1932

Abstract

Cellular reprogramming experiments from somatic cell types have demonstrated the plasticity of terminally differentiated cell states. Recent efforts in understanding the mechanisms of cellular reprogramming have begun to elucidate the differentiation trajectories along the reprogramming processes. In this review, we focus mainly on direct reprogramming strategies by transcription factors and highlight the variables that contribute to cell fate conversion outcomes. We review key studies that shed light on the cellular and molecular mechanisms by investigating differentiation trajectories and alternative cell states as well as transcription factor regulatory activities during cell fate reprogramming. Finally, we highlight a few concepts that we believe require attention, particularly when measuring the success of cell reprogramming experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125127
2019-10-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125127.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125127&mimeType=html&fmt=ahah

Literature Cited

  1. Apostolou E, Hochedlinger K. 2013. Chromatin dynamics during cellular reprogramming. Nature 502:7472462–71
    [Google Scholar]
  2. Ariyachet C, Tovaglieri A, Xiang G, Lu J, Shah MS et al. 2016. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell 18:3410–21
    [Google Scholar]
  3. Audouard E, Schakman O, René F, Huettl RE, Huber AB et al. 2012. The Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. PLOS ONE 7:12e50509
    [Google Scholar]
  4. Aydin B, Kakumanu A, Rossillo M, Moreno-Estelles M, Garipler G et al. 2019. Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes. Nat. Neurosci. 22:897–908
    [Google Scholar]
  5. Benchetrit H, Herman S, Van Wietmarschen N, Wu T, Makedonski K et al. 2015. Extensive nuclear reprogramming underlies lineage conversion into functional trophoblast stem-like cells. Cell Stem Cell 17:5543–56
    [Google Scholar]
  6. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B et al. 2007. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27:328654–64
    [Google Scholar]
  7. Bertrand N, Castro DS, Guillemot F 2002. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3:7517–30
    [Google Scholar]
  8. Bhati M, Lee C, Nancarrow AL, Lee M, Craig VJ et al. 2008. Implementing the LIM code: the structural basis for cell type–specific assembly of LIM-homeodomain complexes. EMBO J 27:142018–29
    [Google Scholar]
  9. Biddy BA, Kong W, Kamimoto K, Guo C, Waye SE et al. 2018. Single-cell mapping of lineage and identity in direct reprogramming. Nature 564:219–24
    [Google Scholar]
  10. Briggs J, Li V, Lee S, Woolf C, Klein A, Kirschner M 2017. Mouse embryonic stem cells can differentiate via multiple paths to the same state. eLife 6:e26945
    [Google Scholar]
  11. Briggs R, King TJ. 1952. Transplantation of living nuclei from blastula cells into enucleated frogs' eggs. PNAS 38:5455–63
    [Google Scholar]
  12. Bruneau BG. 2013. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb. Perspect. Biol. 5:a008292
    [Google Scholar]
  13. Bussmann LH, Schubert A, Vu Manh TP, De Andres L, Desbordes SC et al. 2009. A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5:5554–66
    [Google Scholar]
  14. Cahan P, Li H, Morris SA, Lummertz Da Rocha E, Daley GQ, Collins JJ 2014. CellNet: network biology applied to stem cell engineering. Cell 158:4903–15
    [Google Scholar]
  15. Caiazzo M, Maria D, Dvoretskova E, Lazarevic D, Taverna S et al. 2011. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476:7359224–27
    [Google Scholar]
  16. Campbell KHS, McWhir J, Wilmut RI 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66
    [Google Scholar]
  17. Casey BH, Kollipara RK, Pozo K, Johnson JE 2018. Intrinsic DNA binding properties demonstrated for lineage-specifying basic helix-loop-helix transcription factors. Genome Res 28:484–96
    [Google Scholar]
  18. Chanda S, Ang CE, Davila J, Pak C, Mall M et al. 2014. Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Rep 3:2282–96
    [Google Scholar]
  19. Chen YJ, Finkbeiner SR, Weinblatt D, Emmett MJ, Tameire F et al. 2014. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep 6:61046–58
    [Google Scholar]
  20. Cheng L, Hu W, Qiu B, Zhao J, Yu Y et al. 2014. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24:6665–79
    [Google Scholar]
  21. Chouchane M, Melo de Farias AR, de Sousa Moura DM, Hilscher MM, Schroeder T et al. 2017. Lineage reprogramming of astroglial cells from different origins into distinct neuronal subtypes. Stem Cell Rep 9:1162–76
    [Google Scholar]
  22. Cirillo L, Lin F, Cuesta I, Friedman D, Jarnik M, Zaret KS 2002. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9:2279–89
    [Google Scholar]
  23. Cirillo LA, McPherson CE, Bossard P, Stevens K, Cherian S et al. 1998. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J 17:1244–54
    [Google Scholar]
  24. D'Alessio AC, Fan ZP, Wert KJ, Baranov P, Cohen MA et al. 2015. A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep 5:5763–75
    [Google Scholar]
  25. Davis RL, Weintraub H, Lassar AB 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:6987–1000
    [Google Scholar]
  26. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H et al. 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:58931218–21
    [Google Scholar]
  27. Doitsidou M, Flames N, Topalidou I, Abe N, Felton T et al. 2013. A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev 27:121391–405
    [Google Scholar]
  28. Drouin-Ouellet J, Pircs K, Barker RA, Jakobsson J, Parmar M 2017. Direct neuronal reprogramming for disease modeling studies using patient-derived neurons: What have we learned. Front. Neurosci. 11:530
    [Google Scholar]
  29. Farah MH, Olson J, Sucic H, Hume R, Tapscott S, Turner D 2000. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127:693–702
    [Google Scholar]
  30. Flames N, Hobert O. 2011. Transcriptional control of the terminal fate of monoaminergic neurons. Annu. Rev. Neurosci. 34:153–84
    [Google Scholar]
  31. Fong AP, Tapscott SJ. 2013. Skeletal muscle programming and re-programming. Curr. Opin. Genet. Dev. 23:5568–73
    [Google Scholar]
  32. Fong AP, Yao Z, Zhong JW, Cao Y, Ruzzo WL et al. 2012. Genetic and epigenetic determinants of neurogenesis and myogenesis. Dev. Cell 22:4721–35
    [Google Scholar]
  33. Fong AP, Yao Z, Zhong JW, Johnson NM, Farr GH et al. 2015. Conversion of MyoD to a neurogenic factor: Binding site specificity determines lineage. Cell Rep 10:121937–46
    [Google Scholar]
  34. Francesconi M, Di Stefano B, Berenguer C, de Andrés-Aguayo L, Plana-Carmona M et al. 2019. Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming. eLife 8:e41627
    [Google Scholar]
  35. Francius C, Clotman F. 2010. Dynamic expression of the Onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience 165:1116–29
    [Google Scholar]
  36. Friedmann-Morvinski D, Verma IM. 2014. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15:3244–53
    [Google Scholar]
  37. Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L et al. 2019. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567:774643–48
    [Google Scholar]
  38. Gascón S, Masserdotti G, Russo GL, Götz M 2017. Direct neuronal reprogramming: achievements, hurdles, and new roads to success. Cell Stem Cell 21:118–34
    [Google Scholar]
  39. Gascón S, Murenu E, Masserdotti G, Ortega F, Russo GL et al. 2016. Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:3396–409
    [Google Scholar]
  40. Guillemot F, Hassan BA. 2017. Beyond proneural: emerging functions and regulations of proneural proteins. Curr. Opin. Neurobiol. 42:93–101
    [Google Scholar]
  41. Guo S, Zi X, Schulz VP, Cheng J, Zhong M et al. 2014. Nonstochastic reprogramming from a privileged somatic cell state. Cell 156:4649–62
    [Google Scholar]
  42. Gurdon JB, Elsdale TR, Fischberg M 1958. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182:462764–65
    [Google Scholar]
  43. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ et al. 2009. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:7273595–601
    [Google Scholar]
  44. Heinrich C, Bergami M, Gasco S, Dimou L, Sutor B et al. 2014. Sox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Rep 3:1000–14
    [Google Scholar]
  45. Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P et al. 2010. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLOS Biol 8:5e1000373
    [Google Scholar]
  46. Heinrich C, Gascón S, Masserdotti G, Lepier A, Sanchez R et al. 2011. Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat. Protoc. 6:2214–28
    [Google Scholar]
  47. Hester ME, Murtha MJ, Song S, Rao M, Miranda CJ et al. 2011. Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol. Ther. 19:101905–12
    [Google Scholar]
  48. Hobert O. 2008. Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. PNAS 105:5120067–71
    [Google Scholar]
  49. Hobert O. 2011. Regulation of terminal differentiation programs in the nervous system. Annu. Rev. Cell Dev. Biol. 27:681–96
    [Google Scholar]
  50. Honig LS, Summerbell D. 1985. Maps of strength of positional signalling activity in the developing chick wing bud. Development 87:163–74
    [Google Scholar]
  51. Hu W, Qiu B, Guan W, Wang Q, Wang M et al. 2015. Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17:2204–12
    [Google Scholar]
  52. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M et al. 2008. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26:7795–97
    [Google Scholar]
  53. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE et al. 2009. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5:5491–503
    [Google Scholar]
  54. Ichida JK, Staats KA, Davis-Dusenbery BN, Clement K, Galloway KE et al. 2018. Comparative genomic analysis of embryonic, lineage-converted, and stem cell-derived motor neurons. Development 9:dev168617
    [Google Scholar]
  55. Iwafuchi-Doi M, Zaret KS. 2014. Pioneer transcription factors in cell reprogramming. Genes Dev 28:242679–92
    [Google Scholar]
  56. Iwafuchi-Doi M, Zaret KS. 2016. Cell fate control by pioneer transcription factors. Development 143:111833–37
    [Google Scholar]
  57. Jarriault S, Schwab Y, Greenwald I 2008. A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation. PNAS 105:103790–95
    [Google Scholar]
  58. Jorgensen HF, Terry A, Beretta C, Pereira CF, Leleu M et al. 2009. REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136:5715–21
    [Google Scholar]
  59. Karow M, Camp JG, Falk S, Gerber T, Pataskar A et al. 2018. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat. Neurosci. 21:932–40
    [Google Scholar]
  60. Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F et al. 2012. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11:471–76
    [Google Scholar]
  61. Knapp D, Tanaka EM. 2012. Regeneration and reprogramming. Curr. Opin. Genet. Dev. 22:5485–93
    [Google Scholar]
  62. Kratsios P, Stolfi A, Levine M, Hobert O 2011. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat. Neurosci. 15:205–14
    [Google Scholar]
  63. Kriegstein A, Noctor S, Martínez-Cerdeño V 2006. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7:883–90
    [Google Scholar]
  64. Küntziger T, Collas P. 2004. Transdifferentiation. Handbook of Stem Cells R Lanza, H Blau, J Gearhart, B Hogan, D Melton et al.147–51 Burlington, MA: Elsevier Acad. Press
    [Google Scholar]
  65. Ladewig J, Mertens J, Kesavan J, Doerr J, Poppe D et al. 2012. Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat. Methods 9:6575–78
    [Google Scholar]
  66. Lassar AB, Paterson BM, Weintraub H 1986. Transfection of a DNA locus that mediates the conversion of 10T12 fibroblasts to myoblasts. Cell 47:5649–56
    [Google Scholar]
  67. Lee CS, Friedman JR, Fulmer JT, Kaestner KH 2005. The initiation of liver development is dependent on Foxa transcription factors. Nature 435:7044944–47
    [Google Scholar]
  68. Lee S, Cuvillier JM, Lee B, Shen R, Lee JW, Lee S-K 2012. Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs. PNAS 109:93383–88
    [Google Scholar]
  69. Lee SK, Pfaff SL. 2003. Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38:5731–45
    [Google Scholar]
  70. Li X, Zuo X, Jing J, Ma Y, Wang J et al. 2015. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17:2195–203
    [Google Scholar]
  71. Li Y, Zhang Q, Yin X, Yang W, Du Y et al. 2011. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21:1196–204
    [Google Scholar]
  72. Liu M-LL, Zang T, Zou Y, Chang JC, Gibson JR et al. 2013. Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat. Commun. 4:2183
    [Google Scholar]
  73. Liu Z, Wang L, Welch JD, Ma H, Zhou Y et al. 2017. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 551:7678100–4
    [Google Scholar]
  74. Lui JH, Hansen DV, Kriegstein AR 2011. Development and evolution of the human neocortex. Cell 146:118–36
    [Google Scholar]
  75. Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N et al. 2017. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 544:245–49
    [Google Scholar]
  76. Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T et al. 2019. Pioneer factor NeuroD1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 101:3472–85
    [Google Scholar]
  77. Mazzoni EO, Mahony S, Closser M, Morrison CA, Nedelec S et al. 2013. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat. Neurosci. 16:91219–27
    [Google Scholar]
  78. Meyer CA, Liu XS. 2014. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 15:11709–21
    [Google Scholar]
  79. Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M et al. 2001. Combinatorial roles of Olig2 and Neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31:5757–71
    [Google Scholar]
  80. Morris SA, Cahan P, Li H, Zhao AM, San Roman AK et al. 2014. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 158:4889–902
    [Google Scholar]
  81. Niu W, Zang T, Wang LL, Zou Y, Zhang CL 2018. Phenotypic reprogramming of striatal neurons into dopaminergic neuron-like cells in the adult mouse brain. Stem Cell Rep 11:51156–70
    [Google Scholar]
  82. Novitch BG, Chen AI, Jessell TM 2001. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31:773–89
    [Google Scholar]
  83. Okawa S, Nicklas S, Zickenrott S, Schwamborn JC, del Sol A 2016. A generalized gene-regulatory network model of stem cell differentiation for predicting lineage specifiers. Stem Cell Rep 7:3307–15
    [Google Scholar]
  84. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR et al. 2011. Induction of human neuronal cells by defined transcription factors. Nature 476:220–23
    [Google Scholar]
  85. Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F 2002. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16:3324–38
    [Google Scholar]
  86. Pereira M, Birtele M, Shrigley S, Benitez J, Hedlund E et al. 2017. Direct reprogramming of resident NG2 glia into neurons with properties of fast-spiking parvalbumin-containing interneurons. Stem Cell Rep 9:3742–51
    [Google Scholar]
  87. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J et al. 2011. Direct conversion of human fibroblasts to dopaminergic neurons. PNAS 108:2510343–48
    [Google Scholar]
  88. Philippidou P, Dasen JS. 2013. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80:112–34
    [Google Scholar]
  89. Pierre-Jerome E, Drapek C, Benfey PN 2018. Regulation of division and differentiation of plant stem cells. Annu. Rev. Cell Dev. Biol. 34:1289–310
    [Google Scholar]
  90. Placzek M, Tessier-Lavigne M, Yamada T, Jessell T, Dodd J 1990. Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250:985–88
    [Google Scholar]
  91. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–98
    [Google Scholar]
  92. Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML et al. 2016. A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 48:3331–35
    [Google Scholar]
  93. Reddien PW. 2018. The cellular and molecular basis for planarian regeneration. Cell 175:2327–45
    [Google Scholar]
  94. Reid A, Tursun B. 2018. Transdifferentiation: Do transition states lie on the path of development. Curr. Opin. Syst. Biol. 11:18–23
    [Google Scholar]
  95. Rhee HS, Closser M, Guo Y, Bashkirova EV, Tan GC et al. 2016. Expression of terminal effector genes in mammalian neurons is maintained by a dynamic relay of transient enhancers. Neuron 92:61252–65
    [Google Scholar]
  96. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X et al. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:71311–23
    [Google Scholar]
  97. Rouaux C, Arlotta P. 2013. Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat. Cell Biol. 15:2214–21
    [Google Scholar]
  98. Roy A, Francius C, Rousso DL, Seuntjens E, Debruyn J et al. 2012. Onecut transcription factors act upstream of Isl1 to regulate spinal motoneuron diversification. Development 139:173109–19
    [Google Scholar]
  99. Schnerch A, Cerdan C, Bhatia M 2010. Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men. Stem Cells 28:419–30
    [Google Scholar]
  100. Schoenherr CJ, Anderson DJ. 1995. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:52021360–63
    [Google Scholar]
  101. Sekiya S, Suzuki A. 2011. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:7356390–95
    [Google Scholar]
  102. Smith ZD, Nachman I, Regev A, Meissner A 2010. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol. 28:5521–26
    [Google Scholar]
  103. Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF et al. 2011. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9:3205–18
    [Google Scholar]
  104. Song K, Nam Y-J, Luo X, Qi X, Tan W et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:7400599–604
    [Google Scholar]
  105. Soufi A, Donahue G, Zaret KS 2012. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151:5994–1004
    [Google Scholar]
  106. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS 2015. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 161:3555–68
    [Google Scholar]
  107. Spemann H, Mangold H. 1923. Induction of embryonic primordia by implantation of organizers from a different species, transl. V Hamburger, 2001. Int. J. Dev. Biol 45:13–38 from German )
    [Google Scholar]
  108. Stadtfeld M, Hochedlinger K. 2010. Induced pluripotency: history, mechanisms, and applications. Genes Dev 5:582–96
    [Google Scholar]
  109. Stefanakis N, Carrera I, Hobert O 2015. Regulatory logic of pan-neuronal gene expression in C. elegans. Neuron 87:4733–50
    [Google Scholar]
  110. Sugimoto K, Gordon SP, Meyerowitz EM 2011. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation?. Trends Cell Biol 21:4212–18
    [Google Scholar]
  111. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T 2001. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11:191553–58
    [Google Scholar]
  112. Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:4663–76
    [Google Scholar]
  113. Tapscott SJ. 2005. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:122685–95
    [Google Scholar]
  114. Taylor SM, Jones PA. 1979. Multiple new phenotypes induced in 10T12 and 3T3 cells treated with 5-azacytidine. Cell 17:4771–79
    [Google Scholar]
  115. Torper O, Ottosson DR, Pereira M, Lau S, Cardoso T et al. 2015. In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell Rep 12:3474–81
    [Google Scholar]
  116. Torper O, Ulrich P, Wolf DA, Pereira M, Lau S et al. 2013. Generation of induced neurons via direct conversion in vivo. PNAS 110:177038–43
    [Google Scholar]
  117. Treutlein B, Lee Q, Camp GJ, Mall M, Koh W et al. 2016. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534:7607391–95
    [Google Scholar]
  118. Tsunemoto R, Lee S, Szűcs A, Chubukov P, Sokolova I et al. 2018. Diverse reprogramming codes for neuronal identity. Nature 557:7705375–80
    [Google Scholar]
  119. Velasco S, Ibrahim MM, Kakumanu A, Garipler G, Aydin B et al. 2017. A multi-step transcriptional and chromatin state cascade underlies motor neuron programming from embryonic stem cells. Cell Stem Cell 20:2205–17.e8
    [Google Scholar]
  120. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:72841035–41
    [Google Scholar]
  121. Waddington CH. 1957. The Strategy of the Genes London: George Allen Unwin
  122. Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S et al. 2013. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155:3621–35
    [Google Scholar]
  123. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA et al. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. PNAS 86:145434–38
    [Google Scholar]
  124. Wichterle H, Lieberam I, Porter JA, Jessell TM 2002. Directed differentiation of embryonic stem cells into motor neurons. Cell 110:3385–97
    [Google Scholar]
  125. Yamanaka S. 2009. Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49–52
    [Google Scholar]
  126. Yang N, Ng YH, Pang ZP, Südhof TC, Wernig M 2011. Induced neuronal cells: how to make and define a neuron. Cell Stem Cell 9:6517–25
    [Google Scholar]
  127. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T et al. 2011. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–31
    [Google Scholar]
  128. Zaret KS, Carroll JS. 2011. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:212227–41
    [Google Scholar]
  129. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA 2008. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:7213627–32
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125127
Loading
/content/journals/10.1146/annurev-cellbio-100818-125127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error