1932

Abstract

Molecular cross talk between the nervous and vascular systems is necessary to maintain the correct coupling of organ structure and function. Molecular pathways shared by both systems are emerging as major players in the communication of the neuronal compartment with the endothelium. Here we review different aspects of this cross talk and how vessels influence the development and homeostasis of the nervous system. Beyond the classical role of the vasculature as a conduit to deliver oxygen and metabolites needed for the energy-demanding neuronal compartment, vessels emerge as powerful signaling systems that control and instruct a variety of cellular processes during the development of neurons and glia, such as migration, differentiation, and structural connectivity. Moreover, a broad spectrum of mild to severe vascular dysfunctions occur in various pathologies of the nervous system, suggesting that mild structural and functional changes at the neurovascular interface may underlie cognitive decline in many of these pathological conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125142
2019-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125142.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125142&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott NJ, Rönnbäck L, Hansson E 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7:41–53
    [Google Scholar]
  2. Adams RH, Eichmann A. 2010. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2:a001875
    [Google Scholar]
  3. Andreone BJ, Lacoste B, Gu C 2015. Neuronal and vascular interactions. Annu. Rev. Neurosci. 38:25–46
    [Google Scholar]
  4. Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH et al. 2017. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 214:3645–67
    [Google Scholar]
  5. Arendt D, Tosches MA, Marlow H 2016. From nerve net to nerve ring, nerve cord and brain: evolution of the nervous system. Nat. Rev. Neurosci. 17:61–72
    [Google Scholar]
  6. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S et al. 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212:991–99
    [Google Scholar]
  7. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA 2010. Glial and neuronal control of brain blood flow. Nature 468:232–43
    [Google Scholar]
  8. Attwell D, Iadecola C. 2002. The neural basis of functional brain imaging signals. Trends Neurosci 25:621–25
    [Google Scholar]
  9. Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21:1133–45
    [Google Scholar]
  10. Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A et al. 2003. Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev. Biol. 255:77–98
    [Google Scholar]
  11. Bautch VL, James JM. 2009. Neurovascular development: the beginning of a beautiful friendship. Cell Adhes. Migr. 3:199–204
    [Google Scholar]
  12. Benros ME, Mortensen PB, Eaton WW 2012. Autoimmune diseases and infections as risk factors for schizophrenia. Ann. N. Y. Acad. Sci. 1262:56–66
    [Google Scholar]
  13. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC 1998. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology?. Circ. Res. 82:221–31
    [Google Scholar]
  14. Berridge CW, Waterhouse BD. 2003. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42:33–84
    [Google Scholar]
  15. Bielle F, Griveau A, Narboux-Nême N, Vigneau S, Sigrist M et al. 2005. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat. Neurosci. 8:1002–12
    [Google Scholar]
  16. Borrell V, Marín O. 2006. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat. Neurosci. 9:1284–93
    [Google Scholar]
  17. Bovetti S, Hsieh YC, Bovolin P, Perroteau I, Kazunori T, Puche AC 2007. Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J. Neurosci. 27:5976–80
    [Google Scholar]
  18. Breuss JM, Uhrin P. 2012. VEGF-initiated angiogenesis and the uPA/uPAR system. Cell Adhes. Migr. 6:535–615
    [Google Scholar]
  19. Bronner ME, LeDouarin NM. 2012. Development and evolution of the neural crest: an overview. Dev. Biol. 366:2–9
    [Google Scholar]
  20. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L et al. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–39
    [Google Scholar]
  21. Carmeliet P, Tessier-Lavigne M. 2005. Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200
    [Google Scholar]
  22. Casas BS, Vitória G, do Costa MN, Madeiro da Costa R, Trindade P et al. 2018. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl. Psychiatry 8:48
    [Google Scholar]
  23. Cattin AL, Burden JJ, Van Emmenis L, Mackenzie FE, Hoving JJ et al. 2015. Macrophage-induced blood vessels guide Schwann cell–mediated regeneration of peripheral nerves. Cell 162:1127–39
    [Google Scholar]
  24. Cho C, Smallwood PM, Nathans J 2017. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95:1056–73.e5
    [Google Scholar]
  25. Colonnese MT, Phillips MA, Constantine-Paton M, Kaila K, Jasanoff A 2008. Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat. Neurosci. 11:72–79
    [Google Scholar]
  26. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC et al. 2018. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature 560:185–91
    [Google Scholar]
  27. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA 2009. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS 106:641–46
    [Google Scholar]
  28. Daneman R, Prat A. 2015. The blood-brain barrier. Cold Spring Harb. Perspect. Biol. 7:a020412
    [Google Scholar]
  29. Daneman R, Zhou L, Kebede AA, Barres BA 2010. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–66
    [Google Scholar]
  30. de Castro F, López-Mascaraque L, De Carlos JA 2007. Cajal: lessons on brain development. Brain Res. Rev. 55:481–89
    [Google Scholar]
  31. Drake CJ, Fleming PA. 2000. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95:1671–79
    [Google Scholar]
  32. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R et al. 2001. Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res 888:117–27
    [Google Scholar]
  33. Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P et al. 2018. A molecular mechanism for Wnt ligand–specific signaling. Science 361:eaat1178
    [Google Scholar]
  34. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q et al. 2010. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–40
    [Google Scholar]
  35. Feeney JF, Watterson RL. 1946. The development of the vascular pattern within the walls of the central nervous system of the chick embryo. J. Morphol. 78:231–303
    [Google Scholar]
  36. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L et al. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–42
    [Google Scholar]
  37. Freeman RD, Li B. 2016. Neural-metabolic coupling in the central visual pathway. Philos. Trans. R. Soc. B Biol. Sci. 371:2015.0357
    [Google Scholar]
  38. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A et al. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161:1163–77
    [Google Scholar]
  39. Greene C, Kealy J, Humphries MM, Gong Y, Hou J et al. 2018. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol. Psychiatry 23:2156–66
    [Google Scholar]
  40. Halfter W, Dong S, Yip YP, Willem M, Mayer U 2002. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci. 22:6029–40
    [Google Scholar]
  41. Hama K. 1960. The fine structure of some blood vessels of the earthworm, Eisenia foetida. J. Biophys. Biochem. Cytol. 7:717–24
    [Google Scholar]
  42. Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK 2019. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus. Glia 67:91–100
    [Google Scholar]
  43. Hodes GE, Ménard C, Russo SJ 2016. Integrating interleukin-6 into depression diagnosis and treatment. Neurobiol. Stress 4:15–22
    [Google Scholar]
  44. Hogan KA, Ambler CA, Chapman DL, Bautch VL 2004. The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 131:1503–13
    [Google Scholar]
  45. Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R et al. 2002. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–82
    [Google Scholar]
  46. Iadecola C. 2013. The pathobiology of vascular dementia. Neuron 80:844–66
    [Google Scholar]
  47. Iadecola C. 2017. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42
    [Google Scholar]
  48. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147ra11
    [Google Scholar]
  49. James JM, Gewolb C, Bautch VL 2009. Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development 136:833–41
    [Google Scholar]
  50. James JM, Mukouyama YS. 2011. Neuronal action on the developing blood vessel pattern. Semin. Cell Dev. Biol. 22:1019–27
    [Google Scholar]
  51. Jessen NA, Munk AS, Lundgaard I, Nedergaard M 2015. The glymphatic system: a beginner's guide. Neurochem. Res. 40:2583–99
    [Google Scholar]
  52. Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J et al. 2005. FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's disease. PNAS 102:18189–94
    [Google Scholar]
  53. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA 2002. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. PNAS 99:11946–50
    [Google Scholar]
  54. Kermani P, Hempstead B. 2007. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc. Med. 17:140–43
    [Google Scholar]
  55. Kermani P, Rafii D, Jin DK, Whitlock P, Schaffer W et al. 2005. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J. Clin. Investig. 115:653–63
    [Google Scholar]
  56. Kisler K, Nelson AR, Montagne A, Zlokovic BV 2017a. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18:419–34
    [Google Scholar]
  57. Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y et al. 2017b. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20:406–16
    [Google Scholar]
  58. Kiuchi T, Lee H, Mikami T 2012. Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience 207:208–17
    [Google Scholar]
  59. Ko KR, Ngai AC, Winn HR 1990. Role of adenosine in regulation of regional cerebral blood flow in sensory cortex. Am. J. Physiol. Heart Circ. Physiol. 259:H1703–8
    [Google Scholar]
  60. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS et al. 2014. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76:845–61
    [Google Scholar]
  61. Kriegstein A, Alvarez-Buylla A. 2009. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32:149–84
    [Google Scholar]
  62. Krystal AD. 2012. Psychiatric disorders and sleep. Neurol. Clin. 30:1389–413
    [Google Scholar]
  63. Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V et al. 2010. Essential regulation of CNS angiogenesis by the orphan G protein–coupled receptor GPR124. Science 330:985–89
    [Google Scholar]
  64. Kurz H, Gärtner T, Eggli PS, Christ B 1996. First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev. Biol. 173:133–47
    [Google Scholar]
  65. Kwon HB, Fukuhara S, Asakawa K, Ando K, Kashiwada T et al. 2013. The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling in zebrafish. Development 140:4081–90
    [Google Scholar]
  66. Lacoste B, Gu C. 2015. Control of cerebrovascular patterning by neural activity during postnatal development. Mech. Dev. 138:Pt 143–49
    [Google Scholar]
  67. Lange C, Storkebaum E, de Almodóvar CR, Dewerchin M, Carmeliet P 2016a. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat. Rev. Neurol. 12:439–54
    [Google Scholar]
  68. Lange C, Turrero Garcia M, Decimo I, Bifari F, Eelen G et al. 2016b. Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. EMBO J 35:924–41
    [Google Scholar]
  69. Langen UH, Ayloo S, Gu C 2019. Development and cell biology of the blood-brain barrier. Annu. Rev. Cell Dev. Biol. 35:591–613
    [Google Scholar]
  70. Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A 2009. Guidance of vascular development: lessons from the nervous system. Circ. Res. 104:428–41
    [Google Scholar]
  71. Le Douarin NM, Dupin E 2018. The “beginnings” of the neural crest. Dev. Biol. 444:Suppl. 1S3–13
    [Google Scholar]
  72. Le Magueresse C, Alfonso J, Bark C, Eliava M, Khrulev S, Monyer H 2012. Subventricular zone–derived neuroblasts use vasculature as a scaffold to migrate radially to the cortex in neonatal mice. Cereb. Cortex 22:2285–96
    [Google Scholar]
  73. Li G, He X, Li H, Wu Y, Guan Y et al. 2018. Overexpression of Slit2 improves function of the paravascular pathway in the aging mouse brain. Int. J. Mol. Med. 42:1935–44
    [Google Scholar]
  74. Li S, Kumar TP, Joshee S, Kirschstein T, Subburaju S et al. 2018. Endothelial cell–derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Res 28:221–48
    [Google Scholar]
  75. Li W, Kohara H, Uchida Y, James JM, Soneji K et al. 2013. Peripheral nerve–derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin. Dev. Cell 24:359–71
    [Google Scholar]
  76. Louveau A, Da Mesquita S, Kipnis J 2016. Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer's disease?. Neuron 91:957–73
    [Google Scholar]
  77. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J 2017. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Investig. 127:3210–19
    [Google Scholar]
  78. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–41
    [Google Scholar]
  79. Lowery LA, Van Vactor D 2009. The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10:332–43
    [Google Scholar]
  80. López-Bendito G, Sturgess K, Erdélyi F, Szabó G, Molnár Z, Paulsen O 2004. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14:1122–33
    [Google Scholar]
  81. Ma S, Kwon HJ, Johng H, Zang K, Huang Z 2013. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLOS Biol 11:e1001469
    [Google Scholar]
  82. Mackenzie F, Ruhrberg C. 2012. Diverse roles for VEGF-A in the nervous system. Development 139:1371–80
    [Google Scholar]
  83. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD 2008. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–63
    [Google Scholar]
  84. Mancuso MR, Kuhnert F, Kuo CJ 2008. Developmental angiogenesis of the central nervous system. Lymphat. Res. Biol. 6:173–80
    [Google Scholar]
  85. Marín O, Rubenstein JL. 2001. A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2:780–90
    [Google Scholar]
  86. Martin P, Lewis J. 1989. Origins of the neurovascular bundle: interactions between developing nerves and blood vessels in embryonic chick skin. Int. J. Dev. Biol. 33:379–87
    [Google Scholar]
  87. Martín-Durán JM, Pang K, Børve A, HS, Furu A et al. 2018. Convergent evolution of bilaterian nerve cords. Nature 553:45–50
    [Google Scholar]
  88. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX et al. 2017. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20:1752–60
    [Google Scholar]
  89. Miller G. 2009. On the origin of the nervous system. Science 325:24–26
    [Google Scholar]
  90. Minocha S, Valloton D, Brunet I, Eichmann A, Hornung JP, Lebrand C 2015. NG2 glia are required for vessel network formation during embryonic development. eLife 4:e09102
    [Google Scholar]
  91. Monahan-Earley R, Dvorak AM, Aird WC 2013. Evolutionary origins of the blood vascular system and endothelium. J. Thromb. Haemost. 11:Suppl. 146–66
    [Google Scholar]
  92. Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G et al. 2018. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24:326–37
    [Google Scholar]
  93. Montagne A, Zhao Z, Zlokovic BV 2017. Alzheimer's disease: a matter of blood-brain barrier dysfunction?. J. Exp. Med. 214:3151–69
    [Google Scholar]
  94. Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ 2005. Peripheral nerve–derived VEGF promotes arterial differentiation via neuropilin 1–mediated positive feedback. Development 132:941–52
    [Google Scholar]
  95. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ 2002. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705
    [Google Scholar]
  96. Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D 2017. Neurovascular unit dysfunction and blood-brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front. Psychiatry 8:83
    [Google Scholar]
  97. Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ 2017. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144:552–66
    [Google Scholar]
  98. Nippert AR, Mishra A, Newman EA 2018. Keeping the brain well fed: the role of capillaries and arterioles in orchestrating functional hyperemia. Neuron 99:248–50
    [Google Scholar]
  99. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR 2001. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–20
    [Google Scholar]
  100. Oh WJ, Gu C. 2013. Establishment of neurovascular congruency in the mouse whisker system by an independent patterning mechanism. Neuron 80:458–69
    [Google Scholar]
  101. Ottone C, Krusche B, Whitby A, Clements M, Quadrato G et al. 2014. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol. 16:1045–56
    [Google Scholar]
  102. Paredes I, Himmels P, Ruiz de Almodóvar C 2018. Neurovascular communication during CNS development. Dev. Cell 45:10–32
    [Google Scholar]
  103. Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M et al. 2010. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143:145–55
    [Google Scholar]
  104. Plein A, Fantin A, Denti L, Pollard JW, Ruhrberg C 2018. Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature 562:223–28
    [Google Scholar]
  105. Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ 2018. The blood-brain barrier in psychosis. Lancet Psychiatry 5:79–92
    [Google Scholar]
  106. Pollay M. 2010. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9
    [Google Scholar]
  107. Popovici C, Isnardon D, Birnbaum D, Roubin R 2002. Caenorhabditis elegans receptors related to mammalian vascular endothelial growth factor receptors are expressed in neural cells. Neurosci. Lett. 329:116–20
    [Google Scholar]
  108. Potente M, Gerhardt H, Carmeliet P 2011. Basic and therapeutic aspects of angiogenesis. Cell 146:873–87
    [Google Scholar]
  109. Quaegebeur A, Lange C, Carmeliet P 2011. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71:406–24
    [Google Scholar]
  110. Raichle ME, Mintun MA. 2006. Brain work and brain imaging. Annu. Rev. Neurosci. 29:449–76
    [Google Scholar]
  111. Rakic P. 1972. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145:61–83
    [Google Scholar]
  112. Ramón y Cajal S 1890. Notas anatomicas. I. Sobre la aparición de las expansiones celulares en la médula embrionaria. Gac. Sanit. Barc. 12:413–19
    [Google Scholar]
  113. Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H 1996. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122:2079–88
    [Google Scholar]
  114. Risau W, Flamme I. 1995. Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11:73–91
    [Google Scholar]
  115. Ruhrberg C, Bautch VL. 2013. Neurovascular development and links to disease. Cell. Mol. Life Sci. 70:1675–84
    [Google Scholar]
  116. Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P 2009. Role and therapeutic potential of VEGF in the nervous system. Physiol. Rev. 89:607–48
    [Google Scholar]
  117. Rumble ME, White KH, Benca RM 2015. Sleep disturbances in mood disorders. Psychiatr. Clin. North Am. 38:743–59
    [Google Scholar]
  118. Sabbatini M, Barili P, Bronzetti E, Zaccheo D, Amenta F 1999. Age-related changes of glial fibrillary acidic protein immunoreactive astrocytes in the rat cerebellar cortex. Mech. Ageing Dev. 108:165–72
    [Google Scholar]
  119. Sadler TW. 2005. Embryology of neural tube development. Am. J. Med. Genet. C Semin. Med. Genet. 135C:2–8
    [Google Scholar]
  120. Saghatelyan A. 2009. Role of blood vessels in the neuronal migration. Semin. Cell Dev. Biol. 20:744–50
    [Google Scholar]
  121. Saito D, Takase Y, Murai H, Takahashi Y 2012. The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336:1578–81
    [Google Scholar]
  122. Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27
    [Google Scholar]
  123. Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H 1999. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24:861–70
    [Google Scholar]
  124. Segarra M, Aburto MR, Cop F, Llaó-Cid C, Härtl R et al. 2018. Endothelial Dab1 signaling orchestrates neuro-glia-vessel communication in the central nervous system. Science 361:eaao2861
    [Google Scholar]
  125. Segarra M, Kirchmaier BC, Acker-Palmer A 2015. A vascular perspective on neuronal migration. Mech. Dev. 138:Pt 117–25
    [Google Scholar]
  126. Shalev H, Serlin Y, Friedman A 2009. Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc. Psychiatry Neurol. 2009 278531
    [Google Scholar]
  127. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y et al. 2004. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–40
    [Google Scholar]
  128. Snapyan M, Lemasson M, Brill MS, Blais M, Massouh M et al. 2009. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci. 29:4172–88
    [Google Scholar]
  129. Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP 2008. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–50
    [Google Scholar]
  130. Stower H. 2018. Meningeal lymphatics in aging and Alzheimer's disease. Nat. Med. 24:1781
    [Google Scholar]
  131. Subramanian V, Feng Y. 2007. A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum. Mol. Genet. 16:1445–53
    [Google Scholar]
  132. Takahashi T, Misson JP, Caviness VS 1990. Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J. Comp. Neurol. 302:15–28
    [Google Scholar]
  133. Takahashi Y, Sipp D, Enomoto H 2013. Tissue interactions in neural crest cell development and disease. Science 341:860–63
    [Google Scholar]
  134. Tam SJ, Watts RJ. 2010. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu. Rev. Neurosci. 33:379–408
    [Google Scholar]
  135. Tan C, Lu NN, Wang CK, Chen DY, Sun NH et al. 2019. Endothelium-derived Semaphorin 3G regulates hippocampal synaptic structure and plasticity via Neuropilin-2/PlexinA4. Neuron 101:920–37
    [Google Scholar]
  136. Tan X, Liu WA, Zhang XJ, Shi W, Ren SQ et al. 2016. Vascular influence on ventral telencephalic progenitors and neocortical interneuron production. Dev. Cell 36:624–38
    [Google Scholar]
  137. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T et al. 2015. Clearance systems in the brain: implications for Alzheimer disease. Nat. Rev. Neurol. 11:457–70
    [Google Scholar]
  138. Tata M, Ruhrberg C, Fantin A 2015. Vascularisation of the central nervous system. Mech. Dev. 138:Pt 126–36
    [Google Scholar]
  139. Tata M, Wall I, Joyce A, Vieira JM, Kessaris N, Ruhrberg C 2016. Regulation of embryonic neurogenesis by germinal zone vasculature. PNAS 113:13414–19
    [Google Scholar]
  140. Thomas JL. 2018. Orchestrating cortical brain development. Science 361:754–55
    [Google Scholar]
  141. Tissir F, Goffinet AM. 2003. Reelin and brain development. Nat. Rev. Neurosci. 4:496–505
    [Google Scholar]
  142. Tsai HH, Niu J, Munji R, Davalos D, Chang J et al. 2016. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351:379–84
    [Google Scholar]
  143. Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K et al. 2018. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–80
    [Google Scholar]
  144. Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG 2008. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 11:429–39
    [Google Scholar]
  145. Vesalius A 1543. De humani corporis fabrica libri septem Basel, Switz.: Ioannis Oporini
  146. Wälchli T, Wacker A, Frei K, Regli L, Schwab ME et al. 2015. Wiring the vascular network with neural cues: a CNS perspective. Neuron 87:271–96
    [Google Scholar]
  147. Warner-Schmidt JL, Duman RS. 2007. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. PNAS 104:4647–52
    [Google Scholar]
  148. Weston JA, Thiery JP. 2015. Pentimento: neural crest and the origin of mesectoderm. Dev. Biol. 401:37–61
    [Google Scholar]
  149. Wild R, Klems A, Takamiya M, Hayashi Y, Strähle U et al. 2017. Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nat. Commun. 8:13991
    [Google Scholar]
  150. Won C, Lin Z, Kumar T P, Li S, Ding L et al. 2013. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat. Commun. 4:2149
    [Google Scholar]
  151. Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:373–77
    [Google Scholar]
  152. Ybot-Gonzalez P, Cogram P, Gerrelli D, Copp AJ 2002. Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development 129:2507–17
    [Google Scholar]
  153. Zacchigna S, Lambrechts D, Carmeliet P 2008. Neurovascular signalling defects in neurodegeneration. Nat. Rev. Neurosci. 9:169–81
    [Google Scholar]
  154. Zhu M, Ackerman JJ, Sukstanskii AL, Yablonskiy DA 2006. How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. J. Appl. Physiol. 101:1481–88
    [Google Scholar]
  155. Zlokovic BV. 2008. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201
    [Google Scholar]
  156. Zlokovic BV. 2011. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12:723–38
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125142
Loading
/content/journals/10.1146/annurev-cellbio-100818-125142
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error