1932

Abstract

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062608
2019-10-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100617-062608.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062608&mimeType=html&fmt=ahah

Literature Cited

  1. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ et al. 2011. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334:1727–31
    [Google Scholar]
  2. Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR et al. 2011. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. PNAS 108:2807–12
    [Google Scholar]
  3. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A et al. 2017. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94:581–94.e5
    [Google Scholar]
  4. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E et al. 2010. Pericytes regulate the blood–brain barrier. Nature 468:557–61
    [Google Scholar]
  5. Armulik A, Mae M, Betsholtz C 2011. Pericytes and the blood–brain barrier: recent advances and implications for the delivery of CNS therapy. Ther. Deliv. 2:419–22
    [Google Scholar]
  6. Astudillo P, Larrain J. 2014. Wnt signaling and cell-matrix adhesion. Curr. Mol. Med. 14:209–20
    [Google Scholar]
  7. Bader BL, Rayburn H, Crowley D, Hynes RO 1998. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–19
    [Google Scholar]
  8. Banks WA. 2016. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15:275–92
    [Google Scholar]
  9. Beaulieu E, Demeule M, Ghitescu L, Beliveau R 1997. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem. J. 326:Part 2539–44
    [Google Scholar]
  10. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B et al. 2010. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–27
    [Google Scholar]
  11. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y et al. 2014. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509:507–11
    [Google Scholar]
  12. Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA et al. 2014. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J. Exp. Med. 211:233–44
    [Google Scholar]
  13. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O 2015. Pericytes at the intersection between tissue regeneration and pathology. Clin. Sci. 128:81–93
    [Google Scholar]
  14. Brightman MW, Reese TS. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648–77
    [Google Scholar]
  15. Broadwell RD, Salcman M. 1981. Expanding the definition of the blood-brain barrier to protein. PNAS 78:7820–24
    [Google Scholar]
  16. Campos-Bedolla P, Walter FR, Veszelka S, Deli MA 2014. Role of the blood–brain barrier in the nutrition of the central nervous system. Arch. Med. Res. 45:610–38
    [Google Scholar]
  17. Cannella B, Cross AH, Raine CS 1990. Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J. Exp. Med. 172:1521–24
    [Google Scholar]
  18. Castejon OJ, Castellano A, Arismendi GJ, Medina Z 2005. The inflammatory reaction in human traumatic oedematous cerebral cortex. J. Submicrosc. Cytol. Pathol. 37:43–52
    [Google Scholar]
  19. Chang J, Mancuso MR, Maier C, Liang X, Yuki K et al. 2017. Gpr124 is essential for blood–brain barrier integrity in central nervous system disease. Nat. Med. 23:450–60
    [Google Scholar]
  20. Chen J, Stahl A, Krah NM, Seaward MR, Joyal JS et al. 2012. Retinal expression of Wnt-pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice. PLOS ONE 7:e30203
    [Google Scholar]
  21. Cho C, Smallwood PM, Nathans J 2017. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95:1056–73.e5
    [Google Scholar]
  22. Cho C-F, Wolfe JM, Fadzen CM, Calligaris D, Hornburg K et al. 2017. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat. Commun. 8:15623
    [Google Scholar]
  23. Chow BW, Gu C. 2017. Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 93:1325–33.e3
    [Google Scholar]
  24. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M et al. 2005. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J. Clin. Investig. 115:3285–90
    [Google Scholar]
  25. Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL et al. 1989. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. PNAS 86:695–98
    [Google Scholar]
  26. Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J et al. 2011. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood–brain barrier. PNAS 108:5759–64
    [Google Scholar]
  27. Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J 2017. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat. Neurosci. 20:1023–32
    [Google Scholar]
  28. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA 2009. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS 106:641–46
    [Google Scholar]
  29. Daneman R, Zhou L, Kebede AA, Barres BA 2010. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–66
    [Google Scholar]
  30. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI 1991. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N. Engl. J. Med. 325:703–9
    [Google Scholar]
  31. Deane R, Wu Z, Sagare A, Davis J, Du Yan S et al. 2004. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43:333–44
    [Google Scholar]
  32. Dermietzel R, Krause D, Kremer M, Wang C, Stevenson B 1992. Pattern of glucose transporter (Glut 1) expression in embryonic brains is related to maturation of blood-brain barrier tightness. Dev. Dyn. 193:152–63
    [Google Scholar]
  33. Dore-Duffy P. 2008. Pericytes: pluripotent cells of the blood brain barrier. Curr. Pharm. Des. 14:1581–93
    [Google Scholar]
  34. Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G et al. 2018. PDGFRβ cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100:183–200.e8
    [Google Scholar]
  35. Eberth CJ. 1871. Handbuch der Lehre von der Geweben des Menschen und der Tiere Leipzig: Engelmann
  36. Edqvist PH, Niklasson M, Vidal-Sanz M, Hallbook F, Forsberg-Nilsson K 2012. Platelet-derived growth factor over-expression in retinal progenitors results in abnormal retinal vessel formation. PLOS ONE 7:e42488
    [Google Scholar]
  37. Engelhardt B. 2003. Development of the blood-brain barrier. Cell Tissue Res 314:119–29
    [Google Scholar]
  38. Engelhardt B, Liebner S. 2014. Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res 355:687–99
    [Google Scholar]
  39. Engelhardt B, Wolburg H. 2004. Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house. Eur. J. Immunol. 34:2955–63
    [Google Scholar]
  40. Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P et al. 2018. A molecular mechanism for Wnt ligand-specific signaling. Science 361:eaat1178
    [Google Scholar]
  41. Farquhar MG, Palade GE. 1963. Junctional complexes in various epithelia. J. Cell Biol. 17:375–412
    [Google Scholar]
  42. Frank RN, Dutta S, Mancini MA 1987. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Investig. Ophthalmol. Vis. Sci. 28:1086–91
    [Google Scholar]
  43. Frank RN, Turczyn TJ, Das A 1990. Pericyte coverage of retinal and cerebral capillaries. Investig. Ophthalmol. Vis. Sci. 31:999–1007
    [Google Scholar]
  44. Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM 1991. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. PNAS 88:4771–75
    [Google Scholar]
  45. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S 1998. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141:1539–50
    [Google Scholar]
  46. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S et al. 1993. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123:1777–88
    [Google Scholar]
  47. Gaengel K, Genove G, Armulik A, Betsholtz C 2009. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29:630–38
    [Google Scholar]
  48. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO 1993. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–91
    [Google Scholar]
  49. Haley MJ, Lawrence CB. 2017. The blood–brain barrier after stroke: structural studies and the role of transcytotic vesicles. J. Cereb. Blood Flow Metab. 37:456–70
    [Google Scholar]
  50. Hallmann R, Mayer DN, Berg EL, Broermann R, Butcher EC 1995. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev. Dyn. 202:325–32
    [Google Scholar]
  51. Hansen CG, Nichols BJ. 2009. Molecular mechanisms of clathrin-independent endocytosis. J. Cell Sci. 122:1713–21
    [Google Scholar]
  52. Hauser SL, Bhan AK, Gilles FH, Hoban CJ, Reinherz EL et al. 1983. Immunohistochemical staining of human brain with monoclonal antibodies that identify lymphocytes, monocytes, and the Ia antigen. J. Neuroimmunol. 5:197–205
    [Google Scholar]
  53. Hediger MA, Clemencon B, Burrier RE, Bruford EA 2013. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol. Aspects Med. 34:95–107
    [Google Scholar]
  54. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C 1999. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–55
    [Google Scholar]
  55. Hickey WF, Hsu BL, Kimura H 1991. T-lymphocyte entry into the central nervous system. J. Neurosci. Res. 28:254–60
    [Google Scholar]
  56. Iadecola C. 2004. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5:347–60
    [Google Scholar]
  57. Iadecola C. 2017. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42
    [Google Scholar]
  58. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S 2005. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J. Cell Biol. 171:939–45
    [Google Scholar]
  59. Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S 2008. Loss of occludin affects tricellular localization of tricellulin. Mol. Biol. Cell 19:4687–93
    [Google Scholar]
  60. Janzer RC, Raff MC. 1987. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325:253–57
    [Google Scholar]
  61. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY 1984. Transferrin receptor on endothelium of brain capillaries. Nature 312:162–63
    [Google Scholar]
  62. Jeynes B, Provias J. 2011. An investigation into the role of P-glycoprotein in Alzheimer's disease lesion pathogenesis. Neurosci. Lett. 487:389–93
    [Google Scholar]
  63. Junge HJ, Yang S, Burton JB, Paes K, Shu X et al. 2009. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/β-catenin signaling. Cell 139:299–311
    [Google Scholar]
  64. Kanekiyo T, Liu CC, Shinohara M, Li J, Bu G 2012. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β. J. Neurosci. 32:16458–65
    [Google Scholar]
  65. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE et al. 2014. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603–17
    [Google Scholar]
  66. Kolarova H, Ambruzova B, Svihalkova Sindlerova L, Klinke A, Kubala L 2014. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm 2014:694312
    [Google Scholar]
  67. Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V et al. 2010. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330:985–89
    [Google Scholar]
  68. Kutuzov N, Flyvbjerg H, Lauritzen M 2018. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. PNAS 115:E9429–38
    [Google Scholar]
  69. Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM et al. 2001. β-Amyloid efflux mediated by p-glycoprotein. J. Neurochem. 76:1121–28
    [Google Scholar]
  70. Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A et al. 1992. A novel endothelial-specific membrane protein is a marker of cell–cell contacts. J. Cell Biol. 118:1511–22
    [Google Scholar]
  71. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C 1994. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–87
    [Google Scholar]
  72. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A et al. 2008. Wnt/β-catenin signaling controls development of the blood–brain barrier. J. Cell Biol. 183:409–17
    [Google Scholar]
  73. Lindahl P, Johansson BR, Leveen P, Betsholtz C 1997. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–45
    [Google Scholar]
  74. Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK et al. 2012. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30:783–91
    [Google Scholar]
  75. Maoz BM, Herland A, FitzGerald EA, Grevesse T, Vidoudez C et al. 2018. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36:865–74
    [Google Scholar]
  76. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M et al. 1998. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142:117–27
    [Google Scholar]
  77. Mazlo M, Gasz B, Szigeti A, Zsombok A, Gallyas F 2004. Debris of “dark” (compacted) neurones are removed from an otherwise undamaged environment mainly by astrocytes via blood vessels. J. Neurocytol. 33:557–67
    [Google Scholar]
  78. Mazzoni J, Smith JR, Shahriar S, Cutforth T, Ceja B, Agalliu D 2017. The Wnt inhibitor Apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels. Neuron 96:1055–69.e6
    [Google Scholar]
  79. McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D et al. 2005. Selective ablation of αv integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132:165–76
    [Google Scholar]
  80. McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H et al. 2002. Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking αv integrins. Mol. Cell. Biol. 22:7667–77
    [Google Scholar]
  81. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX et al. 2017. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20:1752–60
    [Google Scholar]
  82. Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H 2014. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood–brain barrier. J. Neurosci. 34:15260–80
    [Google Scholar]
  83. Morita K, Sasaki H, Furuse M, Tsukita S 1999. Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 147:185–94
    [Google Scholar]
  84. Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C et al. 2012. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev. Biol. 366:327–40
    [Google Scholar]
  85. Munger JS, Sheppard D. 2011. Cross talk among TGF-β signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb. Perspect. Biol. 3:a005017
    [Google Scholar]
  86. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A et al. 2014. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–6
    [Google Scholar]
  87. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H et al. 2014. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60
    [Google Scholar]
  88. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H et al. 2003. Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. J. Cell Biol. 161:653–60
    [Google Scholar]
  89. O'Brown NM, Pfau SJ, Gu C 2018. Bridging barriers: a comparative look at the blood–brain barrier across organisms. Genes Dev 32:466–78
    [Google Scholar]
  90. O'Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA 1999. Na+-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier: a mechanism for glutamate removal. J. Biol. Chem. 274:31891–95
    [Google Scholar]
  91. Oldendorf WH, Cornford ME, Brown WJ 1977. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1:409–17
    [Google Scholar]
  92. Pardridge WM. 2012. Drug transport across the blood–brain barrier. J. Cereb. Blood Flow Metab. 32:1959–72
    [Google Scholar]
  93. Park DY, Lee J, Kim J, Kim K, Hong S et al. 2017. Plastic roles of pericytes in the blood–retinal barrier. Nat. Commun. 8:15296
    [Google Scholar]
  94. Pitulescu ME, Schmidt I, Benedito R, Adams RH 2010. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc. 5:1518–34
    [Google Scholar]
  95. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U 2004. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 131:1619–28
    [Google Scholar]
  96. Qin Y, Sato TN. 1995. Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev. Dyn. 202:172–80
    [Google Scholar]
  97. Raine CS, Lee SC, Scheinberg LC, Duijvestin AM, Cross AH 1990. Adhesion molecules on endothelial cells in the central nervous system: an emerging area in the neuroimmunology of multiple sclerosis. Clin. Immunol. Immunopathol. 57:173–87
    [Google Scholar]
  98. Ransohoff RM, Engelhardt B. 2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12:623–35
    [Google Scholar]
  99. Reese TS, Karnovsky MJ. 1967. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–17
    [Google Scholar]
  100. Rempe RG, Hartz AMS, Bauer B 2016. Matrix metalloproteinases in the brain and blood–brain barrier: versatile breakers and makers. J. Cereb. Blood Flow Metab. 36:1481–507
    [Google Scholar]
  101. Reyahi A, Nik AM, Ghiami M, Gritli-Linde A, Ponten F et al. 2015. Foxf2 is required for brain pericyte differentiation and development and maintenance of the blood-brain barrier. Dev. Cell 34:19–32
    [Google Scholar]
  102. Risau W. 1991. Induction of blood-brain barrier endothelial cell differentiation. Ann. N. Y. Acad. Sci. 633:405–19
    [Google Scholar]
  103. Risau W. 1997. Mechanisms of angiogenesis. Nature 386:671–74
    [Google Scholar]
  104. Risau W, Hallmann R, Albrecht U 1986. Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev. Biol. 117:537–45
    [Google Scholar]
  105. Rossler K, Neuchrist C, Kitz K, Scheiner O, Kraft D, Lassmann H 1992. Expression of leucocyte adhesion molecules at the human blood-brain barrier (BBB). J. Neurosci. Res. 31:365–74
    [Google Scholar]
  106. Rouget C. 1873. Mémoire sur le développement, la structure et les proprietés physiologiques des capillaires sanguins et lymphatiques. Arch. Physiol. Norm. Path. 5:603–63
    [Google Scholar]
  107. Sadeghian H, Lacoste B, Qin T, Toussay X, Rosa R et al. 2018. Spreading depolarizations trigger caveolin-1-dependent endothelial transcytosis. Ann. Neurol. 84:409–23
    [Google Scholar]
  108. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA et al. 2013. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4:2932
    [Google Scholar]
  109. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T et al. 1998. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. 141:397–408
    [Google Scholar]
  110. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M et al. 2000. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell 11:4131–42
    [Google Scholar]
  111. Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM et al. 2018. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174:1015–30.e16
    [Google Scholar]
  112. Schinkel AH, Wagenaar E, Mol CA, van Deemter L 1996. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Investig. 97:2517–24
    [Google Scholar]
  113. Schulze C, Firth JA. 1993. Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat. J. Cell Sci. 104:Part 3773–82
    [Google Scholar]
  114. Segarra M, Aburto MR, Cop F, Llaó-Cid C, Härtl R et al. 2018. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science 361:eaao2861
    [Google Scholar]
  115. Seo MS, Okamoto N, Vinores MA, Vinores SA, Hackett SF et al. 2000. Photoreceptor-specific expression of platelet-derived growth factor-B results in traction retinal detachment. Am. J. Pathol. 157:995–1005
    [Google Scholar]
  116. Sheppard D. 2004. Roles of αv integrins in vascular biology and pulmonary pathology. Curr. Opin. Cell Biol. 16:552–57
    [Google Scholar]
  117. Shibata M, Yamada S, Kumar SR, Calero M, Bading J et al. 2000. Clearance of Alzheimer's amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Investig. 106:1489–99
    [Google Scholar]
  118. Smallwood PM, Williams J, Xu Q, Leahy DJ, Nathans J 2007. Mutational analysis of Norrin-Frizzled4 recognition. J. Biol. Chem. 282:4057–68
    [Google Scholar]
  119. Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N et al. 2015. LSR/angulin-1 is a tricellular tight junction protein involved in blood–brain barrier formation. J. Cell Biol. 208:703–11
    [Google Scholar]
  120. Soriano P. 1994. Abnormal kidney development and hematological disorders in PDGF β-receptor mutant mice. Genes Dev 8:1888–96
    [Google Scholar]
  121. Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ et al. 2010. The mouse retina as an angiogenesis model. Investig. Ophthalmol. Vis. Sci. 51:2813–26
    [Google Scholar]
  122. Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y et al. 2012. The diaphragms of fenestrated endothelia—gatekeepers of vascular permeability and blood composition. Dev. Cell 23:1203–18
    [Google Scholar]
  123. Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP 2008. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–50
    [Google Scholar]
  124. Stewart PA, Wiley MJ. 1981. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol. 84:183–92
    [Google Scholar]
  125. Sweeney MD, Sagare AP, Zlokovic BV 2018. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14:133–50
    [Google Scholar]
  126. Tarlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC et al. 2016. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167:1481–94.e18
    [Google Scholar]
  127. Thomsen MS, Routhe LJ, Moos T 2017. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow Metab. 37:3300–17
    [Google Scholar]
  128. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L et al. 2002. Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol. Cell. Biol. 22:1194–202
    [Google Scholar]
  129. Tran KA, Zhang X, Predescu D, Huang X, Machado RF et al. 2016. Endothelial β-catenin signaling is required for maintaining adult blood–brain barrier integrity and central nervous system homeostasis. Circulation 133:177–86
    [Google Scholar]
  130. Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y et al. 2015. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. eLife 4:e06489
    [Google Scholar]
  131. Vanlandewijck M, He L, Mae MA, Andrae J, Ando K et al. 2018. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–80
    [Google Scholar]
  132. Wang D, Pascual JM, Yang H, Engelstad K, Mao X et al. 2006. A mouse model for Glut-1 haploinsufficiency. Hum. Mol. Genet. 15:1169–79
    [Google Scholar]
  133. Wang Y, Cho C, Williams J, Smallwood PM, Zhang C et al. 2018. Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood–brain barrier and blood–retina barrier development and maintenance. PNAS 115:E11827–36
    [Google Scholar]
  134. Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J 2012. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151:1332–44
    [Google Scholar]
  135. Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA 2010. ABC efflux transporters in brain vasculature of Alzheimer's subjects. Brain Res 1358:228–38
    [Google Scholar]
  136. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD et al. 2015. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18:521–30
    [Google Scholar]
  137. Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D et al. 2009. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nat. Med. 15:519–27
    [Google Scholar]
  138. Yamagata K, Tagami M, Nara Y, Mitani M, Kubota A et al. 1997. Astrocyte-conditioned medium induces blood-brain barrier properties in endothelial cells. Clin. Exp. Pharmacol. Physiol. 24:710–13
    [Google Scholar]
  139. Yamamoto H, Ehling M, Kato K, Kanai K, van Lessen M et al. 2015. Integrin β1 controls VE-cadherin localization and blood vessel stability. Nat. Commun. 6:6429
    [Google Scholar]
  140. Yang Y, Higashimori H, Morel L 2013. Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders. J. Neurodev. Disord. 5:22
    [Google Scholar]
  141. Yao Y, Chen ZL, Norris EH, Strickland S 2014. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat. Commun. 5:3413
    [Google Scholar]
  142. Ye X, Wang Y, Nathans J 2010. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends. Mol. Med. 16:417–25
    [Google Scholar]
  143. Yu YJ, Watts RJ. 2013. Developing therapeutic antibodies for neurodegenerative disease. Neurotherapeutics 10:459–72
    [Google Scholar]
  144. Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F et al. 2018. Molecular architecture of the mouse nervous system. Cell 174:999–1014.e22
    [Google Scholar]
  145. Zhang SL, Yue Z, Arnold DM, Artiushin G, Sehgal A 2018. A circadian clock in the blood-brain barrier regulates xenobiotic efflux. Cell 173:130–39.e10
    [Google Scholar]
  146. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34:11929–47
    [Google Scholar]
  147. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV 2015. Establishment and dysfunction of the blood-brain barrier. Cell 163:1064–78
    [Google Scholar]
  148. Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM et al. 2014. Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Investig. 124:3825–46
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062608
Loading
/content/journals/10.1146/annurev-cellbio-100617-062608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error