1932

Abstract

Cilia are ubiquitous microtubule-based eukaryotic organelles that project from the cell to generate motility or function in cellular signaling. Motile cilia or flagella contain axonemal dynein motors and other complexes to achieve beating. Primary cilia are immotile and act as signaling hubs, with receptors shuttling between the cytoplasm and ciliary compartment. In both cilia types, an intraflagellar transport (IFT) system powered by unique kinesin and dynein motors functions to deliver the molecules required to build cilia and maintain their functions. Cryo-electron tomography has helped to reveal the organization of protein complex arrangement along the axoneme and the structure of anterograde IFT trains as well as the structure of primary cilia. Only recently, single-particle analysis (SPA) cryo-electron microscopy has provided molecular details of the protein organization of ciliary components, helping us to understand how they bind to microtubule doublets and how mechanical force propagated by dynein conformational changes is converted into ciliary beating. Here we highlight recent structural advances that are leading to greater knowledge of ciliary function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-034238
2022-10-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/38/1/annurev-cellbio-120219-034238.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-034238&mimeType=html&fmt=ahah

Literature Cited

  1. Afzelius BA. 1955. The fine structure of the sea urchin spermatozoa as revealed by the electron microscope. Z. Zellforsch. Mikrosk. Anat. 42:1–2134–48
    [Google Scholar]
  2. Barber CF, Heuser T, Carbajal-González BI, Botchkarev VV Jr., Nicastro D. 2012. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol. Biol. Cell. 23:1111–20
    [Google Scholar]
  3. Bazan R, Schröfel A, Joachimiak E, Poprzeczko M, Pigino G et al. 2021. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLOS Genet 17:3e1009388
    [Google Scholar]
  4. Bellomo D, Lander A, Harragan I, Brown NA. 1996. Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent. Dev. Dyn. 205:471–85
    [Google Scholar]
  5. Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK. 2009. The primary cilium as a complex signaling center. Curr. Biol. 19:R526–35
    [Google Scholar]
  6. Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K et al. 2013. Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341:1009–12
    [Google Scholar]
  7. Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E. 2011. Crystal structure of the intraflagellar transport complex 25/27. EMBO J. 30:1907–18
    [Google Scholar]
  8. Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J et al. 2013. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol. Biol. Cell 24:1134–52
    [Google Scholar]
  9. Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T. 2008. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J. Cell Biol. 183:923–32
    [Google Scholar]
  10. Bui KH, Yagi T, Yamamoto R, Kamiya R, Ishikawa T. 2012. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J. Cell Biol. 198:913–25
    [Google Scholar]
  11. Carbajal-Gonzalez BI, Heuser T, Fu X, Lin J, Smith BW et al. 2013. Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton 70:101–20
    [Google Scholar]
  12. Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. 2011. Evolution: tracing the origins of centrioles, cilia, and flagella. J. Cell Biol. 194:165–75
    [Google Scholar]
  13. Chaaban S, Brouhard GJ. 2017. A microtubule bestiary: structural diversity in tubulin polymers. Mol. Biol. Cell 28:2924–31
    [Google Scholar]
  14. Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A. 2017. Dynamics of the IFT machinery at the ciliary tip. eLife 6:e28606
    [Google Scholar]
  15. Chou H-T, Apelt L, Farrell DP, White SR, Woodsmith J et al. 2019. The molecular architecture of native BBSome obtained by an integrated structural approach. Structure 27:1384–94.e4
    [Google Scholar]
  16. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL. 1998. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141:993–1008
    [Google Scholar]
  17. Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL. 2001. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11:1586–90
    [Google Scholar]
  18. Diener DR, Lupetti P, Rosenbaum JL. 2015. Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr. Biol. 25:379–84
    [Google Scholar]
  19. Fawcett DW, Porter KR. 1954. A study of the fine structure of ciliated epithelia. J. Morphol. 94:221–82
    [Google Scholar]
  20. Fowkes ME, Mitchell DR. 1998. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol. Biol. Cell 9:2337–47
    [Google Scholar]
  21. Gadadhar S, Alvarez Viar G, Hansen JN, Gong A, Kostarev A et al. 2021. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 371:6526abd4914
    [Google Scholar]
  22. Garcia-Gonzalo FR, Reiter JF. 2017. Open sesame: how transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9:a028134
    [Google Scholar]
  23. Geimer S, Melkonian M. 2004. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J. Cell Sci. 117:2663–74
    [Google Scholar]
  24. Greenan GA, Vale RD, Agard DA. 2020. Electron cryotomography of intact motile cilia defines the basal body to axoneme transition. J. Cell Biol. 219:e201907060
    [Google Scholar]
  25. Grossman-Haham I, Coudray N, Yu Z, Wang F, Zhang N et al. 2021. Structure of the radial spoke head and insights into its role in mechanoregulation of ciliary beating. Nat. Struct. Mol. Biol. 28:20–28
    [Google Scholar]
  26. Gui L, Song K, Tritschler D, Bower R, Yan S et al. 2019. Scaffold subunits support associated subunit assembly in the Chlamydomonas ciliary nexin-dynein regulatory complex. PNAS 116:23152–62
    [Google Scholar]
  27. Gui M, Ma M, Sze-Tu E, Wang X, Koh F et al. 2021. Structures of radial spokes and associated complexes important for ciliary motility. Nat. Struct. Mol. Biol. 28:29–37
    [Google Scholar]
  28. Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. 2009. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 187:921–33
    [Google Scholar]
  29. Hildebrandt F, Benzing T, Katsanis N. 2011. Ciliopathies. N. Engl. J. Med. 364:1533–43
    [Google Scholar]
  30. Hirokawa N, Tanaka Y, Okada Y, Takeda S. 2006. Nodal flow and the generation of left-right asymmetry. Cell 125:33–45
    [Google Scholar]
  31. Horani A, Ustione A, Huang T, Firth AL, Pan J et al. 2018. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. PNAS 115:E1221–28
    [Google Scholar]
  32. Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F et al. 2018. A liquid-like organelle at the root of motile ciliopathy. eLife 7:e38497
    [Google Scholar]
  33. Ichikawa M, Liu D, Kastritis PL, Basu K, Hsu TC et al. 2017. Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins. Nat. Commun. 8:15035
    [Google Scholar]
  34. Inglis PN, Ou G, Leroux MR, Scholey JM. 2007. The sensory cilia of Caenorhabditis elegans. WormBook The C. elegans Research Community https://doi.org/10.1895/wormbook.1.126.2
    [Crossref] [Google Scholar]
  35. Jordan MA, Diener DR, Stepanek L, Pigino G. 2018. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20:1250–55
    [Google Scholar]
  36. Jordan MA, Pigino G. 2021. The structural basis of intraflagellar transport at a glance. J. Cell Sci. 134:jcs247163
    [Google Scholar]
  37. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  38. Khalifa AAZ, Ichikawa M, Dai D, Kubo S, Black CS et al. 2020. The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. eLife 9:e52760
    [Google Scholar]
  39. Kiesel P, Alvarez Viar G, Tsoy N, Maraspini R, Gorilak P et al. 2020. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat. Struct. Mol. Biol. 27:1115–24
    [Google Scholar]
  40. Kim LY, Thompson PM, Lee HT, Pershad M, Campbell SL, Alushin GM. 2016. The structural basis of actin organization by vinculin and metavinculin. J. Mol. Biol. 428:10–25
    [Google Scholar]
  41. King SM. 2016. Axonemal dynein arms. Cold Spring Harb. Perspect. Biol. 8:a028100
    [Google Scholar]
  42. Kirima J, Oiwa K. 2018. Flagellar-associated protein FAP85 is a microtubule inner protein that stabilizes microtubules. Cell Struct. Funct. 43:1–14
    [Google Scholar]
  43. Klena NT, Gibbs BC, Lo CW. 2017. Cilia and ciliopathies in congenital heart disease. Cold Spring Harb. Perspect. Biol. 9:a028266
    [Google Scholar]
  44. Klink BU, Gatsogiannis C, Hofnagel O, Wittinghofer A, Raunser S. 2020. Structure of the human BBSome core complex. eLife 9:e53910
    [Google Scholar]
  45. Kozminski KG, Beech PL, Rosenbaum JL. 1995. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol. 131:1517–27
    [Google Scholar]
  46. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL. 1993. A motility in the eukaryotic flagellum unrelated to flagellar beating. PNAS 90:5519–23
    [Google Scholar]
  47. Kubo S, Yang SK, Black CS, Dai D, Valente-Paterno M et al. 2021. Remodeling and activation mechanisms of outer arm dyneins revealed by cryo-EM. EMBO Rep. 22:e52911
    [Google Scholar]
  48. Kubo T, Hou Y, Cochran DA, Witman GB, Oda T 2018. A microtubule-dynein tethering complex regulates the axonemal inner dynein f (I1). Mol. Biol. Cell 29:1060–74
    [Google Scholar]
  49. Kukic I, Rivera-Molina F, Toomre D. 2016. The IN/OUT assay: a new tool to study ciliogenesis. Cilia 5:23
    [Google Scholar]
  50. Le Guennec M, Klena N, Aeschlimann G, Hamel V, Guichard P 2021. Overview of the centriole architecture. Curr. Opin. Struct. Biol. 66:58–65
    [Google Scholar]
  51. Le Guennec M, Klena N, Gambarotto D, Laporte MH, Tassin AM et al. 2020. A helical inner scaffold provides a structural basis for centriole cohesion. Sci. Adv. 6:7aaz4137
    [Google Scholar]
  52. Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA et al. 2009. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187:1117–32
    [Google Scholar]
  53. Leung MR, Roelofs MC, Ravi RT, Maitan P, Henning H et al. 2021. The multi-scale architecture of mammalian sperm flagella and implications for ciliary motility. EMBO J. 40:e107410
    [Google Scholar]
  54. Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM et al. 2004. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117:541–52
    [Google Scholar]
  55. Liang Y, Pang Y, Wu Q, Hu Z, Han X et al. 2014. FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev. Cell 30:585–97
    [Google Scholar]
  56. Lin J, Nicastro D. 2018. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360:aar1968
    [Google Scholar]
  57. Lin J, Yin W, Smith MC, Song K, Leigh MW et al. 2014. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat. Commun. 5:5727
    [Google Scholar]
  58. Loreng TD, Smith EF. 2017. The central apparatus of cilia and eukaryotic flagella. Cold Spring Harb. Perspect. Biol. 9:a028118
    [Google Scholar]
  59. Ludington WB, Wemmer KA, Lechtreck KF, Witman GB, Marshall WF. 2013. Avalanche-like behavior in ciliary import. PNAS 110:3925–30
    [Google Scholar]
  60. Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R. 2019. Structure of the decorated ciliary doublet microtubule. Cell 179:909–22.e12
    [Google Scholar]
  61. Mali GR, Ali FA, Lau CK, Begum F, Boulanger J et al. 2021. Shulin packages axonemal outer dynein arms for ciliary targeting. Science 371:910–16
    [Google Scholar]
  62. Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS et al. 2015. Proteomics of primary cilia by proximity labeling. Dev. Cell 35:497–512
    [Google Scholar]
  63. Movassagh T, Bui KH, Sakakibara H, Oiwa K, Ishikawa T. 2010. Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nat. Struct. Mol. Biol. 17:761–67
    [Google Scholar]
  64. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J et al. 2007. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–13
    [Google Scholar]
  65. Nicastro D, Fu X, Heuser T, Tso A, Porter ME, Linck RW. 2011. Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. PNAS 108:E845–53
    [Google Scholar]
  66. Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR. 2006. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–48
    [Google Scholar]
  67. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A et al. 1998. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–37
    [Google Scholar]
  68. Oda T, Yagi T, Yanagisawa H, Kikkawa M. 2013. Identification of the outer-inner dynein linker as a hub controller for axonemal dynein activities. Curr. Biol. 23:656–64
    [Google Scholar]
  69. Oda T, Yanagisawa H, Kamiya R, Kikkawa M. 2014a. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346:857–60
    [Google Scholar]
  70. Oda T, Yanagisawa H, Yagi T, Kikkawa M. 2014b. Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. J. Cell Biol. 204:807–19
    [Google Scholar]
  71. Owa M, Furuta A, Usukura J, Arisaka F, King SM et al. 2014. Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. PNAS 111:9461–66
    [Google Scholar]
  72. Owa M, Uchihashi T, Yanagisawa HA, Yamano T, Iguchi H et al. 2019. Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat. Commun. 10:1143
    [Google Scholar]
  73. Pazour GJ, Wilkerson CG, Witman GB. 1998. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141:979–92
    [Google Scholar]
  74. Phillips DM. 1969. Exceptions to the prevailing pattern of tubules (9 + 9 + 2) in the sperm flagella of certain insect species. J. Cell Biol. 40:28–43
    [Google Scholar]
  75. Pigino G. 2021. Intraflagellar transport. Curr. Biol. 31:R530–36
    [Google Scholar]
  76. Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. 2011. Cryo-electron tomography of radial spokes in cilia and flagella. J. Cell Biol. 195:673–87
    [Google Scholar]
  77. Pigino G, Maheshwari A, Bui KH, Shingyoji C, Kamimura S, Ishikawa T. 2012. Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins. J. Struct. Biol. 178:199–206
    [Google Scholar]
  78. Piperno G, Mead K. 1997. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. PNAS 94:4457–62
    [Google Scholar]
  79. Piperno G, Ramanis Z, Smith EF, Sale WS. 1990. Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme. J. Cell Biol. 110:379–89
    [Google Scholar]
  80. Porter KR. 1957. The Submicroscopic Morphology of Protoplasm New York: Harvey Soc.
  81. Porter ME, Bower R, Knott JA, Byrd P, Dentler W. 1999. Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol. Biol. Cell 10:693–712
    [Google Scholar]
  82. Prensier G, Vivier E, Goldstein S, Schrevel J. 1980. Motile flagellum with a “3 + 0” ultrastructure. Science 207:1493–94
    [Google Scholar]
  83. Quidwai T, Wang J, Hall EA, Petriman NA, Leng W et al. 2021. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 10:e69786
    [Google Scholar]
  84. Rao Q, Han L, Wang Y, Chai P, Kuo YW et al. 2021. Structures of outer-arm dynein array on microtubule doublet reveal a motor coordination mechanism. Nat. Struct. Mol. Biol. 28:799–810
    [Google Scholar]
  85. Reiter JF, Blacque OE, Leroux MR. 2012. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13:608–18
    [Google Scholar]
  86. Saggese T, Young AA, Huang C, Braeckmans K, McGlashan SR. 2012. Development of a method for the measurement of primary cilia length in 3D. Cilia 1:11
    [Google Scholar]
  87. Sakato M, King SM. 2004. Design and regulation of the AAA+ microtubule motor dynein. J. Struct. Biol. 146:58–71
    [Google Scholar]
  88. Satir P, Heuser T, Sale WS. 2014. A structural basis for how motile cilia beat. Bioscience 64:1073–83
    [Google Scholar]
  89. Schrevel J, Besse C. 1975. Un type flagellaire fonctionnel de base 6 + 0 [A functional flagella with a 6 + 0 pattern. ]. J. Cell Biol. 66:492–507
    [Google Scholar]
  90. Singh SK, Gui M, Koh F, MC Yip, Brown A. 2020. Structure and activation mechanism of the BBSome membrane protein trafficking complex. eLife 9:e53322
    [Google Scholar]
  91. Song K, Shang Z, Fu X, Lou X, Grigorieff N, Nicastro D. 2020. In situ structure determination at nanometer resolution using TYGRESS. Nat. Methods 17:201–8
    [Google Scholar]
  92. Sorokin S. 1962. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15:363–77
    [Google Scholar]
  93. Sorokin SP. 1968. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3:207–30
    [Google Scholar]
  94. Stepanek L, Pigino G. 2016. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352:721–24
    [Google Scholar]
  95. Sun S, Fisher RL, Bowser SS, Pentecost BT, Sui H. 2019. Three-dimensional architecture of epithelial primary cilia. PNAS 116:9370–79
    [Google Scholar]
  96. Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP et al. 2013. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 27:163–68
    [Google Scholar]
  97. Taschner M, Bhogaraju S, Lorentzen E. 2012. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83:S12–22
    [Google Scholar]
  98. Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E. 2014. Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. J. Cell Biol. 207:269–82
    [Google Scholar]
  99. Taschner M, Lorentzen E. 2016. The intraflagellar transport machinery. Cold Spring Harb. Perspect. Biol. 8:a028092
    [Google Scholar]
  100. Taschner M, Lorentzen A, Mourão A, Collins T, Freke GM et al. 2018. Crystal structure of intraflagellar transport protein 80 reveals a homo-dimer required for ciliogenesis. eLife 7:e33067
    [Google Scholar]
  101. Taschner M, Weber K, Mourão A, Vetter M, Awasthi M et al. 2016. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J. 35:773–90
    [Google Scholar]
  102. Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ. 2019. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26:823–29
    [Google Scholar]
  103. Ueno H, Ishikawa T, Bui KH, Gonda K, Ishikawa T, Yamaguchi T. 2012. Mouse respiratory cilia with the asymmetric axonemal structure on sparsely distributed ciliary cells can generate overall directional flow. Nanomedicine 8:1081–87
    [Google Scholar]
  104. Vaughn KC, Renzaglia KS. 2006. Structural and immunocytochemical characterization of the Ginkgo biloba L. sperm motility apparatus. Protoplasma 227:165–73
    [Google Scholar]
  105. Wachter S, Jung J, Shafiq S, Basquin J, Fort C et al. 2019. Binding of IFT22 to the intraflagellar transport complex is essential for flagellum assembly. EMBO J. 38:e101251
    [Google Scholar]
  106. Walton T, Wu H, Brown A. 2021. Structure of a microtubule-bound axonemal dynein. Nat. Commun. 12:477
    [Google Scholar]
  107. Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q et al. 2013. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes. Nat. Commun. 4:2750
    [Google Scholar]
  108. Wei Q, Zhang Y, Li Y, Zhang Q, Ling K, Hu J 2012. The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 14:950–57
    [Google Scholar]
  109. Wheatley DN, Wang AM, Strugnell GE. 1996. Expression of primary cilia in mammalian cells. Cell Biol. Int. 20:73–81
    [Google Scholar]
  110. Wingfield JL, Mekonnen B, Mengoni I, Liu P, Jordan M et al. 2021. In vivo imaging shows continued association of several IFT-A, IFT-B and dynein complexes while IFT trains U-turn at the tip. J. Cell Sci. 134:jcs259010
    [Google Scholar]
  111. Wingfield JL, Mengoni I, Bomberger H, Jiang Y-Y, Walsh JD et al. 2017. IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. eLife 6:e26609
    [Google Scholar]
  112. Wood CR, Rosenbaum JL. 2014. Proteins of the ciliary axoneme are found on cytoplasmic membrane vesicles during growth of cilia. Curr. Biol. 24:1114–20
    [Google Scholar]
  113. Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. 2021. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton 78:77–96
    [Google Scholar]
  114. Yang P, Diener DR, Yang C, Kohno T, Pazour GJ et al. 2006. Radial spoke proteins of Chlamydomonas flagella. J. Cell Sci. 119:1165–74
    [Google Scholar]
  115. Yang S, Bahl K, Chou H-T, Woodsmith J, Stelzl U et al. 2020. Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. eLife 9:e55954
    [Google Scholar]
  116. Yang TT, Chong WM, Wang W-J, Mazo G, Tanos B et al. 2018. Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nat. Commun. 9:2023
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-034238
Loading
/content/journals/10.1146/annurev-cellbio-120219-034238
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error