1932

Abstract

Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct “eat-me” and “don't-eat-me” signals on targets and of corresponding “eat” and “don't-eat” receptors on the phagocyte surface. Moreover, assorted physical barriers constitute “don't-come-close-to-me” hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120219-055903
2021-10-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120219-055903.html?itemId=/content/journals/10.1146/annurev-cellbio-120219-055903&mimeType=html&fmt=ahah

Literature Cited

  1. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P et al. 1998. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188:1359–68
    [Google Scholar]
  2. Alphonsus CS, Rodseth RN. 2014. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 69:777–84
    [Google Scholar]
  3. Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS et al. 2008. Actin restricts FcεRI diffusion and facilitates antigen-induced receptor immobilization. Nat. Cell Biol. 10:955–63
    [Google Scholar]
  4. Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW et al. 2009. Small, mobile FcεRI receptor aggregates are signaling competent. Immunity 31:469–79
    [Google Scholar]
  5. Arandjelovic S, Ravichandran KS. 2015. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16:907–17
    [Google Scholar]
  6. Arias-Alpizar G, Kong L, Vlieg RC, Rabe A, Papadopoulou P et al. 2020. Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nat. Commun. 11:3638
    [Google Scholar]
  7. Bakalar MH, Joffe AM, Schmid EM, Son S, Podolski M, Fletcher DA. 2018. Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets. Cell 174:131–42.e13
    [Google Scholar]
  8. Balint S, Müller S, Fischer R, Kessler BM, Harkiolaki M et al. 2020. Supramolecular attack particles are autonomous killing entities released from cytotoxic T cells. Science 368:897–901
    [Google Scholar]
  9. Barbieri JT, Riese MJ, Aktories K. 2002. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 18:315–44
    [Google Scholar]
  10. Barger SR, Reilly NS, Shutova MS, Li Q, Maiuri P et al. 2019. Membrane-cytoskeletal crosstalk mediated by myosin-I regulates adhesion turnover during phagocytosis. Nat. Commun. 10:1249
    [Google Scholar]
  11. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA et al. 2019. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572:392–96
    [Google Scholar]
  12. Bax M, Garcia-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ et al. 2007. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 179:8216–24
    [Google Scholar]
  13. Beningo KA, Wang YL. 2002. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115:849–56
    [Google Scholar]
  14. Bohdanowicz M, Schlam D, Hermansson M, Rizzuti D, Fairn GD et al. 2013. Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol. Biol. Cell 24:1700–12
    [Google Scholar]
  15. Bolland S, Ravetch JV. 2000. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–85
    [Google Scholar]
  16. Bonnardel J, T'Jonck W, Gaublomme D, Browaeys R, Scott CL et al. 2019. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51:638–54.e9
    [Google Scholar]
  17. Bos JL. 2005. Linking Rap to cell adhesion. Curr. Opin. Cell Biol. 17:123–28
    [Google Scholar]
  18. Boyd CR, Orr SJ, Spence S, Burrows JF, Elliott J et al. 2009. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J. Immunol. 183:7703–9
    [Google Scholar]
  19. Brown GD, Willment JA, Whitehead L. 2018. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 18:374–89
    [Google Scholar]
  20. Canton J, Neculai D, Grinstein S. 2013. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13:621–34
    [Google Scholar]
  21. Carlsson SR, Roth J, Piller F, Fukuda M. 1988. Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Major sialoglycoproteins carrying polylactosaminoglycan. J. Biol. Chem. 263:18911–19
    [Google Scholar]
  22. Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C et al. 2016. Initiation of T cell signaling by CD45 segregation at ‘close contacts’. Nat. Immunol. 17:574–82
    [Google Scholar]
  23. Chen Y, Xiang J, Qian F, Diwakar BT, Ruan B et al. 2020. Epo receptor signaling in macrophages alters the splenic niche to promote erythroid differentiation. Blood 136:235–46
    [Google Scholar]
  24. Clatworthy MR, Smith KG. 2004. FcγRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J. Exp. Med. 199:717–23
    [Google Scholar]
  25. Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV. 1999. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189:179–85
    [Google Scholar]
  26. Clynes RA, Towers TL, Presta LG, Ravetch JV. 2000. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6:443–46
    [Google Scholar]
  27. Costerton JW, Irvin RT, Cheng KJ. 1981. The role of bacterial surface structures in pathogenesis. Crit. Rev. Microbiol. 8:303–38
    [Google Scholar]
  28. Cowman MK, Lee H-G, Schwertfeger KL, McCarthy JB, Turley EA. 2015. The content and size of hyaluronan in biological fluids and tissues. Front. Immunol. 6:261
    [Google Scholar]
  29. Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MA. 2014. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol. Rev. 38:660–97
    [Google Scholar]
  30. Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F et al. 1997. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J. Exp. Med. 186:1027–39
    [Google Scholar]
  31. Daeron M. 1997. Fc receptor biology. Annu. Rev. Immunol. 15:203–34
    [Google Scholar]
  32. Dahl KN, Westhoff CM, Discher DE. 2003. Fractional attachment of CD47 (IAP) to the erythrocyte cytoskeleton and visual colocalization with Rh protein complexes. Blood 101:1194–99
    [Google Scholar]
  33. Davies LC, Jenkins SJ, Allen JE, Taylor PR. 2013. Tissue-resident macrophages. Nat. Immunol. 14:986–95
    [Google Scholar]
  34. Davis SJ, van der Merwe PA. 2006. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7:803–9
    [Google Scholar]
  35. Day AJ, de la Motte CA. 2005. Hyaluronan cross-linking: a protective mechanism in inflammation?. Trends Immunol 26:637–43
    [Google Scholar]
  36. Deppermann C, Kratofil RM, Peiseler M, David BA, Zindel J et al. 2020. Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets. J. Exp. Med. 217:e20190723
    [Google Scholar]
  37. Durocher JR, Payne RC, Conrad ME. 1975. Role of sialic acid in erythrocyte survival. Blood 45:11–20
    [Google Scholar]
  38. Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL, Fink GR 2011. Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. PNAS 108:14270–75
    [Google Scholar]
  39. Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR et al. 2016. Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164:128–40
    [Google Scholar]
  40. Freeman SA, Grinstein S. 2014. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol. Rev. 262:193–215
    [Google Scholar]
  41. Freeman SA, Uderhardt S, Saric A, Collins RF, Buckley CM et al. 2020. Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367:301–5
    [Google Scholar]
  42. Freeman SA, Vega A, Riedl M, Collins RF, Ostrowski PP et al. 2018. Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172:305–17.e10
    [Google Scholar]
  43. Gantner BN, Simmons RM, Underhill DM. 2005. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–86
    [Google Scholar]
  44. Garcia-Garcia E, Brown EJ, Rosales C. 2007. Transmembrane mutations to FcγRIIA alter its association with lipid rafts: implications for receptor signaling. J. Immunol. 178:3048–58
    [Google Scholar]
  45. Gasparrini F, Feest C, Bruckbauer A, Mattila PK, Muller J et al. 2016. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J 35:258–80
    [Google Scholar]
  46. Gattegno L, Bladier D, Garnier M, Cornillot P. 1976. Changes in carbohydrate content of surface membranes of human erythrocytes during ageing. Carbohydr. Res. 52:197–208
    [Google Scholar]
  47. Gaya M, Castello A, Montaner B, Rogers N, Reis e Sousa C et al. 2015. Inflammation-induced disruption of SCS macrophages impairs B cell responses to secondary infection. Science 347:667–72
    [Google Scholar]
  48. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J et al. 2011. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472:471–75
    [Google Scholar]
  49. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM et al. 2017. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–99
    [Google Scholar]
  50. Haldar M, Kohyama M, So AY, Wumesh KC, Wu X et al. 2014. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156:1223–34
    [Google Scholar]
  51. Hayes BH, Tsai RK, Dooling LJ, Kadu S, Lee JY et al. 2020. Macrophages show higher levels of engulfment after disruption of cis interactions between CD47 and the checkpoint receptor SIRPα. J. Cell Sci. 133:jcs237800
    [Google Scholar]
  52. Henry CB, Duling BR. 1999. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277:H508–14
    [Google Scholar]
  53. Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W et al. 2003. The clearance mechanism of chilled blood platelets. Cell 112:87–97
    [Google Scholar]
  54. Imbert PRC, Saric A, Pedram K, Bertozzi CR, Grinstein S, Freeman SA. 2020. An acquired and endogenous glycocalyx forms a bidirectional “don't eat” and “don't eat me” barrier to phagocytosis. Curr. Biol. 31:77–89.e5
    [Google Scholar]
  55. Jaqaman K, Kuwata H, Touret N, Collins R, Trimble WS et al. 2011. Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function. Cell 146:593–606
    [Google Scholar]
  56. Jaumouille V, Cartagena-Rivera AX, Waterman CM. 2019. Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis. Nat. Cell Biol. 21:1357–69
    [Google Scholar]
  57. Jaumouille V, Farkash Y, Jaqaman K, Das R, Lowell CA, Grinstein S. 2014. Actin cytoskeleton reorganization by Syk regulates Fcγ receptor responsiveness by increasing its lateral mobility and clustering. Dev. Cell 29:534–46
    [Google Scholar]
  58. Jeon S, Clavadetscher J, Lee DK, Chankeshwara SV, Bradley M, Cho WS. 2018. Surface charge-dependent cellular uptake of polystyrene nanoparticles. Nanomaterials 8:1028
    [Google Scholar]
  59. Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA et al. 2007. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–14
    [Google Scholar]
  60. Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K et al. 2009. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457:318–21
    [Google Scholar]
  61. Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ et al. 2016. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536:86–90
    [Google Scholar]
  62. Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13:159–75
    [Google Scholar]
  63. Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A 2007. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. PNAS 104:11633–38
    [Google Scholar]
  64. Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA et al. 2012. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu. Rev. Cell Dev. Biol. 28:215–50
    [Google Scholar]
  65. Kwon W, Freeman SA. 2020. Phagocytosis by the retinal pigment epithelium: recognition, resolution, recycling. Front. Immunol. 11:604205
    [Google Scholar]
  66. Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ et al. 2020. The cell biology of the retinal pigment epithelium. Prog. Retinal Eye Res. 78:100846
    [Google Scholar]
  67. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG et al. 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5:190–98
    [Google Scholar]
  68. Law AL, Parinot C, Chatagnon J, Gravez B, Sahel JA et al. 2015. Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis. J. Biol. Chem. 290:4941–52
    [Google Scholar]
  69. Lee H, Overall CM, McCulloch CA, Sodek J. 2006. A critical role for the membrane-type 1 matrix metalloproteinase in collagen phagocytosis. Mol. Biol. Cell 17:4812–26
    [Google Scholar]
  70. Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J et al. 2002. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:1898–901
    [Google Scholar]
  71. Lemke G. 2019. How macrophages deal with death. Nat. Rev. Immunol. 19:539–49
    [Google Scholar]
  72. Lemke G, Rothlin CV. 2008. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8:327–36
    [Google Scholar]
  73. Li J, Springer TA 2017. Integrin extension enables ultrasensitive regulation by cytoskeletal force. PNAS 114:4685–90
    [Google Scholar]
  74. Li P, Banjade S, Cheng HC, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40
    [Google Scholar]
  75. Li X, Utomo A, Cullere X, Choi MM, Milner DA Jr. et al. 2011. The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 10:603–15
    [Google Scholar]
  76. Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM 2006. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. PNAS 103:18992–97
    [Google Scholar]
  77. Lopes FB, Balint S, Valvo S, Felce JH, Hessel EM et al. 2017. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J. Cell Biol. 216:1123–41
    [Google Scholar]
  78. Lowell CA. 2011. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb. Perspect. Biol. 3:a002352
    [Google Scholar]
  79. Lu Q, Gore M, Zhang Q, Camenisch T, Boast S et al. 1999. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398:723–28
    [Google Scholar]
  80. Luo B, Gan W, Liu Z, Shen Z, Wang J et al. 2016. Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 44:287–302
    [Google Scholar]
  81. Luo BH, Carman CV, Springer TA. 2007. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol. 25:619–47
    [Google Scholar]
  82. Macauley MS, Crocker PR, Paulson JC. 2014. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14:653–66
    [Google Scholar]
  83. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S et al. 2009. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–99
    [Google Scholar]
  84. Manwani D, Bieker JJ. 2008. The erythroblastic island. Curr. Top. Dev. Biol. 82:23–53
    [Google Scholar]
  85. Mattila PK, Feest C, Depoil D, Treanor B, Montaner B et al. 2013. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 38:461–74
    [Google Scholar]
  86. Maxson ME, Naj X, O'Meara TR, Plumb JD, Cowen LE, Grinstein S 2018. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. eLife 7:e34798
    [Google Scholar]
  87. May A, Forrester LM. 2020. The erythroblastic island niche: modeling in health, stress, and disease. Exp. Hematol. 91:10–21
    [Google Scholar]
  88. Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y et al. 2020. Metabolites released from apoptotic cells act as tissue messengers. Nature 580:130–35
    [Google Scholar]
  89. Medraño-Fernandez I, Reyes R, Olazabal I, Rodriguez E, Sanchez-Madrid F et al. 2013. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis. Cell Mol. Life Sci. 70:2395–410
    [Google Scholar]
  90. Meesmann HM, Fehr EM, Kierschke S, Herrmann M, Bilyy R et al. 2010. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J. Cell Sci. 123:3347–56
    [Google Scholar]
  91. Mercer J, Helenius A. 2009. Virus entry by macropinocytosis. Nat. Cell Biol. 11:510–20
    [Google Scholar]
  92. Milićević N, Mazzaro N, de Bruin I, Wils E, ten Brink J et al. 2019. Rev-erbα and photoreceptor outer segments modulate the circadian clock in retinal pigment epithelial cells. Sci. Rep. 9:11790
    [Google Scholar]
  93. Moreland LW. 2003. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res. Ther. 5:54–67
    [Google Scholar]
  94. Morrissey MA, Kern N, Vale RD. 2020. CD47 ligation repositions the inhibitory receptor SIRPA to suppress integrin activation and phagocytosis. Immunity 53:290–302.e6
    [Google Scholar]
  95. Muller J, Obermeier I, Wohner M, Brandl C, Mrotzek S et al. 2013. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. PNAS 110:12402–7
    [Google Scholar]
  96. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M et al. 2008. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26:1789–96
    [Google Scholar]
  97. Muta T, Kurosaki T, Misulovin Z, Sanchez M, Nussenzweig MC, Ravetch JV. 1994. A 13-amino-acid motif in the cytoplasmic domain of FcγRIIB modulates B-cell receptor signalling. Nature 368:70–73
    [Google Scholar]
  98. Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K et al. 2020. Stabilization of endothelial receptor arrays by a polarized spectrin cytoskeleton facilitates rolling and adhesion of leukocytes. Cell Rep 31:107798
    [Google Scholar]
  99. Nandrot EF, Kim Y, Brodie SE, Huang X, Sheppard D, Finnemann SC. 2004. Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking αvβ5 integrin. J. Exp. Med. 200:1539–45
    [Google Scholar]
  100. Netea MG, Dominguez-Andres J, Barreiro LB, Chavakis T, Divangahi M et al. 2020. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20:375–88
    [Google Scholar]
  101. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098
    [Google Scholar]
  102. Nicol T, Bilbey DL, Ware CC. 1958. Effect of splenectomy on the phagocytic activity of the reticulo-endothelial system. Nature 182:534–35
    [Google Scholar]
  103. Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E et al. 2020. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183:94–109.e23
    [Google Scholar]
  104. Nimmerjahn F, Ravetch JV. 2006. Fcγ receptors: old friends and new family members. Immunity 24:19–28
    [Google Scholar]
  105. Nishida N, Xie C, Shimaoka M, Cheng Y, Walz T, Springer TA. 2006. Activation of leukocyte β2 integrins by conversion from bent to extended conformations. Immunity 25:583–94
    [Google Scholar]
  106. Noack J, Mukherjee S. 2020. “Make way”: pathogen exploitation of membrane traffic. Curr. Opin. Cell Biol. 65:78–85
    [Google Scholar]
  107. Novakovic B, Habibi E, Wang SY, Arts RJW, Davar R et al. 2016. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167:1354–68.e14
    [Google Scholar]
  108. Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T et al. 2005. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol. 174:2004–11
    [Google Scholar]
  109. Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV. 1997. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90:293–301
    [Google Scholar]
  110. O'Shaughnessy EC, Stone OJ, Lafosse PK, Azoitei ML, Tsygankov D et al. 2019. Software for lattice light-sheet imaging of FRET biosensors, illustrated with a new Rap1 biosensor. J. Cell Biol. 218:3153–60
    [Google Scholar]
  111. Ostrowski PP, Grinstein S, Freeman SA. 2016. Diffusion barriers, mechanical forces, and the biophysics of phagocytosis. Dev. Cell 38:135–46
    [Google Scholar]
  112. Pander J, Heusinkveld M, van der Straaten T, Jordanova ES, Baak-Pablo R et al. 2011. Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin. Cancer Res. 17:5668–73
    [Google Scholar]
  113. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–58
    [Google Scholar]
  114. Parish CR. 2006. The role of heparan sulphate in inflammation. Nat. Rev. Immunol. 6:633–43
    [Google Scholar]
  115. Patel PC, Harrison RE. 2008. Membrane ruffles capture C3bi-opsonized particles in activated macrophages. Mol. Biol. Cell 19:4628–39
    [Google Scholar]
  116. Paulson RF, Hariharan S, Little JA. 2020. Stress erythropoiesis: definitions and models for its study. Exp. Hematol. 89:43–54.e2
    [Google Scholar]
  117. Penberthy KK, Lysiak JJ, Ravichandran KS. 2018. Rethinking phagocytes: clues from the retina and testes. Trends Cell Biol 28:317–27
    [Google Scholar]
  118. Pereira S, Zhang H, Takai T, Lowell CA. 2004. The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. J. Immunol. 173:5757–65
    [Google Scholar]
  119. Perry JSA, Morioka S, Medina CB, Iker Etchegaray J, Barron B et al. 2019. Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. Nat. Cell Biol. 21:1532–43
    [Google Scholar]
  120. Petrey AC, de la Motte CA. 2014. Hyaluronan, a crucial regulator of inflammation. Front. Immunol. 5:101
    [Google Scholar]
  121. Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. 2009. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10:786–93
    [Google Scholar]
  122. Pincetic A, Bournazos S, Dilillo DJ, Maamary J, Wang TT et al. 2014. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15:707–16
    [Google Scholar]
  123. Pivkin IV, Peng Z, Karniadakis GE, Buffet PA, Dao M, Suresh S 2016. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. PNAS 113:7804–9
    [Google Scholar]
  124. Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T et al. 2019. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568:187–92
    [Google Scholar]
  125. Poon IK, Lucas CD, Rossi AG, Ravichandran KS. 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14:166–80
    [Google Scholar]
  126. Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–32
    [Google Scholar]
  127. Ravetch JV, Bolland S. 2001. IgG Fc receptors. Annu. Rev. Immunol. 19:275–90
    [Google Scholar]
  128. Riley JL. 2009. PD-1 signaling in primary T cells. Immunol. Rev. 229:114–25
    [Google Scholar]
  129. Roghanian A, Teige I, Martensson L, Cox KL, Kovacek M et al. 2015. Antagonistic human FcγRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo. Cancer Cell 27:473–88
    [Google Scholar]
  130. Ruggiero L, Connor MP, Chen J, Langen R, Finnemann SC 2012. Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5−/− or Mfge8−/− mouse retina. PNAS 109:8145–48
    [Google Scholar]
  131. Saggu G, Okubo K, Chen Y, Vattepu R, Tsuboi N et al. 2018. Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nat. Commun. 9:5058
    [Google Scholar]
  132. Sarantis H, Grinstein S. 2012. Subversion of phagocytosis for pathogen survival. Cell Host Microbe 12:419–31
    [Google Scholar]
  133. Savill J, Dransfield I, Hogg N, Haslett C. 1990. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343:170–73
    [Google Scholar]
  134. Savill JS, Henson PM, Haslett C. 1989. Phagocytosis of aged human neutrophils by macrophages is mediated by a novel “charge-sensitive” recognition mechanism. J. Clin. Invest. 84:1518–27
    [Google Scholar]
  135. Scott AM, Wolchok JD, Old LJ. 2012. Antibody therapy of cancer. Nat. Rev. Cancer 12:278–87
    [Google Scholar]
  136. Smith KG, Clatworthy MR. 2010. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10:328–43
    [Google Scholar]
  137. Sosale NG, Rouhiparkouhi T, Bradshaw AM, Dimova R, Lipowsky R, Discher DE. 2015. Cell rigidity and shape override CD47’s “self”-signaling in phagocytosis by hyperactivating myosin-II. Blood 125:542–52
    [Google Scholar]
  138. Soslau G, Giles J. 1982. The loss of sialic acid and its prevention in stored human platelets. Thromb. Res. 26:443–55
    [Google Scholar]
  139. Springer TA, Dustin ML. 2012. Integrin inside-out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24:107–15
    [Google Scholar]
  140. Su X, Ditlev JA, Hui E, Xing W, Banjade S et al. 2016. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–99
    [Google Scholar]
  141. Sun Z, Costell M, Fassler R. 2019. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21:25–31
    [Google Scholar]
  142. Swanson JA. 2008. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9:639–49
    [Google Scholar]
  143. Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N et al. 2009. Impaired inhibitory Fcγ receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. PNAS 106:4788–92
    [Google Scholar]
  144. Uchimido R, Schmidt EP, Shapiro NI. 2019. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit. Care 23:16
    [Google Scholar]
  145. Underhill DM, Rossnagle E, Lowell CA, Simmons RM. 2005. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:2543–50
    [Google Scholar]
  146. Vidarsson G, Dekkers G, Rispens T. 2014. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5:520
    [Google Scholar]
  147. Wang G, Simon DJ, Wu Z, Belsky DM, Heller E et al. 2019. Structural plasticity of actin-spectrin membrane skeleton and functional role of actin and spectrin in axon degeneration. eLife 8:e38730
    [Google Scholar]
  148. Wang KK, Posmantur R, Nath R, McGinnis K, Whitton M et al. 1998. Simultaneous degradation of αII- and βII-spectrin by caspase 3 (CPP32) in apoptotic cells. J. Biol. Chem. 273:22490–97
    [Google Scholar]
  149. Wei Q, Boulais PE, Zhang D, Pinho S, Tanaka M, Frenette PS. 2019. Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood 133:1222–32
    [Google Scholar]
  150. Weng WK, Levy R. 2003. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21:3940–47
    [Google Scholar]
  151. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P et al. 2012. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. PNAS 109:6662–67
    [Google Scholar]
  152. Wu Y, Tibrewal N, Birge RB. 2006. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 16:189–97
    [Google Scholar]
  153. Yuasa T, Kubo S, Yoshino T, Ujike A, Matsumura K et al. 1999. Deletion of Fcγ receptor IIB renders H-2b mice susceptible to collagen-induced arthritis. J. Exp. Med. 189:187–94
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120219-055903
Loading
/content/journals/10.1146/annurev-cellbio-120219-055903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error