1932

Abstract

The ability to visualize and quantitatively measure dynamic biological processes in vivo and at high spatiotemporal resolution is of fundamental importance to experimental investigations in developmental biology. Light-sheet microscopy is particularly well suited to providing such data, since it offers exceptionally high imaging speed and good spatial resolution while minimizing light-induced damage to the specimen. We review core principles and recent advances in light-sheet microscopy, with a focus on concepts and implementations relevant for applications in developmental biology. We discuss how light-sheet microcopy has helped advance our understanding of developmental processes from single-molecule to whole-organism studies, assess the potential for synergies with other state-of-the-art technologies, and introduce methods for computational image and data analysis. Finally, we explore the future trajectory of light-sheet microscopy, discuss key efforts to disseminate new light-sheet technology, and identify exciting opportunities for further advances.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125311
2019-10-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125311.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125311&mimeType=html&fmt=ahah

Literature Cited

  1. Aguet F, Upadhyayula S, Gaudin R, Chou YY, Cocucci E et al. 2016. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol. Biol. Cell 27:3418–35
    [Google Scholar]
  2. Amat F, Hockendorf B, Wan Y, Lemon WC, McDole K, Keller PJ 2015. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10:1679–96
    [Google Scholar]
  3. Amat F, Lemon W, Mossing DP, McDole K, Wan Y et al. 2014. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11:951–58
    [Google Scholar]
  4. Andilla J, Jorand R, Olarte OE, Dufour AC, Cazales M et al. 2017. Imaging tissue-mimic with light sheet microscopy: a comparative guideline. Sci. Rep. 7:44939
    [Google Scholar]
  5. Auldridge ME, Satyshur KA, Anstrom DM, Forest KT 2012. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287:7000–9
    [Google Scholar]
  6. Balazs B, Deschamps J, Albert M, Ries J, Hufnagel L 2017. A real-time compression library for microscopy images. bioRxiv 164624 . https://doi.org/10.1101/164624
    [Crossref]
  7. Baumgart E, Kubitscheck U. 2012. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20:21805–14
    [Google Scholar]
  8. Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F et al. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338:257–60
    [Google Scholar]
  9. Berthet B, Maizel A. 2016. Light sheet microscopy and live imaging of plants. J. Microsc. 263:158–64
    [Google Scholar]
  10. Breuninger T, Greger K, Stelzer EH 2007. Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt. Lett. 32:1938–40
    [Google Scholar]
  11. Bria A, Iannello G, Onofri L, Peng H 2016. TeraFly: real-time three-dimensional visualization and annotation of terabytes of multidimensional volumetric images. Nat. Methods 13:192–94
    [Google Scholar]
  12. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB et al. 2006. A genetically encoded photosensitizer. Nat. Biotechnol. 24:95–99
    [Google Scholar]
  13. Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg CP 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15:1405–14
    [Google Scholar]
  14. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH et al. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100
    [Google Scholar]
  15. Casari A, Schiavone M, Facchinello N, Vettori A, Meyer D et al. 2014. A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development. Dev. Biol. 396:81–93
    [Google Scholar]
  16. Cheeseman BL, Gunther U, Gonciarz K, Susik M, Sbalzarini IF 2018. Adaptive particle representation of fluorescence microscopy images. Nat. Commun. 9:5160
    [Google Scholar]
  17. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–91
    [Google Scholar]
  18. Chen BC, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998
    [Google Scholar]
  19. Chen F, Tillberg PW, Boyden ES 2015. Expansion microscopy. Science 347:543–48
    [Google Scholar]
  20. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  21. Chhetri RK, Amat F, Wan Y, Hockendorf B, Lemon WC, Keller PJ 2015. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12:1171–78
    [Google Scholar]
  22. Collery RF, Link BA. 2011. Dynamic smad-mediated BMP signaling revealed through transgenic zebrafish. Dev. Dyn. 240:712–22
    [Google Scholar]
  23. Costantini LM, Baloban M, Markwardt ML, Rizzo M, Guo F et al. 2015. A palette of fluorescent proteins optimized for diverse cellular environments. Nat. Commun. 6:7670
    [Google Scholar]
  24. Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z et al. 2016. Quantitative assessment of fluorescent proteins. Nat. Methods 13:557–62
    [Google Scholar]
  25. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S et al. 2012. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9:690–96
    [Google Scholar]
  26. de Medeiros G, Balazs B, Hufnagel L 2016. Light-sheet imaging of mammalian development. Semin. Cell Dev. Biol. 55:148–55
    [Google Scholar]
  27. de Medeiros G, Norlin N, Gunther S, Albert M, Panavaite L et al. 2015. Confocal multiview light-sheet microscopy. Nat. Commun. 6:8881
    [Google Scholar]
  28. Dean KM, Palmer AE. 2014. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10:512–23
    [Google Scholar]
  29. Fahrbach F, Rohrbach A. 2012. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3:632
    [Google Scholar]
  30. Fahrbach FO, Simon P, Rohrbach A 2010. Microscopy with self-reconstructing beams. Nat. Photonics 4:780–85
    [Google Scholar]
  31. Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF 2018. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360:eaar3131
    [Google Scholar]
  32. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J et al. 2010. Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7:547–53
    [Google Scholar]
  33. Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha VV 2011. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29:757–61
    [Google Scholar]
  34. Frieda KL, Linton JM, Hormoz S, Choi J, Chow KK et al. 2017. Synthetic recording and in situ readout of lineage information in single cells. Nature 541:107–11
    [Google Scholar]
  35. Fu Q, Martin BL, Matus DQ, Gao L 2016. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat. Commun. 7:11088
    [Google Scholar]
  36. Gomez-Gaviro MV, Balaban E, Bocancea D, Lorrio MT, Pompeiano M et al. 2017. Optimized CUBIC protocol for three-dimensional imaging of chicken embryos at single-cell resolution. Development 144:2092–97
    [Google Scholar]
  37. Grimm JB, Brown TA, English BP, Lionnet T, Lavis LD 2017a. Synthesis of Janelia fluor HaloTag and SNAP-tag ligands and their use in cellular imaging experiments. Methods Mol. Biol. 1663:179–88
    [Google Scholar]
  38. Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC et al. 2017b. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14:987–94
    [Google Scholar]
  39. Gross P, Kumar KV, Grill SW 2017. How active mechanics and regulatory biochemistry combine to form patterns in development. Annu. Rev. Biophys. 46:337–56
    [Google Scholar]
  40. Gualda EJ, Simao D, Pinto C, Alves PM, Brito C 2014. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy. Front. Cell. Neurosci. 8:221
    [Google Scholar]
  41. Guignard L, Godin C, Fiuza UM, Hufnagel L, Lemaire P, Malandain G 2014. Spatio-temporal registration of embryo images. Proceedings of the IEEE 11th International Symposium on Biomedical Imaging778–81 Piscataway, NJ: IEEE
    [Google Scholar]
  42. Gustavsson AK, Petrov PN, Lee MY, Shechtman Y, Moerner WE 2018. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. 9:123
    [Google Scholar]
  43. Heemskerk I, Streichan SJ. 2015. Tissue cartography: compressing bio-image data by dimensional reduction. Nat. Methods 12:1139–42
    [Google Scholar]
  44. Held M, Santeramo I, Wilm B, Murray P, Levy R 2018. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLOS ONE 13:e0199918
    [Google Scholar]
  45. Hörl D, Rusak FR, Preusser F, Tillberg P, Randel N et al. 2018. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. bioRxiv 343954 . https://doi.org/10.1101/343954
    [Crossref]
  46. Howarth M, Takao K, Hayashi Y, Ting AY 2005. Targeting quantum dots to surface proteins in living cells with biotin ligase. PNAS 102:7583–88
    [Google Scholar]
  47. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–9
    [Google Scholar]
  48. Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EH et al. 2014. Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools. Nat. Protoc. 9:575–85
    [Google Scholar]
  49. Islam S, Zeisel A, Joost S, La Manno G, Zajac P et al. 2014. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11:163–66
    [Google Scholar]
  50. Jorand R, Le Corre G, Andilla J, Maandhui A, Frongia C et al. 2012. Deep and clear optical imaging of thick inhomogeneous samples. PLOS ONE 7:e35795
    [Google Scholar]
  51. Junker JP, Noel ES, Guryev V, Peterson KA, Shah G et al. 2014. Genome-wide RNA tomography in the zebrafish embryo. Cell 159:662–75
    [Google Scholar]
  52. Kankaanpää P, Paavolainen L, Tiitta S, Karjalainen M, Päivärinne J et al. 2012. BioImageXD: an open, general-purpose and high-throughput image-processing platform. Nat. Methods 9:683–89
    [Google Scholar]
  53. Keller PJ. 2013. Imaging morphogenesis: technological advances and biological insights. Science 340:1234168
    [Google Scholar]
  54. Keller PJ, Ahrens MB. 2015. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85:462–83
    [Google Scholar]
  55. Keller PJ, Dodt HU. 2011. Light sheet microscopy of living or cleared specimens. Curr. Opin. Neurobiol. 22:138–43
    [Google Scholar]
  56. Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z et al. 2010. Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy. Nat. Methods 7:637–42
    [Google Scholar]
  57. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–69
    [Google Scholar]
  58. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K 2003. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21:86–89
    [Google Scholar]
  59. Khairy K, Lemon W, Amat F, Keller PJ 2018. A preferred curvature-based continuum mechanics framework for modeling embryogenesis. Biophys. J. 114:267–77
    [Google Scholar]
  60. Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L 2012. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9:730–33
    [Google Scholar]
  61. LeGoff L, Lecuit T. 2015. Mechanical forces and growth in animal tissues. Cold Spring Harb. Perspect. Biol. 8:a019232
    [Google Scholar]
  62. Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K et al. 2018. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360:eaaq1392
    [Google Scholar]
  63. Liu Z, Keller PJ. 2016. Emerging imaging and genomic tools for developmental systems biology. Dev. Cell 36:597–610
    [Google Scholar]
  64. Liu Z, Legant WR, Chen BC, Li L, Grimm JB et al. 2014. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3:e04236
    [Google Scholar]
  65. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N et al. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–82
    [Google Scholar]
  66. Ma P, Chan DC, Gu S, Watanabe M, Jenkins MW, Rollins AM 2016. Volumetric optical mapping in early embryonic hearts using light-sheet microscopy. Biomed. Opt. Express 7:5120–28
    [Google Scholar]
  67. Ma Y, Wang M, Li W, Zhang Z, Zhang X et al. 2017. Live cell imaging of single genomic loci with quantum dot–labeled TALEs. Nat. Commun. 8:15318
    [Google Scholar]
  68. Maitre JL, Berthoumieux H, Krens SF, Salbreux G, Julicher F et al. 2012. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:253–56
    [Google Scholar]
  69. Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EH 2011. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–85
    [Google Scholar]
  70. McDole K, Guignard L, Amat F, Berger A, Malandain G et al. 2018. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175:859–76.e33
    [Google Scholar]
  71. McGorty R, Liu H, Kamiyama D, Dong Z, Guo S, Huang B 2015. Open-top selective plane illumination microscope for conventionally mounted specimens. Opt. Express 23:16142–53
    [Google Scholar]
  72. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL 2009. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6:131–33
    [Google Scholar]
  73. Mir M, Reimer A, Stadler M, Tangara A, Hansen AS et al. 2018. Single molecule imaging in live embryos using lattice light-sheet microscopy. Methods Mol. Biol. 1814:541–59
    [Google Scholar]
  74. Moffitt JR, Hao J, Bambah-Mukku D, Lu T, Dulac C, Zhuang X 2016. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. PNAS 113:14456–61
    [Google Scholar]
  75. Monier B, Gettings M, Gay G, Mangeat T, Schott S et al. 2015. Apico-basal forces exerted by apoptotic cells drive epithelium folding. Nature 518:245–48
    [Google Scholar]
  76. Morita H, Grigolon S, Bock M, Krens SF, Salbreux G, Heisenberg CP 2017. The physical basis of coordinated tissue spreading in zebrafish gastrulation. Dev. Cell 40:354–66.e4
    [Google Scholar]
  77. Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C et al. 2012. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev. Biol. 366:327–40
    [Google Scholar]
  78. Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–96
    [Google Scholar]
  79. Newman RH, Fosbrink MD, Zhang J 2011. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem. Rev. 111:3614–66
    [Google Scholar]
  80. O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–66
    [Google Scholar]
  81. Okumoto S, Jones A, Frommer WB 2012. Quantitative imaging with fluorescent biosensors. Annu. Rev. Plant Biol. 63:663–706
    [Google Scholar]
  82. Ovecka M, von Wangenheim D, Tomancak P, Samajova O, Komis G, Samaj J 2018. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants 4:639–50
    [Google Scholar]
  83. Paez-Segala MG, Sun MG, Shtengel G, Viswanathan S, Baird MA et al. 2015. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Methods 12:215–18
    [Google Scholar]
  84. Paige JS, Wu KY, Jaffrey SR 2011. RNA mimics of green fluorescent protein. Science 333:642–46
    [Google Scholar]
  85. Palero J, Santos SI, Artigas D, Loza-Alvarez P 2010. A simple scanless two-photon fluorescence microscope using selective plane illumination. Opt. Express 18:8491–98
    [Google Scholar]
  86. Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF et al. 2009. Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech. Dev. 126:898–912
    [Google Scholar]
  87. Peng H, Ruan Z, Long F, Simpson JH, Myers EW 2010. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28:348–53
    [Google Scholar]
  88. Pietzsch T, Saalfeld S, Preibisch S, Tomancak P 2015. BigDataViewer: visualization and processing for large image data sets. Nat. Methods 12:481–83
    [Google Scholar]
  89. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M et al. 2013. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10:598–99
    [Google Scholar]
  90. Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA et al. 2011. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8:417–23
    [Google Scholar]
  91. Power RM, Huisken J. 2017. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14:360–73
    [Google Scholar]
  92. Preibisch S, Amat F, Stamataki E, Sarov M, Singer RH et al. 2014. Efficient Bayesian-based multiview deconvolution. Nat. Methods 11:645–48
    [Google Scholar]
  93. Preibisch S, Saalfeld S, Rohlfing T, Tomancak P 2009. Bead-based mosaicing of single plane illumination microscopy images using geometric local descriptor matching Presented at Medical Imaging 2009: Image Processing Lake Buena Vista, FL: Feb 8–10
  94. Preibisch S, Saalfeld S, Schindelin J, Tomancak P 2010. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods 7:418–19
    [Google Scholar]
  95. Qin P, Parlak M, Kuscu C, Bandaria J, Mir M et al. 2017. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8:14725
    [Google Scholar]
  96. Redmond LC, Pang CJ, Dumur C, Haar JL, Lloyd JA 2014. Laser capture microdissection of embryonic cells and preparation of RNA for microarray assays. Methods Mol. Biol. 1092:43–60
    [Google Scholar]
  97. Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I et al. 2018. Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 361:189–93
    [Google Scholar]
  98. Richardson DS, Lichtman JW. 2015. Clarifying tissue clearing. Cell 162:246–57
    [Google Scholar]
  99. Rohrbach A. 2009. Artifacts resulting from imaging in scattering media: a theoretical prediction. Opt. Lett. 34:3041–43
    [Google Scholar]
  100. Royer LA, Lemon WC, Chhetri RK, Keller PJ 2018. A practical guide to adaptive light-sheet microscopy. Nat. Protoc. 13:2462–500
    [Google Scholar]
  101. Royer LA, Lemon WC, Chhetri RK, Wan Y, Coleman M et al. 2016. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. 34:1267–78
    [Google Scholar]
  102. Royer LA, Weigert M, Gunther U, Maghelli N, Jug F et al. 2015. ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nat. Methods 12:480–81
    [Google Scholar]
  103. Rozbicki E, Chuai M, Karjalainen AI, Song F, Sang HM et al. 2015. Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat. Cell Biol. 17:397–408
    [Google Scholar]
  104. Schiegg M, Hanslovsky P, Haubold C, Koethe U, Hufnagel L, Hamprecht FA 2014. Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics 31:948–56
    [Google Scholar]
  105. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–82
    [Google Scholar]
  106. Schmid B, Shah G, Scherf N, Weber M, Thierbach K et al. 2013. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 4:2207
    [Google Scholar]
  107. Schwend T, Loucks EJ, Ahlgren SC 2010. Visualization of Gli activity in craniofacial tissues of hedgehog-pathway reporter transgenic zebrafish. PLOS ONE 5:e14396
    [Google Scholar]
  108. Sena G, Frentz Z, Birnbaum KD, Leibler S 2011. Quantitation of cellular dynamics in growing Arabidopsis roots with light sheet microscopy. PLOS ONE 6:e21303
    [Google Scholar]
  109. Shcherbakova DM, Baloban M, Emelyanov AV, Brenowitz M, Guo P, Verkhusha VV 2016. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat. Commun. 7:12405
    [Google Scholar]
  110. Siedentopf H, Zsigmondy R. 1903. Über Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys. 315:1–39
    [Google Scholar]
  111. Silvestri L, Bria A, Sacconi L, Iannello G, Pavone FS 2012. Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt. Express 20:20582–98
    [Google Scholar]
  112. Sommer C, Straehle C, Kothe U, Hamprecht FA 2011. Ilastik: interactive learning and segmentation toolkit. Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro230–33 Piscataway, NJ: IEEE
    [Google Scholar]
  113. Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y et al. 2016. Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev. Cell 36:225–40
    [Google Scholar]
  114. Stegmaier J, Otte JC, Kobitski A, Bartschat A, Garcia A et al. 2014. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks. PLOS ONE 9:e90036
    [Google Scholar]
  115. Streets AM, Zhang X, Cao C, Pang Y, Wu X et al. 2014. Microfluidic single-cell whole-transcriptome sequencing. PNAS 111:7048–53
    [Google Scholar]
  116. Strnad P, Gunther S, Reichmann J, Krzic U, Balazs B et al. 2016. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13:139–42
    [Google Scholar]
  117. Swoger J, Pampaloni F, Stelzer EH 2014. Imaging cellular spheroids with a single (selective) plane illumination microscope. Cold Spring Harb. Protoc. 2014:106–13
    [Google Scholar]
  118. Swoger J, Verveer P, Greger K, Huisken J, Stelzer EH 2007. Multi-view image fusion improves resolution in three-dimensional microscopy. Opt. Express 15:8029–42
    [Google Scholar]
  119. Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR 2016. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 32:713–41
    [Google Scholar]
  120. Tischer D, Weiner OD. 2014. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15:551–58
    [Google Scholar]
  121. Tomer R, Khairy K, Amat F, Keller PJ 2012. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9:755–63
    [Google Scholar]
  122. Trivedi V, Truong TV, Trinh LA, Holland DB, Liebling M, Fraser SE 2015. Dynamic structure and protein expression of the live embryonic heart captured by 2-photon light sheet microscopy and retrospective registration. Biomed. Opt. Express 6:2056–66
    [Google Scholar]
  123. Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE 2011. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8:757–60
    [Google Scholar]
  124. Tyagi S. 2009. Imaging intracellular RNA distribution and dynamics in living cells. Nat. Methods 6:331–38
    [Google Scholar]
  125. Udan RS, Piazza VG, Hsu CW, Hadjantonakis AK, Dickinson ME 2014. Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development 141:4406–14
    [Google Scholar]
  126. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U et al. 2017. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–67
    [Google Scholar]
  127. Visel A, Thaller C, Eichele G 2004. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res 32:D552–56
    [Google Scholar]
  128. Voie AH, Burns DH, Spelman FA 1993. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170:229–36
    [Google Scholar]
  129. Weber M, Huisken J. 2015. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. Swiss Med. Wkly. 145:w14227
    [Google Scholar]
  130. Weber M, Scherf N, Meyer AM, Panakova D, Kohl P, Huisken J 2017. Cell-accurate optical mapping across the entire developing heart. eLife 6:e28307
    [Google Scholar]
  131. Wilding D, Pozzi P, Soloviev O, Vdovin G, Verhaegen M 2016. Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope. Opt. Express 24:24896–906
    [Google Scholar]
  132. Winter PW, Shroff H. 2014. Faster fluorescence microscopy: advances in high speed biological imaging. Curr. Opin. Chem. Biol. 20:46–53
    [Google Scholar]
  133. Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B et al. 2018. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife 7:e34410
    [Google Scholar]
  134. Wu Y, Ghitani A, Christensen R, Santella A, Du Z et al. 2011. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. PNAS 108:17708–13
    [Google Scholar]
  135. Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R et al. 2013. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat. Biotechnol. 31:1032–38
    [Google Scholar]
  136. Xue Z, Huang K, Cai C, Cai L, Jiang CY et al. 2013. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–97
    [Google Scholar]
  137. Yamashita N, Morita M, Legant WR, Chen BC, Betzig E et al. 2015. Three-dimensional tracking of plus-tips by lattice light-sheet microscopy permits the quantification of microtubule growth trajectories within the mitotic apparatus. J. Biomed. Opt. 20:101206
    [Google Scholar]
  138. Yang Z, Mei L, Xia F, Luo Q, Fu L, Gong H 2015. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish. Biomed. Opt. Express 6:1797–811
    [Google Scholar]
  139. Yu D, Baird MA, Allen JR, Howe ES, Klassen MP et al. 2015. A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat. Methods 12:763–65
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125311
Loading
/content/journals/10.1146/annurev-cellbio-100818-125311
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error