1932

Abstract

The vertebrate anteroposterior axis forms through elongation of multiple tissues during embryogenesis. This process is based on tissue-autonomous mechanisms of force generation and intertissue mechanical coupling whose failure leads to severe developmental anomalies such as body truncation and spina bifida. Similar to other morphogenetic modules, anteroposterior body extension requires both the rearrangement of existing materials—such as cells and extracellular matrix—and the local addition of new materials, i.e., anisotropic growth, through cell proliferation, cell growth, and matrix deposition. Numerous signaling pathways coordinate body axis formation via regulation of cell behavior during tissue rearrangements and/or volumetric growth. From a physical perspective, morphogenesis depends on both cell-generated forces and tissue material properties. As the spatiotemporal variation of these mechanical parameters has recently been explored in the context of vertebrate body elongation, the study of this process is likely to shed light on the cross talk between signaling and mechanics during morphogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125436
2019-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125436.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125436&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DS, Keller R, Koehl MA 1990. The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110:115–30
    [Google Scholar]
  2. Agero U, Glazier JA, Hosek M 2010. Bulk elastic properties of chicken embryos during somitogenesis. Biomed. Eng. Online 9:19
    [Google Scholar]
  3. Aulehla A, Pourquié O. 2010. Signaling gradients during paraxial mesoderm development. Cold Spring Harb. Perspect. Biol. 2:a000869
    [Google Scholar]
  4. Aw WY, Heck BW, Joyce B, Devenport D 2016. Transient tissue-scale deformation coordinates alignment of planar cell polarity junctions in the mammalian skin. Curr. Biol. 26:2090–100
    [Google Scholar]
  5. Balland M, Desprat N, Icard D, Féréol S, Asnacios A et al. 2006. Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74:021911
    [Google Scholar]
  6. Barriga EH, Franze K, Charras G, Mayor R 2018. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554:523–27
    [Google Scholar]
  7. Beddington RS. 1994. Induction of a second neural axis by the mouse node. Development 120:613–20
    [Google Scholar]
  8. Beemster GT, Baskin TI. 1998. Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–26
    [Google Scholar]
  9. Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F et al. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338:257–60
    [Google Scholar]
  10. Bénazéraf B. 2018. Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo. Cell. Mol. Life Sci. 76:89–98
    [Google Scholar]
  11. Bénazéraf B, Beaupeux M, Tchernookov M, Wallingford A, Salisbury T et al. 2017. Multi-scale quantification of tissue behavior during amniote embryo axis elongation. Development 144:4462–72
    [Google Scholar]
  12. Bénazéraf B, Francois P, Baker RE, Denans N, Little CD, Pourquié O 2010. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 466:248–52
    [Google Scholar]
  13. Bénazéraf B, Pourquié O. 2013. Formation and segmentation of the vertebrate body axis. Annu. Rev. Cell Dev. Biol. 29:1–26
    [Google Scholar]
  14. Bertet C, Sulak L, Lecuit T 2004. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–71
    [Google Scholar]
  15. Brodland GW, Veldhuis JH, Kim S, Perrone M, Mashburn D, Hutson MS 2014. CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. PLOS ONE 9:e99116
    [Google Scholar]
  16. Butler MT, Wallingford JB. 2017. Planar cell polarity in development and disease. Nat. Rev. Mol. Cell Biol. 18:375–88
    [Google Scholar]
  17. Cai D, Chen S-C, Prasad M, He L, Wang X et al. 2014. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–59
    [Google Scholar]
  18. Campàs O. 2016. A toolbox to explore the mechanics of living embryonic tissues. Semin. Cell Dev. Biol. 55:119–30
    [Google Scholar]
  19. Campàs O, Mammoto T, Hasso S, Sperling RA, O'Connell D et al. 2014. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11:183–89
    [Google Scholar]
  20. Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg CP 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15:1405–14
    [Google Scholar]
  21. Čapek D, Smutny M, Tichy A-M, Morri M, Janovjak H, Heisenberg C-P 2019. Light-activated Frizzled7 reveals a permissive role of non-canonical Wnt signaling in mesendoderm cell migration. eLife Sci 8:e42093
    [Google Scholar]
  22. Chevalier NR, Gazquez E, Bidault L, Guilbert T, Vias C et al. 2016. How tissue mechanical properties affect enteric neural crest cell migration. Sci. Rep. 6:20927
    [Google Scholar]
  23. Chu C-W, Sokol SY. 2016. Wnt proteins can direct planar cell polarity in vertebrate ectoderm. eLife Sci 5:e016463
    [Google Scholar]
  24. Chuai M, Weijer CJ. 2008. The mechanisms underlying primitive streak formation in the chick embryo. Curr. Top. Dev. Biol. 81:135–56
    [Google Scholar]
  25. Ciruna B, Rossant J. 2001. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1:37–49
    [Google Scholar]
  26. Clement R, Dehapiot B, Collinet C, Lecuit T, Lenne PF 2017. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis. Curr. Biol. 27:3132–42.e4
    [Google Scholar]
  27. Cui C, Yang X, Chuai M, Glazier JA, Weijer CJ 2005. Analysis of tissue flow patterns during primitive streak formation in the chick embryo. Dev. Biol. 284:37–47
    [Google Scholar]
  28. Das D, Chatti V, Emonet T, Holley SA 2017. Patterned disordered cell motion ensures vertebral column symmetry. Dev. Cell 42:170–80.e5
    [Google Scholar]
  29. Das D, Jülich D, Schwendinger-Schreck J, Guillon E, Lawton AK et al. 2019. Organization of embryonic morphogenesis via mechanical information. Dev. Cell 49:829–39.e5
    [Google Scholar]
  30. Davidson L, Keller R. 2007. Measuring mechanical properties of embryos and embryonic tissues. Methods Cell Biol 83:425–39
    [Google Scholar]
  31. Davidson LA, Dzamba BD, Keller R, Desimone DW 2008. Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev. Dyn. 237:2684–92
    [Google Scholar]
  32. De Marco P, Merello E, Piatelli G, Cama A, Kibar Z, Capra V 2014. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res. A Clin. Mol. Teratol. 100:633–41
    [Google Scholar]
  33. Delfini M-C, Dubrulle J, Malapert P, Chal J, Pourquié O 2005. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. PNAS 102:11343–48
    [Google Scholar]
  34. Diz-Muñoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ et al. 2010. Control of directed cell migration in vivo by membrane-to-cortex attachment. PLOS Biol 8:e1000544
    [Google Scholar]
  35. Diz-Muñoz A, Romanczuk P, Yu W, Bergert M, Ivanovitch K et al. 2016. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol 14:74
    [Google Scholar]
  36. Dohn MR, Mundell NA, Sawyer LM, Dunlap JA, Jessen JR 2013. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation. Dev. Biol. 383:39–51
    [Google Scholar]
  37. Dray N, Lawton A, Nandi A, Jülich D, Emonet T, Holley SA 2013. Cell-fibronectin interactions propel vertebrate trunk elongation via tissue mechanics. Curr. Biol. 23:1335–41
    [Google Scholar]
  38. Dubrulle J, McGrew MJ, Pourquié O 2001. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–32
    [Google Scholar]
  39. Dubrulle J, Pourquié O. 2004a. Coupling segmentation to axis formation. Development 131:5783–93
    [Google Scholar]
  40. Dubrulle J, Pourquié O. 2004b. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427:419–22
    [Google Scholar]
  41. Ellis K, Bagwell J, Bagnat M 2013. Notochord vacuoles are lysosome-related organelles that function in axis and spine morphogenesis. J. Cell Biol. 200:667–79
    [Google Scholar]
  42. Elul T, Koehl MA, Keller R 1997. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos. Dev. Biol. 191:243–58
    [Google Scholar]
  43. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ 2001. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102
    [Google Scholar]
  44. Filas BA, Xu G, Taber LA 2015. Probing regional mechanical properties of embryonic tissue using microindentation and optical coherence tomography. Methods Mol. Biol. 1189:3–16
    [Google Scholar]
  45. Firmino J, Rocancourt D, Saadaoui M, Moreau C, Gros J 2016. Cell division drives epithelial cell rearrangements during gastrulation in chick. Dev. Cell 36:249–61
    [Google Scholar]
  46. Forgacs G, Foty RA, Shafrir Y, Steinberg MS 1998. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J. 74:2227–34
    [Google Scholar]
  47. Foty RA, Pfleger CM, Forgacs G, Steinberg MS 1996. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development 122:1611–20
    [Google Scholar]
  48. Glickman NS, Kimmel CB, Jones MA, Adams RJ 2003. Shaping the zebrafish notochord. Development 130:873–87
    [Google Scholar]
  49. Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O 2008. Control of segment number in vertebrate embryos. Nature 454:335–39
    [Google Scholar]
  50. Goodrich LV, Strutt D. 2011. Principles of planar polarity in animal development. Development 138:1877–92
    [Google Scholar]
  51. Gordon R, Goel NS, Steinberg MS, Wiseman LL 1972. A rheological mechanism sufficient to explain the kinetics of cell sorting. J. Theor. Biol. 37:43–73
    [Google Scholar]
  52. Goto H, Kimmey SC, Row RH, Matus DQ, Martin BL 2017. FGF and canonical Wnt signaling cooperate to induce paraxial mesoderm from tailbud neuromesodermal progenitors through regulation of a two-step epithelial to mesenchymal transition. Development 144:1412–24
    [Google Scholar]
  53. Goto T, Davidson L, Asashima M, Keller R 2005. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15:787–93
    [Google Scholar]
  54. Guevorkian K, Colbert M-J, Durth M, Dufour S, Brochard-Wyart F 2010. Aspiration of biological viscoelastic drops. Phys. Rev. Lett. 104:218101
    [Google Scholar]
  55. Guillot C, Lecuit T. 2013. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340:1185–89
    [Google Scholar]
  56. Hardy KM, Garriock RJ, Yatskievych TA, D'Agostino SL, Antin PB, Krieg PA 2008. Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation. Dev. Biol. 320:391–401
    [Google Scholar]
  57. Harris AR, Peter L, Bellis J, Baum B, Kabla AJ, Charras GT 2012. Characterizing the mechanics of cultured cell monolayers. PNAS 109:16449–54
    [Google Scholar]
  58. Heisenberg CP. 2017. D'Arcy Thompson's ‘On Growth and Form’: from soap bubbles to tissue self-organization. Mech. Dev. 145:32–37
    [Google Scholar]
  59. Heisenberg CP, Bellaiche Y. 2013. Forces in tissue morphogenesis and patterning. Cell 153:948–62
    [Google Scholar]
  60. Heisenberg CP, Brand M, Jiang YJ, Warga RM, Beuchle D et al. 1996. Genes involved in forebrain development in the zebrafish, Danio rerio. Development 123:191–203
    [Google Scholar]
  61. Heisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML et al. 2000. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81
    [Google Scholar]
  62. Huebner RJ, Wallingford JB. 2018. Coming to consensus: A unifying model emerges for convergent extension. Dev. Cell 46:389–96
    [Google Scholar]
  63. Irvine KD, Wieschaus E. 1994. Cell intercalation during Drosophila germband extension and its regulation by pair-rule segmentation genes. Development 120:827–41
    [Google Scholar]
  64. Ishihara S, Sugimura K. 2012. Bayesian inference of force dynamics during morphogenesis. J. Theor. Biol. 313:201–11
    [Google Scholar]
  65. Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F et al. 2002. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat. Cell Biol. 4:610–15
    [Google Scholar]
  66. Jurand A. 1962. The development of the notochord in chick embryos. Development 10:602–21
    [Google Scholar]
  67. Kanki JP, Ho RK. 1997. The development of the posterior body in zebrafish. Development 124:881–93
    [Google Scholar]
  68. Keller R, Cooper MS, Danilchik M, Tibbetts P, Wilson PA 1989. Cell intercalation during notochord development in Xenopus laevis. J. Exp. Zool 251:134–54
    [Google Scholar]
  69. Keller R, Danilchik M. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–209
    [Google Scholar]
  70. Keller R, Davidson L, Edlund A, Elul T, Ezin M et al. 2000. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. B Biol. Sci. 355:897–922
    [Google Scholar]
  71. Keller R, Davidson LA, Shook DR 2003. How we are shaped: the biomechanics of gastrulation. Differentiation 71:171–205
    [Google Scholar]
  72. Keller R, Shih J, Domingo C 1992a. The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser. Development 116:81–91
    [Google Scholar]
  73. Keller R, Shih J, Sater A 1992b. The cellular basis of the convergence and extension of the Xenopus neural plate. Dev. Dyn. 193:199–217
    [Google Scholar]
  74. Keller R, Tibbetts P. 1989. Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis. Dev. Biol 131:539–49
    [Google Scholar]
  75. Keller RE. 1984. The cellular basis of gastrulation in Xenopus laevis: active, postinvolution convergence and extension by mediolateral interdigitation. Integr. Comp. Biol. 24:589–603
    [Google Scholar]
  76. Keller RE, Danilchik M, Gimlich R, Shih J 1985. The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol 89:Suppl.185–209
    [Google Scholar]
  77. Kim HY, Davidson LA. 2011. Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. J. Cell Sci. 124:635–46
    [Google Scholar]
  78. Kimelman D. 2016. Tales of tails (and trunks): forming the posterior body in vertebrate embryos. Curr. Top. Dev. Biol. 116:517–36
    [Google Scholar]
  79. Kraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D 2012. Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. J. Cell Biol. 198:695–709
    [Google Scholar]
  80. Krens SFG, Veldhuis JH, Barone V, Čapek D, Maître J-L et al. 2017. Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation. Development 144:1798–806
    [Google Scholar]
  81. Krieg M, Arboleda-Estudillo Y, Puech PH, Käfer J, Graner F et al. 2008. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10:429–36
    [Google Scholar]
  82. Krieg M, Dunn AR, Goodman MB 2014. Mechanical control of the sense of touch by β-spectrin. Nat. Cell Biol. 16:224–33
    [Google Scholar]
  83. Lawton AK, Nandi A, Stulberg MJ, Dray N, Sneddon MW et al. 2013. Regulated tissue fluidity steers zebrafish body elongation. Development 140:573–82
    [Google Scholar]
  84. Lecaudey V, Gilmour D. 2006. Organizing moving groups during morphogenesis. Curr. Opin. Cell Biol. 18:102–7
    [Google Scholar]
  85. Lee W, Kalashnikov N, Mok S, Halaoui R, Kuzmin E et al. 2019. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat. Commun. 10:144
    [Google Scholar]
  86. Luu O, David R, Ninomiya H, Winklbauer R 2011. Large-scale mechanical properties of Xenopus embryonic epithelium. PNAS 108:4000–5
    [Google Scholar]
  87. Maître J-L, Berthoumieux H, Krens SF, Salbreux G, Julicher F et al. 2012. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells. Science 338:253–56
    [Google Scholar]
  88. Maître J-L, Niwayama R, Turlier H, Nédélec F, Hiiragi T 2015. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 17:849–55
    [Google Scholar]
  89. Majkut S, Idema T, Swift J, Krieger C, Liu A, Discher DE 2013. Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr. Biol. 23:2434–39
    [Google Scholar]
  90. Marlow F, Gonzalez EM, Yin C, Rojo C, Solnica-Krezel L 2004. No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish. Development 131:203–16
    [Google Scholar]
  91. Martin BL, Kimelman D. 2012. Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation. Dev. Cell 22:223–32
    [Google Scholar]
  92. McMillen P, Holley SA. 2015. The tissue mechanics of vertebrate body elongation and segmentation. Curr. Opin. Genet. Dev. 32:106–11
    [Google Scholar]
  93. Mitchell B, Jacobs R, Li J, Chien S, Kintner C 2007. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101
    [Google Scholar]
  94. Mohagheghian E, Luo J, Chen J, Chaudhary G, Chen J et al. 2018. Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nat. Commun. 9:1878
    [Google Scholar]
  95. Mongera A, Rowghanian P, Gustafson HJ, Shelton E, Kealhofer DA et al. 2018. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 45:401–5
    [Google Scholar]
  96. Montero J-A, Carvalho L, Wilsch-Bräuninger M, Kilian B, Mustafa C, Heisenberg C-P 2005. Shield formation at the onset of zebrafish gastrulation. Development 132:1187–98
    [Google Scholar]
  97. Mookerjee S. 1953. Experimental dissociation of cells from chick embryos. Nature 171:796
    [Google Scholar]
  98. Moore SW, Keller RE, Koehl MA 1995. The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121:3131–40
    [Google Scholar]
  99. Naiche LA, Holder N, Lewandoski M 2011. FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. PNAS 108:4018–23
    [Google Scholar]
  100. Nakamura M, Hikida M, Nakano T, Ito S, Hamano T, Kinoshita S 1993. Characterization of water retentive properties of hyaluronan. Cornea 12:433–36
    [Google Scholar]
  101. Nerurkar NL, Mahadevan L, Tabin CJ 2017. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut. PNAS 114:2277–82
    [Google Scholar]
  102. Nishimura T, Honda H, Takeichi M 2012. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149:1084–97
    [Google Scholar]
  103. O'Farrell PH. 2015. Growing an embryo from a single cell: a hurdle in animal life. Cold Spring Harb. Perspect. Biol. 7:a019042
    [Google Scholar]
  104. O'Farrell PH, Edgar BA, Lakich D, Lehner CF 1989. Directing cell division during development. Science 246:635–40
    [Google Scholar]
  105. Olivier N, Luengo-Oroz MA, Duloquin L, Faure E, Savy T et al. 2010. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 329:967–71
    [Google Scholar]
  106. Peng Y, Axelrod JD. 2012. Asymmetric protein localization in planar cell polarity: mechanisms, puzzles, and challenges. Curr. Top. Dev. Biol. 101:33–53
    [Google Scholar]
  107. Petridou NI, Grigolon S, Salbreux G, Hannezo E, Heisenberg C-P 2019. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nat. Cell Biol. 21:169–78
    [Google Scholar]
  108. Phillips HM, Steinberg MS. 1978. Embryonic tissues as elasticoviscous liquids. I. Rapid and slow shape changes in centrifuged cell aggregates. J. Cell Sci. 30:1–20
    [Google Scholar]
  109. Porazinski S, Wang H, Asaoka Y, Behrndt M, Miyamoto T et al. 2015. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521:217–21
    [Google Scholar]
  110. Raghunathan R, Zhang J, Wu C, Rippy J, Singh M et al. 2017. Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography. J. Biomed. Opt. 22:1–6
    [Google Scholar]
  111. Rauch GJ, Hammerschmidt M, Blader P, Schauerte HE, Strähle U et al. 1997. WNT5 is required for tail formation in the zebrafish embryo. Cold Spring Harb. Symp. Quant. Biol. 62:227–34
    [Google Scholar]
  112. Regev I, Guevorkian K, Pourquié O, Mahadevan L 2017. Motility-gradient induced elongation of the vertebrate embryo. bioRxiv 187443. https://doi.org/10.1101/187443
    [Crossref]
  113. Rifes P, Carvalho L, Lopes C, Andrade RP, Rodrigues G et al. 2007. Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm. Development 134:3155–65
    [Google Scholar]
  114. Riley BB, Sweet EM, Heck R, Evans A, McFarland KN et al. 2010. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division. Dev. Dyn. 239:828–43
    [Google Scholar]
  115. Rossant J, Ciruna B, Partanen J 1997. FGF signaling in mouse gastrulation and anteroposterior patterning. Cold Spring Harb. Symp. Quant. Biol. 62:127–33
    [Google Scholar]
  116. Roszko I, Sawada A, Solnica-Krezel L 2009. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin. Cell Dev. Biol. 20:986–97
    [Google Scholar]
  117. Rozario T, Desimone DW. 2009. The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo. Dev. Biol. 327:386–98
    [Google Scholar]
  118. Rozbicki E, Chuai M, Karjalainen AI, Song F, Sang HM et al. 2015. Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat. Cell Biol. 17:397–408
    [Google Scholar]
  119. Saadaoui M, Corson F, Rocancourt D, Roussel J, Gros J 2018. A tensile ring drives tissue flows to shape the gastrulating amniote embryo. bioRxiv 412767. https://doi.org/10.1101/412767
    [Crossref]
  120. Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ et al. 2015. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12:1132–34
    [Google Scholar]
  121. Schötz E-M, Burdine RD, Jülicher F, Steinberg MS, Heisenberg C-P, Foty RA 2008. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J 2:42–56
    [Google Scholar]
  122. Sepich DS, Calmelet C, Kiskowski M, Krezel LS 2005. Initiation of convergence and extension movements of lateral mesoderm during zebrafish gastrulation. Dev. Dyn. 234:279–92
    [Google Scholar]
  123. Sepich DS, Myers DC, Short R, Topczewski J, Marlow F, Krezel LS 2000. Role of the zebrafish trilobite locus in gastrulation movements of convergence and extension. Genesis 27:159–73
    [Google Scholar]
  124. Serwane F, Mongera A, Rowghanian P, Kealhofer DA, Lucio AA et al. 2017. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14:181–86
    [Google Scholar]
  125. Shih J, Keller R. 1992a. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116:901–14
    [Google Scholar]
  126. Shih J, Keller R. 1992b. Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116:915–30
    [Google Scholar]
  127. Shindo A. 2017. Models of convergent extension during morphogenesis. WIREs Dev. Biol. 7:e293
    [Google Scholar]
  128. Shindo A, Wallingford JB. 2014. PCP and septins compartmentalize cortical actomyosin to direct collective cell movement. Science 343:649–52
    [Google Scholar]
  129. Shook DR, Kasprowicz EM, Davidson LA, Keller R 2018. Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. eLife Sci 7:e26944
    [Google Scholar]
  130. Skoglund P, Rolo A, Chen X, Gumbiner BM, Keller R 2008. Convergence and extension at gastrulation require a myosin IIB–dependent cortical actin network. Development 135:2435–44
    [Google Scholar]
  131. Smutny M, Ákos Z, Grigolon S, Shamipour S, Ruprecht V et al. 2017. Friction forces position the neural anlage. Nat. Cell Biol. 19:306–17
    [Google Scholar]
  132. Stemple DL. 2005. Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–12
    [Google Scholar]
  133. Steventon B, Duarte F, Lagadec R, Mazan S, Nicolas J-F, Hirsinger E 2016. Species-specific contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates. Development 143:1732–41
    [Google Scholar]
  134. Stirbat TV, Mgharbel A, Bodennec S, Ferri K, Mertani HC et al. 2013. Fine tuning of tissues' viscosity and surface tension through contractility suggests a new role for α-catenin. PLOS ONE 8:e52554
    [Google Scholar]
  135. Stooke-Vaughan GA, Campàs O. 2018. Physical control of tissue morphogenesis across scales. Curr. Opin. Genet. Dev. 51:111–19
    [Google Scholar]
  136. Sugimura K, Lenne PF, Graner F 2016. Measuring forces and stresses in situ in living tissues. Development 143:186–96
    [Google Scholar]
  137. Sun Z, Amourda C, Shagirov M, Hara Y, Saunders TE, Toyama Y 2017. Basolateral protrusion and apical contraction cooperatively drive Drosophila germ-band extension. Nat. Cell Biol. 19:375–83
    [Google Scholar]
  138. Tada M, Heisenberg C-P. 2012. Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139:3897–904
    [Google Scholar]
  139. Tahinci E, Symes K. 2003. Distinct functions of Rho and Rac are required for convergent extension during Xenopus gastrulation. Dev. Biol. 259:318–35
    [Google Scholar]
  140. Thompson DW. 1917. On Growth and Form Cambridge, UK: Cambridge Univ. Press
  141. Topczewski J, Sepich DS, Myers DC, Walker C, Amores A et al. 2001. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1:251–64
    [Google Scholar]
  142. Ulrich F, Concha ML, Heid PJ, Voss E, Witzel S et al. 2003. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130:5375–84
    [Google Scholar]
  143. Ulrich F, Krieg M, Schotz EM, Link V, Castanon I et al. 2005. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9:555–64
    [Google Scholar]
  144. Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD 2007. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–52
    [Google Scholar]
  145. von Dassow M, Strother JA, Davidson LA 2010. Surprisingly simple mechanical behavior of a complex embryonic tissue. PLOS ONE 5:e15359
    [Google Scholar]
  146. Waddington CH. 1940. Organisers and Genes Cambridge, UK: Cambridge Univ. Press
  147. Wallingford JB, Harland RM. 2001. Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. Development 128:2581–92
    [Google Scholar]
  148. Wallingford JB, Harland RM. 2002. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129:5815–25
    [Google Scholar]
  149. Wallingford JB, Niswander LA, Shaw GM, Finnell RH 2013. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 339:1222002
    [Google Scholar]
  150. Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM 2000. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405:81–85
    [Google Scholar]
  151. Warga RM, Kane DA. 2007. A role for N-cadherin in mesodermal morphogenesis during gastrulation. Dev. Biol. 310:211–25
    [Google Scholar]
  152. Warga RM, Kimmel CB. 1990. Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–80
    [Google Scholar]
  153. Wei Y, Mikawa T. 2000. Formation of the avian primitive streak from spatially restricted blastoderm: evidence for polarized cell division in the elongating streak. Development 127:87–96
    [Google Scholar]
  154. Williams M, Yen W, Lu X, Sutherland A 2014. Distinct apical and basolateral mechanisms drive planar cell polarity–dependent convergent extension of the mouse neural plate. Dev. Cell 29:34–46
    [Google Scholar]
  155. Wilson ET, Cretekos CJ, Helde KA 1995. Cell mixing during early epiboly in the zebrafish embryo. Dev. Genet. 17:6–15
    [Google Scholar]
  156. Wyatt T, Baum B, Charras G 2016. A question of time: tissue adaptation to mechanical forces. Curr. Opin. Cell Biol. 38:68–73
    [Google Scholar]
  157. Xiong F, Ma W, Bénazéraf B, Mahadevan L, Pourquié O 2018. Mechanical coupling coordinates the co-elongation of axial and paraxial tissues in avian embryos. bioRxiv 412866. https://doi.org/10.1101/412866
    [Crossref]
  158. Xu G, Kemp PS, Hwu JA, Beagley AM, Bayly PV, Taber LA 2010. Opening angles and material properties of the early embryonic chick brain. J. Biomech. Eng. 132:011005
    [Google Scholar]
  159. Yin C, Kiskowski M, Pouille P-A, Farge E, Solnica-Krezel L 2008. Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J. Cell Biol. 180:221–32
    [Google Scholar]
  160. Zamir EA, Taber LA. 2004. On the effects of residual stress in microindentation tests of soft tissue structures. J. Biomech. Eng. 126:276–83
    [Google Scholar]
  161. Zhang L, Kendrick C, Julich D, Holley SA 2008. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function. Development 135:2065–70
    [Google Scholar]
  162. Zhou J, Kim HY, Davidson LA 2009. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–88
    [Google Scholar]
  163. Zhou J, Kim HY, Wang JHC, Davidson LA 2010. Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin. Development 137:2785–94
    [Google Scholar]
  164. Zhou J, Pal S, Maiti S, Davidson LA 2015. Force production and mechanical accommodation during convergent extension. Development 142:692–701
    [Google Scholar]
  165. Zhu M, Tao H, Samani M, Luo M, Wang X et al. 2018. Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis. bioRxiv 412072. https://doi.org/10.1101/412072
    [Crossref]
/content/journals/10.1146/annurev-cellbio-100818-125436
Loading
/content/journals/10.1146/annurev-cellbio-100818-125436
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error