1932

Abstract

The purpose of this review is to explore self-organizing mechanisms that pattern microtubules (MTs) and spatially organize animal cell cytoplasm, inspired by recent experiments in frog egg extract. We start by reviewing conceptual distinctions between self-organizing and templating mechanisms for subcellular organization. We then discuss self-organizing mechanisms that generate radial MT arrays and cell centers in the absence of centrosomes. These include autocatalytic MT nucleation, transport of minus ends, and nucleation from organelles such as melanosomes and Golgi vesicles that are also dynein cargoes. We then discuss mechanisms that partition the cytoplasm in syncytia, in which multiple nuclei share a common cytoplasm, starting with cytokinesis, when all metazoan cells are transiently syncytial. The cytoplasm of frog eggs is partitioned prior to cytokinesis by two self-organizing modules, protein regulator of cytokinesis 1 (PRC1)-kinesin family member 4A (KIF4A) and chromosome passenger complex (CPC)-KIF20A. Similar modules may partition longer-lasting syncytia, such as early embryos. We end by discussing shared mechanisms and principles for the MT-based self-organization of cellular units.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120319-025356
2021-10-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/37/1/annurev-cellbio-120319-025356.html?itemId=/content/journals/10.1146/annurev-cellbio-120319-025356&mimeType=html&fmt=ahah

Literature Cited

  1. Adriaans IE, Hooikaas PJ, Aher A, Vromans MJM, van Es RM et al. 2020. MKLP2 is a motile kinesin that transports the chromosomal passenger complex during anaphase. Curr. Biol. 30:2628–37.e9
    [Google Scholar]
  2. Afanzar O, Buss GK, Stearns T, Ferrell JE 2020. The nucleus serves as the pacemaker for the cell cycle. eLife 9:e59989
    [Google Scholar]
  3. Alfaro-Aco R, Thawani A, Petry S 2020. Biochemical reconstitution of branching microtubule nucleation. eLife 9:e49797
    [Google Scholar]
  4. Arquint C, Nigg EA. 2016. The PLK4-STIL-SAS-6 module at the core of centriole duplication. Biochem. Soc. Trans. 44:1253–63
    [Google Scholar]
  5. Baker J, Theurkauf WE, Schubiger G. 1993. Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J. Cell Biol. 122:113–21
    [Google Scholar]
  6. Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  7. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW. 2006. Flies without centrioles. Cell 125:1375–86
    [Google Scholar]
  8. Becker R, Leone M, Engel FB. 2020. Microtubule organization in striated muscle cells. Cells 9:1395
    [Google Scholar]
  9. Beisson J, Sonneborn TM 1965. Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. PNAS 53:275–82
    [Google Scholar]
  10. Benkemoun L, Saupe SJ. 2006. Prion proteins as genetic material in fungi. Fungal Genet. Biol. 43:789–803
    [Google Scholar]
  11. Bieling P, Telley IA, Surrey T. 2010. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–32
    [Google Scholar]
  12. Blangy A, Bompard G, Guerit D, Marie P, Maurin J et al. 2020. The osteoclast cytoskeleton – current understanding and therapeutic perspectives for osteoporosis. J. Cell Sci. 133:jcs244798
    [Google Scholar]
  13. Borgal L, Wakefield JG. 2018. Context-dependent spindle pole focusing. Essays Biochem 62:803–13
    [Google Scholar]
  14. Brinkley BR. 1985. Microtubule organizing centers. Annu. Rev. Cell Biol. 1:145–72
    [Google Scholar]
  15. Calvert SJ, Longtine MS, Cotter S, Jones CJP, Sibley CP et al. 2016. Studies of the dynamics of nuclear clustering in human syncytiotrophoblast. Reproduction 151:657–71
    [Google Scholar]
  16. Cheng X, Ferrell JE. 2019. Spontaneous emergence of cell-like organization in Xenopus egg extracts. Science 366:631–37
    [Google Scholar]
  17. Cytrynbaum EN, Rodionov V, Mogilner A. 2006. Nonlocal mechanism of self-organization and centering of microtubule asters. Bull. Math. Biol. 68:1053–72
    [Google Scholar]
  18. De Mey J, Lambert AM, Bajer AS, Moeremans M, De Brabander M 1982. Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. PNAS 79:1898–902
    [Google Scholar]
  19. Decker F, Oriola D, Dalton B, Brugués J 2018. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles. eLife 7:e31149
    [Google Scholar]
  20. Dion MF, Kapoor M, Sun Y, Wilson S, Ryan J et al. 2019. Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nat. Microbiol. 4:1294–305
    [Google Scholar]
  21. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM et al. 2007. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12:917–30
    [Google Scholar]
  22. Field CM, Groen AC, Nguyen PA, Mitchison TJ. 2015. Spindle-to-cortex communication in cleaving, polyspermic Xenopus eggs. Mol. Biol. Cell 26:3628–40
    [Google Scholar]
  23. Field CM, Pelletier JF, Mitchison TJ. 2019. Disassembly of actin and keratin networks by Aurora B kinase at the midplane of cleaving Xenopus laevis eggs. Curr. Biol. 29:1999–2008.e4
    [Google Scholar]
  24. Foe VE, Alberts BM. 1983. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61:31–70
    [Google Scholar]
  25. Fradin C. 2017. On the importance of protein diffusion in biological systems: the example of the Bicoid morphogen gradient. Biochim. Biophys. Acta Proteins Proteom. 1865:1676–86
    [Google Scholar]
  26. Frescas D, Mavrakis M, Lorenz H, Delotto R, Lippincott-Schwartz J. 2006. The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J. Cell Biol. 173:219–30
    [Google Scholar]
  27. Frye K, Renda F, Fomicheva M, Zhu X, Gong L et al. 2020. Cell cycle-dependent dynamics of the Golgi-centrosome association in motile cells. Cells 9:1069
    [Google Scholar]
  28. Fu M-M, McAlear TS, Nguyen H, Oses-Prieto JA, Valenzuela A et al. 2019. The Golgi outpost protein TPPP nucleates microtubules and is critical for myelination. Cell 179:132–46.e14
    [Google Scholar]
  29. Fuller BG, Lampson MA, Foley EA, Rosasco-Nitcher S, Le KV et al. 2008. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453:1132–36
    [Google Scholar]
  30. Gavilan MP, Gandolfo P, Balestra FR, Arias F, Bornens M, Rios RM. 2018. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep 19:e45942
    [Google Scholar]
  31. Gibeaux R, Lang C, Politi AZ, Jaspersen SL, Philippsen P, Antony C 2012. Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii. J. Cell Sci. 125:5830–39
    [Google Scholar]
  32. Glotzer M. 2009. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat. Rev. Mol. Cell Biol. 10:9–20
    [Google Scholar]
  33. Goldberg MW. 2017. Nuclear pore complex tethers to the cytoskeleton. Semin. Cell Dev. Biol. 68:52–58
    [Google Scholar]
  34. Guizetti J, Schermelleh L, Mäntler J, Maar S, Poser I et al. 2011. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–20
    [Google Scholar]
  35. Hannabuss J, Lera-Ramirez M, Cade NI, Fourniol FJ, Nédélec F, Surrey T. 2019. Self-organization of minimal anaphase spindle midzone bundles. Curr. Biol. 29:2120–30.e7
    [Google Scholar]
  36. Hatsumi M, Endow SA. 1992. Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci. 101:Part 3547–59
    [Google Scholar]
  37. Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A. 1997. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138:615–28
    [Google Scholar]
  38. Herbein G, Nehme Z. 2020. Polyploid giant cancer cells, a hallmark of oncoviruses and a new therapeutic challenge. Front. Oncol 10:567116
    [Google Scholar]
  39. Hueschen CL, Kenny SJ, Xu K, Dumont S 2017. NuMA recruits dynein activity to microtubule minus-ends at mitosis. eLife 6:e29328
    [Google Scholar]
  40. Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K et al. 2018. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 7:e32471
    [Google Scholar]
  41. Hyman AA, Weber CA, Jülicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  42. Ishihara K, Decker F, Caldas P, Pelletier JF, Loose M et al. 2021. Spatial variation of microtubule depolymerization in large asters. Mol. Biol. Cell https://doi.org/10.1091/mbc.E20-11-0723
    [Crossref] [Google Scholar]
  43. Ishihara K, Korolev KS, Mitchison TJ 2016. Physical basis of large microtubule aster growth. eLife 5:e19145
    [Google Scholar]
  44. Ishihara K, Nguyen PA, Groen AC, Field CM, Mitchison TJ 2014. Microtubule nucleation remote from centrosomes may explain how asters span large cells. PNAS 111:17715–22
    [Google Scholar]
  45. Kalab P, Heald R. 2008. The RanGTP gradient – a GPS for the mitotic spindle. J. Cell. Sci. 121:1577–86
    [Google Scholar]
  46. Kamber D, Erez H, Spira ME. 2009. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp. Neurol. 219:112–25
    [Google Scholar]
  47. Kapitein LC, Hoogenraad CC. 2015. Building the neuronal microtubule cytoskeleton. Neuron 87:492–506
    [Google Scholar]
  48. Kapoor TM. 2017. Metaphase spindle assembly. Biology 6:8
    [Google Scholar]
  49. Karsenti E, Vernos I. 2001. The mitotic spindle: a self-made machine. Science 294:543–47
    [Google Scholar]
  50. King MR, Petry S. 2020. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat. Commun. 11:270
    [Google Scholar]
  51. Landge AN, Jordan BM, Diego X, Müller P 2020. Pattern formation mechanisms of self-organizing reaction-diffusion systems. Dev. Biol. 460:2–11
    [Google Scholar]
  52. Langdon EM, Qiu Y, Ghanbari Niaki A, McLaughlin GA, Weidmann CA et al. 2018. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:922–27
    [Google Scholar]
  53. Lee KS, Park J-E, Ahn JI, Wei Z, Zhang L. 2020. A self-assembled cylindrical platform for Plk4-induced centriole biogenesis. Open. Biol. 10:200102
    [Google Scholar]
  54. Lee Y-RJ, Liu B. 2019. Microtubule nucleation for the assembly of acentrosomal microtubule arrays in plant cells. New Phytol 222:1705–18
    [Google Scholar]
  55. Letort G, Bennabi I, Dmitrieff S, Nedelec F, Verlhac M-H, Terret M-E. 2019. A computational model of the early stages of acentriolar meiotic spindle assembly. Mol. Biol. Cell 30:863–75
    [Google Scholar]
  56. Liu P, Zupa E, Neuner A, Böhler A, Loerke J et al. 2020. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature 578:467–71
    [Google Scholar]
  57. Ma R, Laan L, Dogterom M, Pavin N, Julicher F. 2014. General theory for the mechanics of confined microtubule asters. New J. Phys. 16:013018
    [Google Scholar]
  58. Malikov V, Cytrynbaum EN, Kashina A, Mogilner A, Rodionov V. 2005. Centering of a radial microtubule array by translocation along microtubules spontaneously nucleated in the cytoplasm. Nat. Cell Biol. 7:1213–18
    [Google Scholar]
  59. Mavrakis M, Rikhy R, Lippincott-Schwartz J. 2009. Cells within a cell: insights into cellular architecture and polarization from the organization of the early fly embryo. Commun. Integr. Biol. 2:313–14
    [Google Scholar]
  60. McNiven MA, Wang M, Porter KR 1984. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell 37:753–65
    [Google Scholar]
  61. Mine I, Menzel D, Okuda K. 2008. Morphogenesis in giant-celled algae. Int. Rev. Cell Mol. Biol. 266:37–83
    [Google Scholar]
  62. Mitchison TJ. 2020. Beyond Langmuir: surface-bound macromolecule condensates. Mol. Biol. Cell 31:2502–8
    [Google Scholar]
  63. Mitchison TJ, Field CM. 2017. Spindle-to-cortex communication in cleaving frog eggs. Cold Spring Harb. Symp. Quant. Biol. 82:165–71
    [Google Scholar]
  64. Mitchison TJ, Field CM. 2019. Toward synthetic cells. Science 366:569–70
    [Google Scholar]
  65. Mitchison TJ, Ishihara K, Nguyen P, Wühr M. 2015. Size scaling of microtubule assemblies in early Xenopus embryos. Cold Spring Harb. Perspect. Biol. 7:a019182
    [Google Scholar]
  66. Mitchison T, Wühr M, Nguyen P, Ishihara K, Groen A, Field CM. 2012. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton 69:738–50
    [Google Scholar]
  67. Moskovszky L, Dezsö K, Athanasou N, Szendröi M, Kopper L et al. 2010. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability. Mod. Pathol. 23:359–66
    [Google Scholar]
  68. Nédélec FJ, Surrey T, Maggs AC, Leibler S. 1997. Self-organization of microtubules and motors. Nature 389:305–8
    [Google Scholar]
  69. Nguyen PA, Field CM, Mitchison TJ. 2018. Prc1E and Kif4A control microtubule organization within and between large Xenopus egg asters. Mol. Biol. Cell 29:304–16
    [Google Scholar]
  70. Nguyen PA, Groen AC, Loose M, Ishihara K, Wühr M et al. 2014. Spatial organization of cytokinesis signaling reconstituted in a cell-free system. Science 346:244–47
    [Google Scholar]
  71. Oakley BR, Oakley CE, Yoon Y, Jung MK. 1990. γ-Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:1289–301
    [Google Scholar]
  72. O'Connell CB, Khodjakov AL 2007. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120:1717–22
    [Google Scholar]
  73. Oddoux S, Randazzo D, Kenea A, Alonso B, Zaal KJM, Ralston E. 2019. Misplaced Golgi elements produce randomly oriented microtubules and aberrant cortical arrays of microtubules in dystrophic skeletal muscle fibers. Front. Cell Dev. Biol. 7:176
    [Google Scholar]
  74. Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA et al. 2013. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J. Cell Biol. 203:205–13
    [Google Scholar]
  75. Oh D, Yu C-H, Needleman DJ 2016. Spatial organization of the Ran pathway by microtubules in mitosis. PNAS 113:8729–34
    [Google Scholar]
  76. Pelletier JF, Field CM, Fuerthauer S, Sonnett M, Mitchison TJ 2020. Co-movement of astral microtubules, organelles and F-actin by dynein and actomyosin forces in frog egg cytoplasm. eLife 9:e60047
    [Google Scholar]
  77. Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–65
    [Google Scholar]
  78. Rieckhoff EM, Berndt F, Elsner M, Golfier S, Decker F et al. 2020. Spindle scaling is governed by cell boundary regulation of microtubule nucleation. Curr. Biol. 30:4973–83.e10
    [Google Scholar]
  79. Rodionov VI, Borisy GG. 1997. Self-centring activity of cytoplasm. Nature 386:170–73
    [Google Scholar]
  80. Ruchaud S, Carmena M, Earnshaw WC. 2007. Chromosomal passengers: conducting cell division. Nat. Rev. Mol. Cell Biol. 8:798–812
    [Google Scholar]
  81. Sampath SC, Ohi R, Leismann O, Salic A, Pozniakovski A, Funabiki H. 2004. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118:187–202
    [Google Scholar]
  82. Sánchez-Huertas C, Lüders J. 2015. The augmin connection in the geometry of microtubule networks. Curr. Biol. 25:R294–99
    [Google Scholar]
  83. Shamipour S, Caballero-Mancebo S, Heisenberg C-P. 2021. Cytoplasm's got moves. Dev. Cell 56:213–26
    [Google Scholar]
  84. Sitte P. 1992. A modern concept of the “cell theory”: a perspective on competing hypotheses of structure. Int. J. Plant Sci. 153: https://doi.org/10.1086/297059
    [Crossref] [Google Scholar]
  85. Sluder G. 2014. One to only two: a short history of the centrosome and its duplication. Philos. Trans. R. Soc. B 369: https://doi.org/10.1098/rstb.2013.0455
    [Crossref] [Google Scholar]
  86. So C, Seres KB, Steyer AM, Mönnich E, Clift D et al. 2019. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 364:eaat9557
    [Google Scholar]
  87. Solomon F. 1979. Detailed neurite morphologies of sister neuroblastoma cells are related. Cell 16:165–69
    [Google Scholar]
  88. Sonneborn TM. 1964. The determinants and evolution of life. The differentiation of cells. PNAS 51:915–29
    [Google Scholar]
  89. Sullivan W, Theurkauf WE. 1995. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr. Opin. Cell Biol. 7:18–22
    [Google Scholar]
  90. Surrey T, Nedelec F, Leibler S, Karsenti E. 2001. Physical properties determining self-organization of motors and microtubules. Science 292:1167–71
    [Google Scholar]
  91. Telley IA, Gáspár I, Ephrussi A, Surrey T. 2012. Aster migration determines the length scale of nuclear separation in the Drosophila syncytial embryo. J. Cell Biol. 197:887–95
    [Google Scholar]
  92. Tian J, Kong Z. 2019. The role of the augmin complex in establishing microtubule arrays. J. Exp. Bot. 70:3035–41
    [Google Scholar]
  93. Tiwary AK, Zheng Y. 2019. Protein phase separation in mitosis. Curr. Opin. Cell Biol. 60:92–98
    [Google Scholar]
  94. Trivedi P, Stukenberg PT. 2020. A condensed view of the chromosome passenger complex. Trends Cell Biol 30:676–87
    [Google Scholar]
  95. Valenzuela A, Meservey L, Nguyen H, Fu M-M. 2020. Golgi outposts nucleate microtubules in cells with specialized shapes. Trends Cell Biol 30:792–804
    [Google Scholar]
  96. Verde F, Berrez JM, Antony C, Karsenti E 1991. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112:1177–87
    [Google Scholar]
  97. Verkhovsky AB, Svitkina TM, Borisy GG. 1999. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9:11–20
    [Google Scholar]
  98. von Dassow G, Schubiger G. 1994. How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J. Cell Biol. 127:1637–53
    [Google Scholar]
  99. Vorobjev I, Malikov V, Rodionov V 2001. Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules. PNAS 98:10160–65
    [Google Scholar]
  100. Wikipedia 2021. Self-organization. Wikipedia https://en.wikipedia.org/wiki/Self-organization
    [Google Scholar]
  101. Wilkes OR, Moore AW. 2020. Distinct microtubule organizing center mechanisms combine to generate neuron polarity and arbor complexity. Front. . Cell Neurosci 14:594199
    [Google Scholar]
  102. Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A et al. 2015. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348:1155–60
    [Google Scholar]
  103. Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA 2017. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169:1066–77.e10
    [Google Scholar]
  104. Wu J, Akhmanova A. 2017. Microtubule-organizing centers. Annu. Rev. Cell Dev. Biol. 33:51–75
    [Google Scholar]
  105. Wühr M, Tan ES, Parker SK, Detrich HW 3rd, Mitchison TJ. 2010. A model for cleavage plane determination in early amphibian and fish embryos. Curr. Biol. 20:2040–45
    [Google Scholar]
  106. Xiang X. 2018. Nuclear movement in fungi. Semin. Cell Dev. Biol. 82:3–16
    [Google Scholar]
  107. Xu J, Hendrix RW, Duda RL. 2014. Chaperone-protein interactions that mediate assembly of the bacteriophage lambda tail to the correct length. J. Mol. Biol. 426:1004–18
    [Google Scholar]
  108. Yamada M, Goshima G. 2017. Mitotic spindle assembly in land plants: molecules and mechanisms. Biology 6:6
    [Google Scholar]
  109. Zwicker D, Baumgart J, Redemann S, Müller-Reichert T, Hyman AA, Jülicher F. 2018. Positioning of particles in active droplets. Phys. Rev. Lett. 121:158102
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120319-025356
Loading
/content/journals/10.1146/annurev-cellbio-120319-025356
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error