1932

Abstract

Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062855
2018-10-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062855.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062855&mimeType=html&fmt=ahah

Literature Cited

  1. Abramovitch S, Dahan-Bachar L, Sharvit E, Weisman Y, Ben Tov A et al. 2011. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut 60:1728–37
    [Google Scholar]
  2. Ahern M, Hall P, Halliday J, Liddle C, Olynyk J et al. 1996. Hepatic stellate cell nomenclature. Hepatology 23:193
    [Google Scholar]
  3. Alescio T, Cassini A 1962. Induction in vitro of tracheal buds by pulmonary mesenchyme grafted on tracheal epithelium. J. Exp. Zool. 150:83–94
    [Google Scholar]
  4. Andoh A, Takaya H, Saotome T, Shimada M, Hata K et al. 2000. Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology 119:211–19
    [Google Scholar]
  5. Aoki H, Ohnishi H, Hama K, Shinozaki S, Kita H et al. 2006. Existence of autocrine loop between interleukin-6 and transforming growth factor-β1 in activated rat pancreatic stellate cells. J. Cell Biochem. 99:221–28
    [Google Scholar]
  6. Aoyama T, Paik YH, Watanabe S, Laleu B, Gaggini F et al. 2012. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56:2316–27
    [Google Scholar]
  7. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW et al. 1998. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43:128–33
    [Google Scholar]
  8. Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW et al. 1999. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44:534–41
    [Google Scholar]
  9. Apte MV, Pirola RC, Wilson JS 2012. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front. Physiol. 3:344
    [Google Scholar]
  10. Arthur MJ, Friedman SL, Roll FJ, Bissell DM 1989. Lipocytes from normal rat liver release a neutral metalloproteinase that degrades basement membrane (type IV) collagen. J. Clin. Investig. 84:1076–85
    [Google Scholar]
  11. Asahina K, Tsai SY, Li P, Ishii M, Maxson RE Jr. et al. 2009. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology 49:998–1011
    [Google Scholar]
  12. Asahina K, Zhou B, Pu WT, Tsukamoto H 2011. Septum transversum–derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53:983–95
    [Google Scholar]
  13. Attali M, Stetsyuk V, Basmaciogullari A, Aiello V, Zanta-Boussif MA et al. 2007. Control of β-cell differentiation by the pancreatic mesenchyme. Diabetes 56:1248–58
    [Google Scholar]
  14. Baba S, Fujii H, Hirose T, Yasuchika K, Azuma H et al. 2004. Commitment of bone marrow cells to hepatic stellate cells in mouse. J. Hepatol. 40:255–60
    [Google Scholar]
  15. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM et al. 1998. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–32
    [Google Scholar]
  16. Badiola I, Olaso E, Crende O, Friedman SL, Vidal-Vanaclocha F 2012. Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut 61:1465–72
    [Google Scholar]
  17. Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK et al. 2008. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin. Cancer Res. 14:5995–6004
    [Google Scholar]
  18. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM et al. 2010. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16:1009–17
    [Google Scholar]
  19. Ben-Harosh Y, Anosov M, Salem H, Yatchenko Y, Birk R 2017. Pancreatic stellate cell activation is regulated by fatty acids and ER stress. Exp. Cell Res. 359:76–85
    [Google Scholar]
  20. Berg T, Rountree CB, Lee L, Estrada J, Sala FG et al. 2007. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via β-catenin activation. Hepatology 46:1187–97
    [Google Scholar]
  21. Blaner WS, O'Byrne SM, Wongsiriroj N, Kluwe J, D'Ambrosio DM et al. 2009. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim. Biophys. Acta 1791:467–73
    [Google Scholar]
  22. Blomhoff R, Rasmussen M, Nilsson A, Norum KR, Berg T et al. 1985. Hepatic retinol metabolism: distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells. J. Biol. Chem. 260:13560–65
    [Google Scholar]
  23. Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R 2004. Inhibitory effect of soluble PDGF-β receptor in culture-activated hepatic stellate cells. Biochem. Biophys. Res. Commun. 317:451–62
    [Google Scholar]
  24. Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S 2006. TGF-β/Smad signaling in the injured liver. Z. Gastroenterol. 44:57–66
    [Google Scholar]
  25. Breitkopf K, Roeyen C, Sawitza I, Wickert L, Floege J, Gressner AM 2005. Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors alpha and beta in activated rat hepatic stellate cells (HSC). Cytokine 31:349–57
    [Google Scholar]
  26. Buchholz M, Kestler HA, Holzmann K, Ellenrieder V, Schneiderhan W et al. 2005. Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype. J. Mol. Med. 83:795–805
    [Google Scholar]
  27. Cascio S, Zaret KS 1991. Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver formation. Development 113:217–25
    [Google Scholar]
  28. Cassiman D, Barlow A, Vander Borght S, Libbrecht L, Pachnis V 2006. Hepatic stellate cells do not derive from the neural crest. J. Hepatol. 44:1098–104
    [Google Scholar]
  29. Chakraborty JB, Mann DA 2010. NF-κB signalling: embracing complexity to achieve translation. J. Hepatol. 52:285–91
    [Google Scholar]
  30. Chang J, Hisamatsu T, Shimamura K, Yoneno K, Adachi M et al. 2013. Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol. Res. 43:658–69
    [Google Scholar]
  31. Chen CH, Kuo LM, Chang Y, Wu W, Goldbach C et al. 2006. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 44:1171–81
    [Google Scholar]
  32. Chen W, Gendrault JL, Steffan AM, Jeandidier E, Kirn A 1989. Isolation, culture and main characteristics of mouse fat-storing cells: interaction with viruses. Hepatology 9:352–62
    [Google Scholar]
  33. Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V et al. 2016. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat. Commun. 7:12630
    [Google Scholar]
  34. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H et al. 2015. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17:816–26
    [Google Scholar]
  35. Coulouarn C, Corlu A, Glaise D, Guenon I, Thorgeirsson SS, Clement B 2012. Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res 72:2533–42
    [Google Scholar]
  36. De Bleser PJ, Niki T, Rogiers V, Geerts A 1997. Transforming growth factor-β gene expression in normal and fibrotic rat liver. J. Hepatol. 26:886–93
    [Google Scholar]
  37. de Leeuw AM, McCarthy SP, Geerts A, Knook DL 1984. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 4:392–403
    [Google Scholar]
  38. Delgado I, Carrasco M, Cano E, Carmona R, Garcia-Carbonero R et al. 2014. GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 59:2358–70
    [Google Scholar]
  39. Ding N, Hah N, Yu RT, Sherman MH, Benner C et al. 2015. BRD4 is a novel therapeutic target for liver fibrosis. PNAS 112:15713–18
    [Google Scholar]
  40. Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C et al. 2013. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153:601–13
    [Google Scholar]
  41. Douarin NM 1975. An experimental analysis of liver development. Med. Biol. 53:427–55
    [Google Scholar]
  42. Duran A, Hernandez ED, Reina-Campos M, Castilla EA, Subramaniam S et al. 2016. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 30:595–609
    [Google Scholar]
  43. Duvillie B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R 2006. The mesenchyme controls the timing of pancreatic β-cell differentiation. Diabetes 55:582–89
    [Google Scholar]
  44. Engel ME, McDonnell MA, Law BK, Moses HL 1999. Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J. Biol. Chem. 274:37413–20
    [Google Scholar]
  45. Enzan H, Himeno H, Hiroi M, Kiyoku H, Saibara T, Onishi S 1997. Development of hepatic sinusoidal structure with special reference to the Ito cells. Microsc. Res. Tech. 39:336–49
    [Google Scholar]
  46. Evans RM, Mangelsdorf DJ 2014. Nuclear receptors, RXR, and the Big Bang. Cell 157:255–66
    [Google Scholar]
  47. Fan J, Shen H, Sun Y, Li P, Burczynski F et al. 2006. Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smad1 and ERK1/2 in rat hepatic stellate cells. J. Cell. Physiol. 207:499–505
    [Google Scholar]
  48. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A et al. 2013. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. PNAS 110:20212–17
    [Google Scholar]
  49. Fitzner B, Muller S, Walther M, Fischer M, Engelmann R et al. 2012. Senescence determines the fate of activated rat pancreatic stellate cells. J. Cell. Mol. Med. 16:2620–30
    [Google Scholar]
  50. Friedman SL 2000. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 275:2247–50
    [Google Scholar]
  51. Friedman SL 2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88:125–72
    [Google Scholar]
  52. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP et al. 2018. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 67:1754–67
    [Google Scholar]
  53. Friedman SL, Rockey DC, McGuire RF, Maher JJ, Boyles JK, Yamasaki G 1992. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology 15:234–43
    [Google Scholar]
  54. Froeling FE, Feig C, Chelala C, Dobson R, Mein CE et al. 2011. Retinoic acid–induced pancreatic stellate cell quiescence reduces paracrine Wnt–β-catenin signaling to slow tumor progression. Gastroenterology 141:1486–97.e1–14
    [Google Scholar]
  55. Fukuda-Taira S 1981. Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. J. Embryol. Exp. Morphol. 63:111–25
    [Google Scholar]
  56. Gabele E, Muhlbauer M, Dorn C, Weiss TS, Froh M et al. 2008. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun. 376:271–76
    [Google Scholar]
  57. Gard AL, White FP, Dutton GR 1985. Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J. Neuroimmunol. 8:359–75
    [Google Scholar]
  58. Geerts A 2001. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 21:311–35
    [Google Scholar]
  59. Geerts A, Vrijsen R, Rauterberg J, Burt A, Schellinck P, Wisse E 1989. In vitro differentiation of fat-storing cells parallels marked increase of collagen synthesis and secretion. J. Hepatol. 9:59–68
    [Google Scholar]
  60. Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT 1996. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 122:439–47
    [Google Scholar]
  61. Golosow N, Grobstein C 1962. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev. Biol. 4:242–55
    [Google Scholar]
  62. Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S et al. 2014. Angiotensin-II type 1 receptor–mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 60:334–48
    [Google Scholar]
  63. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS 1996. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10:1670–82
    [Google Scholar]
  64. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J et al. 1999. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J. Biol. Chem. 274:27161–67
    [Google Scholar]
  65. Hazra S, Xiong S, Wang J, Rippe RA, Krishna V et al. 2004. Peroxisome proliferator–activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J. Biol. Chem. 279:11392–401
    [Google Scholar]
  66. Hellerbrand C, Jobin C, Iimuro Y, Licato L, Sartor RB, Brenner DA 1998. Inhibition of NFκB in activated rat hepatic stellate cells by proteasome inhibitors and an IκB super-repressor. Hepatology 27:1285–95
    [Google Scholar]
  67. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA 1999. The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. J. Hepatol. 30:77–87
    [Google Scholar]
  68. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD et al. 2013. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19:1617–24
    [Google Scholar]
  69. Hernandez-Gea V, Hilscher M, Rozenfeld R, Lim MP, Nieto N et al. 2013. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J. Hepatol. 59:98–104
    [Google Scholar]
  70. Hingorani SR, Zheng L, Bullock AJ, Seery TE, Harris WP et al. 2018. HALO 202: randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. J. Clin. Oncol. 36:359–66
    [Google Scholar]
  71. Hisamori S, Tabata C, Kadokawa Y, Okoshi K, Tabata R et al. 2008. All-trans-retinoic acid ameliorates carbon tetrachloride–induced liver fibrosis in mice through modulating cytokine production. Liver Int 28:1217–25
    [Google Scholar]
  72. Houssaint E 1980. Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ 9:269–79
    [Google Scholar]
  73. Ijpenberg A, Perez-Pomares JM, Guadix JA, Carmona R, Portillo-Sanchez V et al. 2007. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev. Biol. 312:157–70
    [Google Scholar]
  74. Imai S, Okuno M, Moriwaki H, Muto Y, Murakami K et al. 1997. 9,13-di-cis-Retinoic acid induces the production of tPA and activation of latent TGF-β via RARα in a human liver stellate cell line, LI90. FEBS Lett 411:102–6
    [Google Scholar]
  75. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M et al. 1998. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Investig. 102:538–49
    [Google Scholar]
  76. Ito T, Nemoto M 1952. [Kupffer's cells and fat storing cells in the capillary wall of human liver]. Okajimas Folia Anat. Jpn. 24:243–58
    [Google Scholar]
  77. Iwaisako K, Haimerl M, Paik YH, Taura K, Kodama Y et al. 2012. Protection from liver fibrosis by a peroxisome proliferator–activated receptor delta agonist. PNAS 109:E1369–76
    [Google Scholar]
  78. Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ et al. 2014. Origin of myofibroblasts in the fibrotic liver in mice. PNAS 111:E3297–305
    [Google Scholar]
  79. Jaster R, Sparmann G, Emmrich J, Liebe S 2002. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut 51:579–84
    [Google Scholar]
  80. Jiang JX, Venugopal S, Serizawa N, Chen X, Scott F et al. 2010. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo. Gastroenterology 139:1375–84
    [Google Scholar]
  81. Kalluri R 2016. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16:582–98
    [Google Scholar]
  82. Karki S, Surolia R, Hock TD, Guroji P, Zolak JS et al. 2014. Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. FASEB J 28:1122–31
    [Google Scholar]
  83. Kent G, Gay S, Inouye T, Bahu R, Minick OT, Popper H 1976. Vitamin A–containing lipocytes and formation of type III collagen in liver injury. PNAS 73:3719–22
    [Google Scholar]
  84. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C et al. 2012. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. PNAS 109:9448–53
    [Google Scholar]
  85. Klieser E, Swierczynski S, Mayr C, Jager T, Schmidt J et al. 2016. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: an up to date review. World J. Gastrointest. Pathophysiol. 7:199–210
    [Google Scholar]
  86. Kocabayoglu P, Lade A, Lee YA, Dragomir AC, Sun X et al. 2015. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J. Hepatol. 63:141–47
    [Google Scholar]
  87. Kocabayoglu P, Zhang DY, Kojima K, Hoshida Y, Friedman SL 2016. Induction and contribution of beta platelet-derived growth factor signalling by hepatic stellate cells to liver regeneration after partial hepatectomy in mice. Liver Int 36:874–82
    [Google Scholar]
  88. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J et al. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–67
    [Google Scholar]
  89. Kuno A, Yamada T, Masuda K, Ogawa K, Sogawa M et al. 2003. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology 124:1010–19
    [Google Scholar]
  90. Lan T, Kisseleva T, Brenner DA 2015. Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLOS ONE 10:e0129743
    [Google Scholar]
  91. Landsman L, Nijagal A, Whitchurch TJ, Vanderlaan RL, Zimmer WE et al. 2011. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLOS Biol 9:e1001143
    [Google Scholar]
  92. Le Douarin N 1968. Synthesis of glycogen in hepatocytes undergoing differentiation: role of homologous and heterologous mesenchyma. Dev. Biol. 17:101–14
    [Google Scholar]
  93. Lee JJ, Perera RM, Wang H, Wu DC, Liu XS et al. 2014. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. PNAS 111:E3091–100
    [Google Scholar]
  94. Lefebvre E, Moyle G, Reshef R, Richman LP, Thompson M et al. 2016. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLOS ONE 11:e0158156
    [Google Scholar]
  95. Li Y, Wang J, Asahina K 2013. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial-mesenchymal transition in liver injury. PNAS 110:2324–29
    [Google Scholar]
  96. Liu SB, Ikenaga N, Peng ZW, Sverdlov DY, Greenstein A et al. 2016. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J 30:1599–609
    [Google Scholar]
  97. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF et al. 2013. Non-cell-autonomous tumor suppression by p53. Cell 153:449–60
    [Google Scholar]
  98. Mace TA, Ameen Z, Collins A, Wojcik S, Mair M et al. 2013. Pancreatic cancer–associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73:3007–18
    [Google Scholar]
  99. Maher JJ, Bissell DM, Friedman SL, Roll FJ 1988. Collagen measured in primary cultures of normal rat hepatocytes derives from lipocytes within the monolayer. J. Clin. Investig. 82:450–59
    [Google Scholar]
  100. Maher JJ, Lozier JS, Scott MK 1998. Rat hepatic stellate cells produce cytokine-induced neutrophil chemoattractant in culture and in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 275:G847–53
    [Google Scholar]
  101. Maher JJ, McGuire RF 1990. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J. Clin. Investig. 86:1641–48
    [Google Scholar]
  102. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–39
    [Google Scholar]
  103. Mann DA, Smart DE 2002. Transcriptional regulation of hepatic stellate cell activation. Gut 50:891–96
    [Google Scholar]
  104. Marra F, Valente AJ, Pinzani M, Abboud HE 1993. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J. Clin. Investig. 92:1674–80
    [Google Scholar]
  105. Marsden ER, Hu Z, Fujio K, Nakatsukasa H, Thorgeirsson SS, Evarts RP 1992. Expression of acidic fibroblast growth factor in regenerating liver and during hepatic differentiation. Lab. Investig. 67:427–33
    [Google Scholar]
  106. Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS et al. 2016. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 7:12502
    [Google Scholar]
  107. Masamune A, Kikuta K, Satoh M, Sakai Y, Satoh A, Shimosegawa T 2002. Ligands of peroxisome proliferator–activated receptor-γ block activation of pancreatic stellate cells. J. Biol. Chem. 277:141–47
    [Google Scholar]
  108. Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M et al. 2009.a Fibrinogen induces cytokine and collagen production in pancreatic stellate cells. Gut 58:550–59
    [Google Scholar]
  109. Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T 2005. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells. World J. Gastroenterol. 11:6144–51
    [Google Scholar]
  110. Masamune A, Watanabe T, Kikuta K, Satoh K, Shimosegawa T 2008. NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G99–108
    [Google Scholar]
  111. Masamune A, Watanabe T, Kikuta K, Shimosegawa T 2009.b Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin. Gastroenterol. Hepatol. 7:S48–54
    [Google Scholar]
  112. McGee JO, Patrick RS 1972.a The role of perisinusoidal cells in experimental hepatic fibrogenesis. J. Pathol. 106:Pvi
    [Google Scholar]
  113. McGee JO, Patrick RS 1972.b The role of perisinusoidal cells in hepatic fibrogenesis. An electron microscopic study of acute carbon tetrachloride liver injury. Lab. Investig. 26:429–40
    [Google Scholar]
  114. McQualter JL, McCarty RC, Van der Velden J, O'Donoghue RJ, Asselin-Labat ML et al. 2013. TGF-β signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in the adult lung. Stem Cell Res 11:1222–33
    [Google Scholar]
  115. Mederacke I, Dapito DH, Affo S, Uchinami H, Schwabe RF 2015. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat. Protoc. 10:305–15
    [Google Scholar]
  116. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X et al. 2013. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4:2823
    [Google Scholar]
  117. Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G et al. 2013. Smoothened is a master regulator of adult liver repair. J. Clin. Investig. 123:2380–94
    [Google Scholar]
  118. Miralles F, Czernichow P, Scharfmann R 1998. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125:1017–24
    [Google Scholar]
  119. Miyata E, Masuya M, Yoshida S, Nakamura S, Kato K et al. 2008. Hematopoietic origin of hepatic stellate cells in the adult liver. Blood 111:2427–35
    [Google Scholar]
  120. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL et al. 1999. A mechanism for regulating pulmonary inflammation and fibrosis: The integrin αvβ6 binds and activates latent TGF β1. Cell 96:319–28
    [Google Scholar]
  121. Neesse A, Algul H, Tuveson DA, Gress TM 2015. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64:1476–84
    [Google Scholar]
  122. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML et al. 2015. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–65
    [Google Scholar]
  123. Oakley F, Meso M, Iredale JP, Green K, Marek CJ et al. 2005. Inhibition of inhibitor of κB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 128:108–20
    [Google Scholar]
  124. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS et al. 2017. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214:579–96
    [Google Scholar]
  125. Ohnishi H, Miyata T, Yasuda H, Satoh Y, Hanatsuka K et al. 2004. Distinct roles of Smad2-, Smad3-, and ERK-dependent pathways in transforming growth factor-β1 regulation of pancreatic stellate cellular functions. J. Biol. Chem. 279:8873–78
    [Google Scholar]
  126. Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH et al. 2001. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J. Clin. Investig. 108:1369–78
    [Google Scholar]
  127. Omary MB, Lugea A, Lowe AW, Pandol SJ 2007. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J. Clin. Investig. 117:50–59
    [Google Scholar]
  128. Omenetti A, Choi S, Michelotti G, Diehl AM 2011. Hedgehog signaling in the liver. J. Hepatol. 54:366–73
    [Google Scholar]
  129. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC et al. 2014. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–34
    [Google Scholar]
  130. Patel MB, Pothula SP, Xu Z, Lee AK, Goldstein D et al. 2014. The role of the hepatocyte growth factor/c-MET pathway in pancreatic stellate cell–endothelial cell interactions: antiangiogenic implications in pancreatic cancer. Carcinogenesis 35:1891–900
    [Google Scholar]
  131. Phillips PA, McCarroll JA, Park S, Wu MJ, Pirola R et al. 2003. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 52:275–82
    [Google Scholar]
  132. Pinzani M, Abboud HE, Gesualdo L, Abboud SL 1992. Regulation of macrophage colony-stimulating factor in liver fat-storing cells by peptide growth factors. Am. J. Physiol. Cell Physiol. 262:C876–81
    [Google Scholar]
  133. Pinzani M, Gesualdo L, Sabbah GM, Abboud HE 1989. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat–storing cells. J. Clin. Investig. 84:1786–93
    [Google Scholar]
  134. Pinzani M, Milani S, Grappone C, Weber FL Jr., Gentilini P, Abboud HE 1994. Expression of platelet-derived growth factor in a model of acute liver injury. Hepatology 19:701–7
    [Google Scholar]
  135. Pinzani M, Milani S, Herbst H, DeFranco R, Grappone C et al. 1996. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am. J. Pathol. 148:785–800
    [Google Scholar]
  136. Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV 2016. Key role of pancreatic stellate cells in pancreatic cancer. Cancer Lett 381:194–200
    [Google Scholar]
  137. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR 2012. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–29
    [Google Scholar]
  138. Puche JE, Saiman Y, Friedman SL 2013. Hepatic stellate cells and liver fibrosis. Compr. Physiol. 3:1473–92
    [Google Scholar]
  139. Ramadori G, Rieder H, Knittel T, Dienes HP, Meyer zum Buschenfelde KH 1987. Fat storing cells (FSC) of rat liver synthesize and secrete fibronectin. Comparison with hepatocytes. J. Hepatol. 4:190–97
    [Google Scholar]
  140. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P et al. 2016. Elafibranor, an agonist of the peroxisome proliferator–activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150:1147–59.e5
    [Google Scholar]
  141. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF et al. 2014. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–47
    [Google Scholar]
  142. Riopel MM, Li J, Liu S, Leask A, Wang R 2013. β1 integrin–extracellular matrix interactions are essential for maintaining exocrine pancreas architecture and function. Lab. Investig. 93:31–40
    [Google Scholar]
  143. Robinson BK, Cortes E, Rice AJ, Sarper M, Del Rio Hernandez A 2016. Quantitative analysis of 3D extracellular matrix remodelling by pancreatic stellate cells. Biol. Open 5:875–82
    [Google Scholar]
  144. Rockey DC, Housset CN, Friedman SL 1993. Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo. J. Clin. Investig. 92:1795–804
    [Google Scholar]
  145. Rojas A, De Val S, Heidt AB, Xu SM, Bristow J, Black BL 2005. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development 132:3405–17
    [Google Scholar]
  146. Rossi JM, Dunn NR, Hogan BL, Zaret KS 2001. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15:1998–2009
    [Google Scholar]
  147. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A et al. 2006. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130:1807–21
    [Google Scholar]
  148. Saison-Ridinger M, DelGiorno KE, Zhang T, Kraus A, French R et al. 2017. Reprogramming pancreatic stellate cells via p53 activation: a putative target for pancreatic cancer therapy. PLOS ONE 12:e0189051
    [Google Scholar]
  149. Santamato A, Fransvea E, Dituri F, Caligiuri A, Quaranta M et al. 2011. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin. Sci. 121:159–68
    [Google Scholar]
  150. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM et al. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362:1675–85
    [Google Scholar]
  151. Saxena NK, Anania FA 2015. Adipocytokines and hepatic fibrosis. Trends Endocrinol. Metab. 26:153–61
    [Google Scholar]
  152. Scarlett CJ, Colvin EK, Pinese M, Chang DK, Morey AL et al. 2011. Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. PLOS ONE 6:e26088
    [Google Scholar]
  153. Schafer S, Zerbe O, Gressner AM 1987. The synthesis of proteoglycans in fat-storing cells of rat liver. Hepatology 7:680–87
    [Google Scholar]
  154. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W et al. 1995. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373:699–702
    [Google Scholar]
  155. Schwabe RF, Schnabl B, Kweon YO, Brenner DA 2001. CD40 activates NF-κB and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J. Immunol. 166:6812–19
    [Google Scholar]
  156. Sekhon SS, Tan X, Micsenyi A, Bowen WC, Monga SP 2004. Fibroblast growth factor enriches the embryonic liver cultures for hepatic progenitors. Am. J. Pathol. 164:2229–40
    [Google Scholar]
  157. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y et al. 2007. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13:1324–32
    [Google Scholar]
  158. Shannon JM 1994. Induction of alveolar type II cell differentiation in fetal tracheal epithelium by grafted distal lung mesenchyme. Dev. Biol. 166:600–14
    [Google Scholar]
  159. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR et al. 2014. Vitamin D receptor–mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159:80–93
    [Google Scholar]
  160. Sherman MH, Yu RT, Tseng TW, Sousa CM, Liu S et al. 2017. Stromal cues regulate the pancreatic cancer epigenome and metabolome. PNAS 114:1129–34
    [Google Scholar]
  161. Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F et al. 2007. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134:2041–50
    [Google Scholar]
  162. Shinozaki S, Ohnishi H, Hama K, Kita H, Yamamoto H et al. 2008. Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane. J. Cell. Physiol. 216:38–46
    [Google Scholar]
  163. Simon-Assmann P, Bouziges F, Arnold C, Haffen K, Kedinger M 1988. Epithelial-mesenchymal interactions in the production of basement membrane components in the gut. Development 102:339–47
    [Google Scholar]
  164. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479–83
    [Google Scholar]
  165. Sparmann G, Kruse ML, Hofmeister-Mielke N, Koczan D, Jaster R et al. 2010. Bone marrow–derived pancreatic stellate cells in rats. Cell Res 20:288–98
    [Google Scholar]
  166. Sun J, Kong J, Duan Y, Szeto FL, Liao A et al. 2006. Increased NF-κB activity in fibroblasts lacking the vitamin D receptor. Am. J. Physiol. Endocrinol. Metab. 291:E315–22
    [Google Scholar]
  167. Taderera JV 1967. Control of lung differentiation in vitro. Dev. Biol. 16:489–512
    [Google Scholar]
  168. Taura K, De Minicis S, Seki E, Hatano E, Iwaisako K et al. 2008. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135:1729–38
    [Google Scholar]
  169. Teratani T, Tomita K, Suzuki T, Oshikawa T, Yokoyama H et al. 2012. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142:152–64.e10
    [Google Scholar]
  170. Tian W, Hao C, Fan Z, Weng X, Qin H et al. 2015. Myocardin related transcription factor A programs epigenetic activation of hepatic stellate cells. J. Hepatol. 62:165–74
    [Google Scholar]
  171. Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H et al. 2014. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59:154–69
    [Google Scholar]
  172. Tran-Thi TA, Kawada N, Decker K 1993. Regulation of endothelin-1 action on the perfused rat liver. FEBS Lett 318:353–57
    [Google Scholar]
  173. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X et al. 2012. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143:1073–83.e22
    [Google Scholar]
  174. Tsuchida T, Friedman SL 2017. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14:397–411
    [Google Scholar]
  175. Verbeke L, Mannaerts I, Schierwagen R, Govaere O, Klein S et al. 2016. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep. 6:33453
    [Google Scholar]
  176. Villasenor A, Chong DC, Henkemeyer M, Cleaver O 2010. Epithelial dynamics of pancreatic branching morphogenesis. Development 137:4295–305
    [Google Scholar]
  177. Volckaert T, De Langhe SP 2015. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev. Dyn. 244:342–66
    [Google Scholar]
  178. Vonlaufen A, Phillips PA, Xu Z, Zhang X, Yang L et al. 2011. Withdrawal of alcohol promotes regression while continued alcohol intake promotes persistence of LPS-induced pancreatic injury in alcohol-fed rats. Gut 60:238–46
    [Google Scholar]
  179. Vrochides D, Papanikolaou V, Pertoft H, Antoniades AA, Heldin P 1996. Biosynthesis and degradation of hyaluronan by nonparenchymal liver cells during liver regeneration. Hepatology 23:1650–55
    [Google Scholar]
  180. Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M et al. 2016. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov 6:886–99
    [Google Scholar]
  181. Wake K 1971. “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am. J. Anat. 132:429–62
    [Google Scholar]
  182. Wake K 1980. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A–storing cells in extrahepatic organs. Int. Rev. Cytol. 66:303–53
    [Google Scholar]
  183. Watanabe T, Masamune A, Kikuta K, Hirota M, Kume K et al. 2009. Bone marrow contributes to the population of pancreatic stellate cells in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 297:G1138–46
    [Google Scholar]
  184. Watt AJ, Zhao R, Li J, Duncan SA 2007. Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev. Biol. 7:37
    [Google Scholar]
  185. Wells JM, Melton DA 2000. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127:1563–72
    [Google Scholar]
  186. Wessells NK 1970. Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. J. Exp. Zool. 175:455–66
    [Google Scholar]
  187. Williams EJ, Gaca MD, Brigstock DR, Arthur MJ, Benyon RC 2000. Increased expression of connective tissue growth factor in fibrotic human liver and in activated hepatic stellate cells. J. Hepatol. 32:754–61
    [Google Scholar]
  188. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C et al. 2003. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348:403–13
    [Google Scholar]
  189. Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyazaki A et al. 1984. Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology 4:709–14
    [Google Scholar]
  190. Yu MC, Chen CH, Liang X, Wang L, Gandhi CR et al. 2004. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 40:1312–21
    [Google Scholar]
  191. Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R et al. 2015. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J. Exp. Med. 212:2077–94
    [Google Scholar]
  192. Zhang X, Cui Y, Fang L, Li F 2008. Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats. Pancreas 37:e31–38
    [Google Scholar]
  193. Zhao W, Zhang L, Yin Z, Su W, Ren G et al. 2011. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int. J. Cancer 129:2651–61
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062855
Loading
/content/journals/10.1146/annurev-cellbio-100617-062855
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error