1932

Abstract

Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.

Associated Article

There are media items related to this article:
The Hepatitis B Virus Receptor: Supplemental Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100814-125241
2015-11-13
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/31/1/annurev-cellbio-100814-125241.html?itemId=/content/journals/10.1146/annurev-cellbio-100814-125241&mimeType=html&fmt=ahah

Literature Cited

  1. Abou-Jaoude G, Sureau C. 2007. Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J. Virol. 81:13057–66 [Google Scholar]
  2. Anwer MS, Stieger B. 2014. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflügers Arch. 466:77–89 [Google Scholar]
  3. Barrera A, Guerra B, Lee H, Lanford RE. 2004. Analysis of host range phenotypes of primate hepadnaviruses by in vitro infections of hepatitis D virus pseudotypes. J. Virol. 78:5233–43 [Google Scholar]
  4. Barrera A, Guerra B, Notvall L, Lanford RE. 2005. Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition. J. Virol. 79:9786–98 [Google Scholar]
  5. Beasley RP, Hwang LY, Lin CC, Chien CS. 1981. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet 2:1129–33 [Google Scholar]
  6. Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J. et al. 2013. Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid–induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57:1394–406 [Google Scholar]
  7. Benhenda S, Ducroux A, Riviere L, Sobhian B, Ward MD. et al. 2013. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J. Virol. 87:4360–71 [Google Scholar]
  8. Berquist KR, Peterson JM, Murphy BL, Ebert JW, Maynard JE, Purcell RH. 1975. Hepatitis B antigens in serum and liver of chimpanzees acutely infected with hepatitis B virus. Infect. Immun. 12:602–5 [Google Scholar]
  9. Bijsmans IT, Bouwmeester RA, Geyer J, Faber KN, van de Graaf SF. 2012. Homo- and hetero-dimeric architecture of the human liver Na+-dependent taurocholate co-transporting protein. Biochem. J. 441:1007–15 [Google Scholar]
  10. Blanchet M, Sureau C. 2007. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J. Virol. 81:5841–49 [Google Scholar]
  11. Blanchet M, Sureau C, Labonte P. 2014. Use of FDA approved therapeutics with hNTCP metabolic inhibitory properties to impair the HDV lifecycle. Antivir. Res. 106:111–15 [Google Scholar]
  12. Block TM, Gish R, Guo H, Mehta A, Cuconati A. et al. 2013. Chronic hepatitis B: What should be the goal for new therapies?. Antivir. Res. 98:27–34 [Google Scholar]
  13. Boyer JL, Hagenbuch B, Ananthanarayanan M, Suchy F, Stieger B, Meier PJ. 1993. Phylogenic and ontogenic expression of hepatocellular bile acid transport. PNAS 90:435–38 [Google Scholar]
  14. Bremer CM, Bung C, Kott N, Hardt M, Glebe D. 2009. Hepatitis B virus infection is dependent on cholesterol in the viral envelope. Cell. Microbiol. 11:249–60 [Google Scholar]
  15. Burns GS, Thompson AJ. 2014. Viral hepatitis B: clinical and epidemiological characteristics. Cold Spring Harb. Perspect. Med. 4:a024935 [Google Scholar]
  16. Chen CJ, Yang HI, Su J, Jen CL, You SL. et al. 2006. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295:65–73 [Google Scholar]
  17. Chen HL, Chen HL, Liu YJ, Feng CH, Wu CY. et al. 2005. Developmental expression of canalicular transporter genes in human liver. J. Hepatol. 43:472–77 [Google Scholar]
  18. Chen PJ, Kalpana G, Goldberg J, Mason W, Werner B. et al. 1986. Structure and replication of the genome of the hepatitis delta virus. PNAS 83:8774–78 [Google Scholar]
  19. Chisari FV, Isogawa M, Wieland SF. 2010. Pathogenesis of hepatitis B virus infection. Pathol. Biol. 58:258–66 [Google Scholar]
  20. Chouteau P, Le Seyec J, Cannie I, Nassal M, Guguen-Guillouzo C, Gripon P. 2001. A short N-proximal region in the large envelope protein harbors a determinant that contributes to the species specificity of human hepatitis B virus. J. Virol. 75:11565–72 [Google Scholar]
  21. Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC. et al. 1998. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am. J. Physiol. 274:G157–69 [Google Scholar]
  22. Cui X, Guo JT, Hu J. 2015. Hepatitis B virus covalently closed circular DNA formation in immortalized mouse hepatocytes associated with nucleocapsid destabilization. J. Virol. 899021–28
  23. Curtil C, Enache LS, Radreau P, Dron AG, Scholtes C. et al. 2014. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription. FASEB J. 28:1454–63 [Google Scholar]
  24. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. 2013. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17:657–69 [Google Scholar]
  25. Dickens C, Kew MC, Purcell RH, Kramvis A. 2013. Occult hepatitis B virus infection in chacma baboons, South Africa. Emerg. Infect. Dis. 19:598–605 [Google Scholar]
  26. Dong Z, Ekins S, Polli JE. 2014. Quantitative NTCP pharmacophore and lack of association between DILI and NTCP Inhibition. Eur. J. Pharm. Sci. 66C:1–9 [Google Scholar]
  27. Dorobantu C, Macovei A, Lazar C, Dwek RA, Zitzmann N, Branza-Nichita N. 2011. Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein. J. Virol. 85:13373–83 [Google Scholar]
  28. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 [Google Scholar]
  29. Drexler JF, Geipel A, Konig A, Corman VM, van Riel D. et al. 2013. Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. PNAS 110:16151–56 [Google Scholar]
  30. Dupinay T, Gheit T, Roques P, Cova L, Chevallier-Queyron P. et al. 2013. Discovery of naturally occurring transmissible chronic hepatitis B virus infection among Macaca fascicularis from Mauritius Island. Hepatology 58:1610–20 [Google Scholar]
  31. Engelke M, Mills K, Seitz S, Simon P, Gripon P. et al. 2006. Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 43:750–60 [Google Scholar]
  32. Everson GT, Polokoff MA. 1986. HepG2. A human hepatoblastoma cell line exhibiting defects in bile acid synthesis and conjugation. J. Biol. Chem. 261:2197–201 [Google Scholar]
  33. Galle PR, Hagelstein J, Kommerell B, Volkmann M, Schranz P, Zentgraf H. 1994. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology 106:664–73 [Google Scholar]
  34. Ganem D, Prince AM. 2004. Hepatitis B virus infection—natural history and clinical consequences. N. Engl. J. Med. 350:1118–29 [Google Scholar]
  35. Geier A, Wagner M, Dietrich CG, Trauner M. 2007. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim. Biophys. Acta 1773:283–308 [Google Scholar]
  36. Gerlich WH. 2013. Medical virology of hepatitis B: how it began and where we are now. Virol. J. 10:239 [Google Scholar]
  37. Geyer J, Döring B, Meerkamp K, Ugele B, Bakhiya N. et al. 2007. Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J. Biol. Chem. 282:19728–41 [Google Scholar]
  38. Geyer J, Wilke T, Petzinger E. 2006. The solute carrier family SLC10: More than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn-Schmiedeberg's Arch. Pharmacol. 372:413–31 [Google Scholar]
  39. Gish RG, Given BD, Lai CL, Locarnini SA, Lau JY. et al. 2015. Chronic hepatitis B: virology, natural history, current management and a glimpse at future opportunities. Antivir. Res. 121:47–58 [Google Scholar]
  40. Glebe D, Aliakbari M, Krass P, Knoop EV, Valerius KP, Gerlich WH. 2003. Pre-S1 antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus. J. Virol. 77:9511–21 [Google Scholar]
  41. Glebe D, Urban S. 2007. Viral and cellular determinants involved in hepadnaviral entry. World J. Gastroenterol. 13:22–38 [Google Scholar]
  42. Glebe D, Urban S, Knoop EV, Cag N, Krass P. et al. 2005. Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes. Gastroenterology 129:234–45 [Google Scholar]
  43. Gripon P, Cannie I, Urban S. 2005. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J. Virol. 79:1613–22 [Google Scholar]
  44. Gripon P, Diot C, Theze N, Fourel I, Loreal O. et al. 1988. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J. Virol. 62:4136–43 [Google Scholar]
  45. Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C. 1995. Myristoylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 213:292–99 [Google Scholar]
  46. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D. et al. 2002. Infection of a human hepatoma cell line by hepatitis B virus. PNAS 99:15655–60 [Google Scholar]
  47. Guidotti LG, Matzke B, Schaller H, Chisari FV. 1995. High-level hepatitis B virus replication in transgenic mice. J. Virol. 69:6158–69 [Google Scholar]
  48. Hagenbuch B, Meier PJ. 1994. Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J. Clin. Investig. 93:1326–31 [Google Scholar]
  49. Hallen S, Mareninova O, Branden M, Sachs G. 2002. Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 41:7253–66 [Google Scholar]
  50. Hardikar W, Ananthanarayanan M, Suchy FJ. 1995. Differential ontogenic regulation of basolateral and canalicular bile acid transport proteins in rat liver. J. Biol. Chem. 270:20841–46 [Google Scholar]
  51. Harrison SC 2015. Viral membrane fusion. Virology 479–80:498–507 [Google Scholar]
  52. He B, Fan Q, Yang F, Hu T, Qiu W. et al. 2013. Hepatitis virus in long-fingered bats, Myanmar. Emerg. Infect. Dis. 19:638–40 [Google Scholar]
  53. He W, Ren B, Mao F, Jing Z, Li Y. et al. 2015. Hepatitis D virus infection of mice expressing human sodium taurocholate co-transporting polypeptide. PLOS Pathog. 11:4e1004840 [Google Scholar]
  54. Heidrich B, Manns MP, Wedemeyer H. 2013. Treatment options for hepatitis delta virus infection. Curr. Infect. Dis. Rep. 15:31–38 [Google Scholar]
  55. Hofmann AF, Hagey LR. 2014. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55:1553–95 [Google Scholar]
  56. Hofmann AF, Hagey LR, Krasowski MD. 2010. Bile salts of vertebrates: structural variation and possible evolutionary significance. J. Lipid Res. 51:226–46 [Google Scholar]
  57. Hoh A, Heeg M, Ni Y, Schuch A, Binder B. et al. 2015. Hepatitis B virus-infected HepG2hNTCP cells serve as a novel immunological tool to analyze the antiviral efficacy of CD8+ T cells in vitro. J. Virol. 89:7433–38 [Google Scholar]
  58. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  59. Hu NJ, Iwata S, Cameron AD, Drew D. 2011. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478:408–11 [Google Scholar]
  60. Huang HC, Chen CC, Chang WC, Tao MH, Huang C. 2012. Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J. Virol. 86:9443–53 [Google Scholar]
  61. Iwamoto M, Watashi K, Tsukuda S, Aly HH, Fukasawa M. et al. 2014. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem. Biophys. Res. Commun. 443:808–13 [Google Scholar]
  62. Jinjuvadia R, Liangpunsakul S. 2014. Association between metabolic syndrome and its individual components with viral hepatitis B. Am. J. Med. Sci. 347:23–27 [Google Scholar]
  63. Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49–55 [Google Scholar]
  64. Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA. 2004. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am. J. Physiol. Gastrointest. Liver Physiol. 286:G752–61 [Google Scholar]
  65. Kim HY, Cho HK, Choi YH, Lee KS, Cheong J. 2010. Bile acids increase hepatitis B virus gene expression and inhibit interferon-α activity. FEBS J. 277:2791–802 [Google Scholar]
  66. Konig A, Doring B, Mohr C, Geipel A, Geyer J, Glebe D. 2014. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J. Hepatol. 61:867–75 [Google Scholar]
  67. Kuhlkamp T, Keitel V, Helmer A, Haussinger D, Kubitz R. 2005. Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system. Biol. Chem. 386:1065–74 [Google Scholar]
  68. Kullak-Ublick GA, Beuers U, Paumgartner G. 1996. Molecular and functional characterization of bile acid transport in human hepatoblastoma HepG2 cells. Hepatology 23:1053–60 [Google Scholar]
  69. Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U. et al. 1997. Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–305 [Google Scholar]
  70. Lai MM. 1995. The molecular biology of hepatitis delta virus. Annu. Rev. Biochem. 64:259–86 [Google Scholar]
  71. Lanford RE, Chavez D, Brasky KM, Burns RB 3rd, Rico-Hesse R. 1998. Isolation of a hepadnavirus from the woolly monkey, a New World primate. PNAS 95:5757–61 [Google Scholar]
  72. Le Duff Y, Blanchet M, Sureau C. 2009. The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J. Virol. 83:12443–51 [Google Scholar]
  73. Leistner CM, Gruen-Bernhard S, Glebe D. 2008. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell. Microbiol. 10:122–33 [Google Scholar]
  74. Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P. 1999. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J. Virol. 73:2052–57 [Google Scholar]
  75. Li H, Zhuang Q, Wang Y, Zhang T, Zhao J. et al. 2014. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell. Mol. Immunol. 11:175–83 [Google Scholar]
  76. Li N, Zhang P, Yang C, Zhu Q, Li Z. et al. 2014b. Association of genetic variation of sodium taurocholate cotransporting polypeptide with chronic hepatitis B virus infection. Genet. Test. Mol. Biomark. 18:425–29 [Google Scholar]
  77. Liang D, Hagenbuch B, Stieger B, Meier PJ. 1993. Parallel decrease of Na+-taurocholate cotransport and its encoding mRNA in primary cultures of rat hepatocytes. Hepatology 18:1162–66 [Google Scholar]
  78. Locarnini S, Littlejohn M, Aziz MN, Yuen L. 2013. Possible origins and evolution of the hepatitis B virus (HBV). Semin. Cancer Biol. 23:561–75 [Google Scholar]
  79. Lucifora J, Arzberger S, Durantel D, Belloni L, Strubin M. et al. 2011. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 55:996–1003 [Google Scholar]
  80. Lucifora J, Esser K, Protzer U. 2013. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antivir. Res. 97:195–97 [Google Scholar]
  81. Machado MV, Oliveira AG, Cortez-Pinto H. 2011. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients. J. Gastroenterol. Hepatol. 26:1361–67 [Google Scholar]
  82. Macovei A, Petrareanu C, Lazar C, Florian P, Branza-Nichita N. 2013. Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J. Virol. 87:6415–27 [Google Scholar]
  83. Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D. et al. 2010. Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J. Virol. 84:243–53 [Google Scholar]
  84. Masuda M, Ichikawa Y, Shimono K, Shimizu M, Tanaka Y. et al. 2014. Electrophysiological characterization of human Na+/taurocholate cotransporting polypeptide (hNTCP) heterologously expressed in Xenopus laevis oocytes. Arch. Biochem. Biophys. 562:115–21 [Google Scholar]
  85. Meier PJ, Stieger B. 2002. Bile salt transporters. Annu. Rev. Physiol. 64:635–61 [Google Scholar]
  86. Miyajima A, Tanaka M, Itoh T. 2014. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14:561–74 [Google Scholar]
  87. Muhlfeld S, Domanova O, Berlage T, Stross C, Helmer A. et al. 2012. Short-term feedback regulation of bile salt uptake by bile salts in rodent liver. Hepatology 56:2387–97 [Google Scholar]
  88. Mukhopadhayay S, Ananthanarayanan M, Stieger B, Meier PJ, Suchy FJ, Anwer MS. 1997. cAMP increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. Am. J. Physiol. 273:G842–48 [Google Scholar]
  89. Nassal M. 2015. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut doi: 10.1136/gutjnl-2015-309809
  90. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C. et al. 2014. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146:1070–83 [Google Scholar]
  91. Ochiya T, Tsurimoto T, Ueda K, Okubo K, Shiozawa M, Matsubara K. 1989. An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes. PNAS 86:1875–79 [Google Scholar]
  92. Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L. et al. 2014. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology 60:1483–93 [Google Scholar]
  93. Pan W, Song IS, Shin HJ, Kim MH, Choi YL. et al. 2011. Genetic polymorphisms in Na+-taurocholate co-transporting polypeptide (NTCP) and ileal apical sodium-dependent bile acid transporter (ASBT) and ethnic comparisons of functional variants of NTCP among Asian populations. Xenobiotica 41:501–10 [Google Scholar]
  94. Pang QF, Wan XB, Xu AY, Wang ZM, Wang GX. et al. 1981. Hepatitis B virus (HBV) infection in the experimental tree shrews. J. Med. Res. 9:11–12 [Google Scholar]
  95. Peng L, Zhao Q, Li Q, Li M, Li C. et al. 2014. The p.Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B. Hepatology 61:1251–60 [Google Scholar]
  96. Petersen J, Dandri M, Mier W, Lutgehetmann M, Volz T. et al. 2008. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 26:335–41 [Google Scholar]
  97. Quasdorff M, Protzer U. 2010. Control of hepatitis B virus at the level of transcription. J. Viral Hepat. 17:527–36 [Google Scholar]
  98. Raimondo G, Allain JP, Brunetto MR, Buendia MA, Chen DS. et al. 2008. Statements from the Taormina expert meeting on occult hepatitis B virus infection. J. Hepatol. 49:652–57 [Google Scholar]
  99. Ramiere C, Scholtes C, Diaz O, Icard V, Perrin-Cocon L. et al. 2008. Transactivation of the hepatitis B virus core promoter by the nuclear receptor FXRα. J. Virol. 82:10832–40 [Google Scholar]
  100. Raney AK, Eggers CM, Kline EF, Guidotti LG, Pontoglio M. et al. 2001. Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 α–null hepatitis B virus transgenic mice. J. Virol. 75:2900–11 [Google Scholar]
  101. Reese VC, Moore DD, McLachlan A. 2012. Limited effects of bile acids and small heterodimer partner on hepatitis B virus biosynthesis in vivo. J. Virol. 86:2760–68 [Google Scholar]
  102. Reese VC, Oropeza CE, McLachlan A. 2013. Independent activation of hepatitis B virus biosynthesis by retinoids, peroxisome proliferators, and bile acids. J. Virol. 87:991–97 [Google Scholar]
  103. Rippin SJ, Hagenbuch B, Meier PJ, Stieger B. 2001. Cholestatic expression pattern of sinusoidal and canalicular organic anion transport systems in primary cultured rat hepatocytes. Hepatology 33:776–82 [Google Scholar]
  104. Rizzetto M. 2015. Hepatitis D virus: introduction and epidemiology. Cold Spring Harb. Perspect. Med. 5:7a021576 [Google Scholar]
  105. Sarkar S, Bananis E, Nath S, Anwer MS, Wolkoff AW, Murray JW. 2006. PKCζ is required for microtubule-based motility of vesicles containing the NTCP transporter. Traffic 7:1078–91 [Google Scholar]
  106. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU. et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17:225–35 [Google Scholar]
  107. Schulze A, Gripon P, Urban S. 2007. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46:1759–68 [Google Scholar]
  108. Schulze A, Schieck A, Ni Y, Mier W, Urban S. 2010. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein–mediated receptor interaction. J. Virol. 84:1989–2000 [Google Scholar]
  109. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. 2015. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet doi: 10.1016/S0140-6736(15)61412-X
  110. Seeger C, Mason WS. 2015. Molecular biology of hepatitis B virus infection. Virology 479–80:672–86 [Google Scholar]
  111. Sharma S, Ellis EC, Gramignoli R, Dorko K, Tahan V. et al. 2013. Hepatobiliary disposition of 17-OHPC and taurocholate in fetal human hepatocytes: a comparison with adult human hepatocytes. Drug Metab. Dispos. 41:296–304 [Google Scholar]
  112. Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP. et al. 2014. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. PNAS 111:12193–98 [Google Scholar]
  113. Si-Tayeb K, Lemaigre FP, Duncan SA. 2010. Organogenesis and development of the liver. Dev. Cell 18:175–89 [Google Scholar]
  114. Simmonds P, Midgley S. 2005. Recombination in the genesis and evolution of hepatitis B virus genotypes. J. Virol. 79:15467–76 [Google Scholar]
  115. Simon D, Aden DP, Knowles BB. 1982. Chromosomes of human hepatoma cell lines. Int. J. Cancer 30:27–33 [Google Scholar]
  116. Slagle BL, Andrisani OM, Bouchard MJ, Lee CG, Ou JH, Siddiqui A. 2015. Technical standards for hepatitis B virus X protein (HBx) research. Hepatology 61:1416–24 [Google Scholar]
  117. Slijepcevic D, Kaufman C, Wichers CG, Gilglioni EH, Lempp FA. et al. 2015. Impaired uptake of conjugated bile acids and Hepatitis B Virus preS1-binding in Na+-taurocholate cotransporting polypeptide knockout mice. Hepatology 65:207–19 [Google Scholar]
  118. Sommerfeld A, Mayer PG, Cantore M, Häussinger D. 2015. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (NTCP) by hyperosmolarity and tauroursodeoxycholate. J. Biol. Chem. 29024237–54
  119. Stieger B. 2011. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb. Exp. Pharmacol. 2011:205–59 [Google Scholar]
  120. Stross C, Helmer A, Weissenberger K, Gorg B, Keitel V. et al. 2010. Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G320–28 [Google Scholar]
  121. Stross C, Kluge S, Weissenberger K, Winands E, Haussinger D, Kubitz R. 2013. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (NTCP). Am. J. Physiol. Gastrointest. Liver Physiol. 305:G722–30 [Google Scholar]
  122. Suk-Fong Lok A. 2015. Hepatitis B: 50 years after the discovery of Australia antigen. J. Viral Hepat. doi: 10.1111/jvh.12444
  123. Summers J, Smolec JM, Snyder R. 1978. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. PNAS 75:4533–37 [Google Scholar]
  124. Sun AQ, Arrese MA, Zeng L, Swaby I, Zhou MM, Suchy FJ. 2001. The rat liver Na+/bile acid cotransporter. Importance of the cytoplasmic tail to function and plasma membrane targeting. J. Biol. Chem. 276:6825–33 [Google Scholar]
  125. Sun E, He J, Zhuang X. 2013. Live cell imaging of viral entry. Curr. Opin. Virol. 3:34–43 [Google Scholar]
  126. Sureau C, Guerra B, Lanford RE. 1993. Role of the large hepatitis B virus envelope protein in infectivity of the hepatitis delta virion. J. Virol. 67:366–72 [Google Scholar]
  127. Sureau C, Salisse J. 2013. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus A-determinant. Hepatology 57:985–94 [Google Scholar]
  128. Tang H, McLachlan A. 2001. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. PNAS 98:1841–46 [Google Scholar]
  129. Taylor JM. 2006. Hepatitis delta virus. Virology 344:71–76 [Google Scholar]
  130. Tebas P, Stein D, Tang WW, Frank I, Wang SQ. et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:901–10 [Google Scholar]
  131. Teo CG, Locarnini SA. 2010. Potential threat of drug-resistant and vaccine-escape HBV mutants to public health. Antivir. Ther. 15:445–49 [Google Scholar]
  132. Thomas E, Yoneda M, Schiff ER. 2015. Viral hepatitis: past and future of HBV and HDV. Cold Spring Harb. Perspect. Med. 5:a021345 [Google Scholar]
  133. Tong S, Li J, Wands JR, Wen YM. 2013. . Hepatitis B virus genetic variants: biological properties and clinical implications. Emerg. Microbes Infect. 2:e10 [Google Scholar]
  134. Tuttleman JS, Pourcel C, Summers J. 1986. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47:451–60 [Google Scholar]
  135. Urban S, Bartenschlager R, Kubitz R, Zoulim F. 2014. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 147:48–64 [Google Scholar]
  136. Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C. et al. 2015. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 61:260–67 [Google Scholar]
  137. Volz T, Allweiss L, Ben MM, Warlich M, Lohse AW. et al. 2013. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J. Hepatol. 58:861–67 [Google Scholar]
  138. Walter E, Keist R, Niederost B, Pult I, Blum HE. 1996. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 24:1–5 [Google Scholar]
  139. Watashi K, Sluder A, Daito T, Matsunaga S, Ryo A. et al. 2014. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology 59:1726–37 [Google Scholar]
  140. Wedemeyer H, Manns MP. 2010. Epidemiology, pathogenesis and management of hepatitis D: update and challenges ahead. Nat. Rev. Gastroenterol. Hepatol. 7:31–40 [Google Scholar]
  141. Weinman SA. 1997. Electrogenicity of Na+-coupled bile acid transporters. Yale J. Biol. Med. 70:331–40 [Google Scholar]
  142. Yan H, Liu Y, Sui J, Li W. 2015. NTCP opens the door for hepatitis B virus infection. Antivir. Res. 121:24–30 [Google Scholar]
  143. Yan H, Peng B, He W, Zhong G, Qi Y. et al. 2013. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J. Virol. 87:7977–91 [Google Scholar]
  144. Yan H, Peng B, Liu Y, Xu G, He W. et al. 2014. Viral entry of hepatitis B and D viruses and bile salts transportation share common molecular determinants on sodium taurocholate cotransporting polypeptide. J. Virol. 88:3273–84 [Google Scholar]
  145. Yan H, Zhong G, Xu G, He W, Jing Z. et al. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1:e00049 [Google Scholar]
  146. Yang D, Zuo C, Wang X, Meng X, Xue B. et al. 2014. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line. PNAS 111:E1264–73 [Google Scholar]
  147. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S. et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101 [Google Scholar]
  148. Zeisel MB, Lucifora J, Mason WS, Sureau C, Beck J. et al. 2015. Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure. Gut 64:1314–26 [Google Scholar]
  149. Zhong G, Yan H, Wang H, He W, Jing Z. et al. 2013. Sodium taurocholate cotransporting polypeptide mediates woolly monkey hepatitis B virus infection of Tupaia hepatocytes. J. Virol. 87:7176–84 [Google Scholar]
  150. Zhou X, Levin EJ, Pan Y, McCoy JG, Sharma R. et al. 2014. Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 505:569–73 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100814-125241
Loading
/content/journals/10.1146/annurev-cellbio-100814-125241
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error