxin. ACS Chem. Biol. 11:61490–501
    [Google Scholar]
  76. Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR et al. 2015. Noninvasive imaging of immune responses. PNAS 112:196146–51
    [Google Scholar]
  77. Refaei MA, Combs A, Kojetin DJ, Cavanagh J, Caperelli C et al. 2010. Observing selected domains in multi-domain proteins via sortase-mediated ligation and NMR spectroscopy. J. Biomol. NMR 49:13–7
    [Google Scholar]
  78. Roux KJ, Kim DI, Raida M, Burke B 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:6801–10
    [Google Scholar]
  79. Schmohl L, Wagner FR, Schümann M, Krause E, Schwarzer D 2015. Semisynthesis and initial characterization of sortase A mutants containing selenocysteine and homocysteine. Bioorg. Med. Chem. 23:2883–89
    [Google Scholar]
  80. Schumacher TN, Schreiber RD 2015. Neoantigens in cancer immunotherapy. Science 348:623069–74
    [Google Scholar]
  81. Shah NH, Muir TW 2014. Inteins: nature's gift to protein chemists. Chem. Sci. 5:2446–61
    [Google Scholar]
  82. Shi J, Kundrat L, Pishesha N, Bilate A, Theile C et al. 2014. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. PNAS 111:2810131–36
    [Google Scholar]
  83. Siegel SD, Liu J, Ton-That H 2016. Biogenesis of the gram-positive bacterial cell envelope. Curr. Opin. Microbiol. 34:31–37
    [Google Scholar]
  84. Stanger K, Maurer T, Kaluarachchi H, Coons M, Franke Y, Hannoush RN 2014. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A. FEBS Lett 588:234487–96
    [Google Scholar]
  85. Strijbis K, Spooner E, Ploegh HL 2012. Protein ligation in living cells using sortase. Traffic 13:780–89
    [Google Scholar]
  86. Sun X, Zhang A, Baker B, Sun L, Howard A et al. 2011. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging. ChemBioChem 12:142217–26
    [Google Scholar]
  87. Swee LK, Lourido S, Bell GW, Ingram JR, Ploegh HL 2015. One-step enzymatic modification of the cell surface redirects cellular cytotoxicity and parasite tropism. ACS Chem. Biol. 10:2460–65
    [Google Scholar]
  88. Tafesse FG, Guimaraes CP, Maruyama T, Carette JE, Lory S et al. 2014. GPR107, a G-protein-coupled receptor essential for intoxication by Pseudomonas aeruginosa exotoxin A, localizes to the Golgi and is cleaved by furin. J. Biol. Chem. 289:3524005–18
    [Google Scholar]
  89. Tafesse FG, Sanyal S, Ashour J, Guimaraes CP, Hermansson M et al. 2013. Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. PNAS 110:166406–11
    [Google Scholar]
  90. Theile CS, Witte MD, Blom AEM, Kundrat L, Ploegh HL et al. 2013. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8:91800–7
    [Google Scholar]
  91. Ton-That H, Mazmanian SK, Faull KF, Schneewind O 2000. Anchoring of surface proteins to the cell wall of Staphylococcus aureus: sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH2-Gly3 substrates. J. Biol. Chem. 275:139876–81
    [Google Scholar]
  92. van't Hof W, Hansenová Maňásková S, Veerman ECI, Bolscher JGM 2015. Sortase-mediated backbone cyclization of proteins and peptides. Biol. Chem. 396:4283–93
    [Google Scholar]
  93. Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde B 2017. Peptide splicing by the proteasome. J. Biol. Chem. 292:5121170–79
    [Google Scholar]
  94. Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G et al. 2004. An antigenic peptide produced by peptide splicing in the proteasome. Science 304:5670587–90
    [Google Scholar]
  95. Vila-Perelló M, Hori Y, Ribó M, Muir TW 2008. Activation of protein splicing by protease- or light-triggered O to N acyl migration. Angew. Chem. Int. Ed. Engl. 47:407764–67
    [Google Scholar]
  96. Wagner K, Kwakkenbos MJ, Claassen YB, Maijoor K, Böhne M et al. 2014. Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity. PNAS 111:4716820–25
    [Google Scholar]
  97. Waley SG, Watson J 1954. Trypsin-catalysed transpeptidations. Biochem. J. 57:4529–38
    [Google Scholar]
  98. Warren EH, Vigneron NJ, Gavin MA, Coulie PG, Stroobant V et al. 2006. An antigen produced by splicing of noncontiguous peptides in the reverse order. Science 313:57921444–47
    [Google Scholar]
  99. Weidmann J, Craik DJ 2016. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J. Exp. Bot. 67:164801–12
    [Google Scholar]
  100. Williams FP, Milbradt AG, Embrey KJ, Bobby R 2016. Segmental isotope labelling of an individual bromodomain of a tandem domain BRD4 using sortase A. PLOS ONE 11:4e0154607
    [Google Scholar]
  101. Witte MD, Cragnolini JJ, Dougan SK, Yoder NC, Popp MW, Ploegh HL 2012. Preparation of unnatural N-to-N and C-to-C protein fusions. PNAS 109:3011993–98
    [Google Scholar]
  102. Witte MD, Theile CS, Wu T, Guimaraes CP, Blom AEM et al. 2013. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry. Nat. Protoc. 8:91808–19
    [Google Scholar]
  103. Witte MD, Wu T, Guimaraes CP, Theile CS, Blom AEM et al. 2015. Site-specific protein modification using immobilized sortase in batch and continuous-flow systems. Nat. Protoc. 10:03508–16
    [Google Scholar]
  104. Wu Q, Ploegh HL, Truttmann MC 2017. Hepta-mutant Staphylococcus aureus sortase A (SrtA7m) as a tool for in vivo protein labeling in Caenorhabditis elegans. ACS Chem. Biol 12:3664–73
    [Google Scholar]
  105. Wuethrich I, Peeters JGC, Blom AEM, Theile CS, Li Z et al. 2014. Site-specific chemoenzymatic labeling of aerolysin enables the identification of new aerolysin receptors. PLOS ONE 9:10e109883
    [Google Scholar]
  106. Xu MQ, Southworth MW, Mersha FB, Hornstra LJ, Perler FB 1993. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 75:71371–77
    [Google Scholar]
  107. Xu R, Ayers B, Cowburn D, Muir TW 1999. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. PNAS 96:2388–93
    [Google Scholar]
  108. Zhang J, Yamaguchi S, Hirakawa H, Nagamune T 2013. Intracellular protein cyclization catalyzed by exogenously transduced Streptococcus pyogenes sortase A. J. Biosci. Bioeng. 116:298–301
    [Google Scholar]
  109. Zhang S, Masuyer G, Zhang J, Shen Y, Lundin D et al. 2017. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 8:14130
    [Google Scholar]
  110. Zhulenkovs D, Jaudzems K, Zajakina A, Leonchiks A 2014. Enzymatic activity of circular sortase A under denaturing conditions: an advanced tool for protein ligation. Biochem. Eng. J. 82:200–9
    [Google Scholar]
  111. Zhulenkovs D, Leonchiks A 2010. Staphylococcus aureus sortase A cyclization and evaluation of enzymatic activity in vitro. Environ. Exp. Biol. 8:97–101
    [Google Scholar]
  112. Züger S, Iwai H 2005. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat. Biotechnol. 23:6736–40
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062527
Loading
/content/journals/10.1146/annurev-cellbio-100617-062527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error