1932

Abstract

Dwindling fossil fuel resources and substantial release of CO from their processing have increased the appeal to use biomass as a sustainable platform for synthesis of chemicals and fuels. Steps toward this will require selective upgrading of biomass to suitable intermediates. Traditionally, biomass upgrading has involved thermochemical processes that require excessive amounts of petrochemical-derived H and suffer from poor product selectivity. Electrochemical routes have emerged as promising alternatives because of () the replacement of petrochemical-derived H by protons generated in situ, () mild operating temperatures and pressures, and () the use of electrode potential to tune reaction rates and product selectivity. In this review, we highlight the advances in the electrocatalytic hydrogenation and oxidation of biomass-derived platform molecules. The effects of important reaction parameters on electrochemical efficiency and catalytic activity/selectivity are thoroughly discussed. We conclude by summarizing current challenges and discussing future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030148
2019-06-07
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030148.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030148&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Orella MJ, Román-Leshkov Y, Brushett FR 2018. Emerging opportunities for electrochemical processing to enable sustainable chemical manufacturing. Curr. Opin. Chem. Eng. 20:159–67
    [Google Scholar]
  2. 2.
    Dresselhaus M, Thomas I. 2001. Alternative energy technologies. Nature 414:332–37
    [Google Scholar]
  3. 3.
    Pruett RL. 1981. Synthesis gas: a raw material for industrial chemicals. Science 211:11–16
    [Google Scholar]
  4. 4.
    Dai J, Saayman J, Grace JR, Ellis N 2015. Gasification of woody biomass. Annu. Rev. Chem. Biomol. Eng. 6:77–99
    [Google Scholar]
  5. 5.
    Lam CH, Lowe CB, Li Z, Longe KN, Rayburn JT et al. 2015. Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes. Green Chem 17:601–9
    [Google Scholar]
  6. 6.
    Hoppe F, Heuser B, Thewes M, Kremer F, Pischinger S et al. 2016. Tailor-made fuels for future engine concepts. Int. J. Engine Res. 17:16–27
    [Google Scholar]
  7. 7.
    Hannula I. 2015. Co-production of synthetic fuels and district heat from biomass residues, carbon dioxide and electricity: performance and cost analysis. Biomass Bioenergy 74:26–46
    [Google Scholar]
  8. 8.
    Newman J, Bonino CA, Trainham JA 2018. The energy future. Annu. Rev. Chem. Biomol. Eng. 9:153–74
    [Google Scholar]
  9. 9.
    Green SK, Tompsett GA, Kim HJ, Kim WB, Huber GW 2012. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass. ChemSusChem 5:2410–20
    [Google Scholar]
  10. 10.
    Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y et al. 2012. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. PNAS 109:9727–32
    [Google Scholar]
  11. 11.
    Nikolla E, Román-Leshkov Y, Moliner M, Davis ME 2011. “One-pot” synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite. ACS Catal 1:408–10
    [Google Scholar]
  12. 12.
    Jan O, Marchand R, Anjos LC, Seufitelli GV, Nikolla E, Resende FL 2015. Hydropyrolysis of lignin using Pd/HZSM-5. Energy Fuels 29:1793–800
    [Google Scholar]
  13. 13.
    Ju F, VanderVelde D, Nikolla E 2014. Molybdenum-based polyoxometalates as highly active and selective catalysts for the epimerization of aldoses. ACS Catal 4:1358–64
    [Google Scholar]
  14. 14.
    Serrano-Ruiz JC, West RM, Dumesic JA 2010. Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 1:79–100
    [Google Scholar]
  15. 15.
    Horanyi G. 1991. Induced cation adsorption on platinum and modified platinum electrodes. Electrochim. Acta 36:1453–63
    [Google Scholar]
  16. 16.
    Perlack RD, Wright LL, Turhollow A, Graham RL, Stokes B, Erbach DC 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply Report No. DOE/GO-102995-2135 Oak Ridge Natl. Lab Oak Ridge, TN: http://renewables.morris.umn.edu/biomass/documents/USDA-BillionTon2005.pdf
  17. 17.
    Huber GW, Iborra S, Corma A 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106:4044–98
    [Google Scholar]
  18. 18.
    Clark JH, Luque R, Matharu AS 2012. Green chemistry, biofuels, and biorefinery. Annu. Rev. Chem. Biomol. Eng. 3:183–207
    [Google Scholar]
  19. 19.
    Corma A, Iborra S, Velty A 2007. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107:2411–502
    [Google Scholar]
  20. 20.
    Gallezot P. 2008. Catalytic conversion of biomass: challenges and issues. ChemSusChem 1:734–37
    [Google Scholar]
  21. 21.
    Scholze B, Meier D. 2001. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J. Anal. Appl. Pyrolysis 60:41–54
    [Google Scholar]
  22. 22.
    Vispute TP, Huber GW. 2009. Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chem 11:1433–45
    [Google Scholar]
  23. 23.
    Mahfud F, Ghijsen F, Heeres H 2007. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. J. Mol. Catal. A Chem. 264:227–36
    [Google Scholar]
  24. 24.
    Bridgwater A. 1996. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal. Today 29:285–95
    [Google Scholar]
  25. 25.
    Czernik S, Bridgwater A. 2004. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–98
    [Google Scholar]
  26. 26.
    Nilges P, dos Santos TR, Harnisch F, Schröder U 2012. Electrochemistry for biofuel generation: electrochemical conversion of levulinic acid to octane. Energy Environ. Sci. 5:5231–35
    [Google Scholar]
  27. 27.
    Vuyyuru KR, Strasser P. 2012. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal. Today 195:144–54
    [Google Scholar]
  28. 28.
    Zhao B, Chen M, Guo Q, Fu Y 2014. Electrocatalytic hydrogenation of furfural to furfuryl alcohol using platinum supported on activated carbon fibers. Electrochim. Acta 135:139–46
    [Google Scholar]
  29. 29.
    Chadderdon XH, Chadderdon DJ, Matthiesen JE, Qiu Y, Carraher JM et al. 2017. Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 139:14120–28
    [Google Scholar]
  30. 30.
    Green SK, Lee J, Kim HJ, Tompsett GA, Kim WB, Huber GW 2013. The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chem 15:1869–79
    [Google Scholar]
  31. 31.
    Bozell JJ, Petersen GR. 2010. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited. Green Chem 12:539–54
    [Google Scholar]
  32. 32.
    Werpy T, Petersen G, Aden A, Bozell J, Holladay J et al. 2004. Top Value Added Chemicals from Biomass, Vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas Washington, DC: US Dep. Energy
  33. 33.
    Matthiesen JE, Carraher JM, Vasiliu M, Dixon DA, Tessonnier J-P 2016. Electrochemical conversion of muconic acid to biobased diacid monomers. ACS Sustain. Chem. Eng. 4:3575–85
    [Google Scholar]
  34. 34.
    Li Z, Garedew M, Lam CH, Jackson JE, Miller DJ, Saffron CM 2012. Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth. Green Chem 14:2540–49
    [Google Scholar]
  35. 35.
    Kwon Y, Schouten KJP, van der Waal JC, de Jong E, Koper MT 2016. Electrocatalytic conversion of furanic compounds. ACS Catal 6:6704–17
    [Google Scholar]
  36. 36.
    Li Z, Kelkar S, Raycraft L, Garedew M, Jackson JE et al. 2014. A mild approach for bio-oil stabilization and upgrading: electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem 16:844–52
    [Google Scholar]
  37. 37.
    Lange JP, Van Der Heide E, van Buijtenen J, Price R 2012. Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5:150–66
    [Google Scholar]
  38. 38.
    Sitthisa S, Resasco DE. 2011. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal. Lett. 141:784–91
    [Google Scholar]
  39. 39.
    Panagiotopoulou P, Martin N, Vlachos DG 2014. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. A Chem. 392:223–28
    [Google Scholar]
  40. 40.
    Rosatella AA, Simeonov SP, Frade RF, Afonso CA 2011. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–93
    [Google Scholar]
  41. 41.
    van Putten R-J, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, de Vries JG 2013. Hydroxy-methylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113:1499–597
    [Google Scholar]
  42. 42.
    Vuyyuru KR. 2012. Conversion of cellulosic biomass into chemicals using heterogeneous and electrochemical catalysis MS Thesis, Tech. Univ Berlin, Ger:.
  43. 43.
    Daniel R, Tian G, Xu H, Shuai S 2012. Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine. Fuel 99:72–82
    [Google Scholar]
  44. 44.
    Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA 2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–85
    [Google Scholar]
  45. 45.
    Nilges P, Schröder U. 2013. Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ. Sci. 6:2925–31
    [Google Scholar]
  46. 46.
    Lister TE, Diaz LA, Lilga MA, Padmaperuma AB, Lin Y et al. 2018. Low-temperature electrochemical upgrading of bio-oils using polymer electrolyte membranes. Energy Fuels 32:5944–50
    [Google Scholar]
  47. 47.
    Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD 2011. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407:1–19
    [Google Scholar]
  48. 48.
    Kim T-S, Kim J-Y, Kim K-H, Lee S, Choi D et al. 2012. The effect of storage duration on bio-oil properties. J. Anal. Appl. Pyrolysis 95:118–25
    [Google Scholar]
  49. 49.
    Li Z, Kelkar S, Lam CH, Luczek K, Jackson JE et al. 2012. Aqueous electrocatalytic hydrogenation of furfural using a sacrificial anode. Electrochim. Acta 64:87–93
    [Google Scholar]
  50. 50.
    Kwon Y, de Jong E, Raoufmoghaddam S, Koper MT 2013. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose. ChemSusChem 6:1659–67
    [Google Scholar]
  51. 51.
    Kwon Y, Birdja YY, Raoufmoghaddam S, Koper MT 2015. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution. ChemSusChem 8:1745–51
    [Google Scholar]
  52. 52.
    Roylance JJ, Choi K-S. 2016. Electrochemical reductive biomass conversion: direct conversion of 5-hydroxymethylfurfural (HMF) to 2,5-hexanedione (HD) via reductive ring-opening. Green Chem 18:2956–60
    [Google Scholar]
  53. 53.
    Laplante F, Brossard L, Ménard H 2003. Considerations about phenol electrohydrogenation on electrodes made with reticulated vitreous carbon cathode. Can. J. Chem. 81:258–64
    [Google Scholar]
  54. 54.
    Santana DS, Melo GO, Lima MV, Daniel JR, Areias MC, Navarro M 2004. Electrocatalytic hydrogenation of organic compounds using a nickel sacrificial anode. J. Electroanal. Chem. 569:71–78
    [Google Scholar]
  55. 55.
    Cyr A, Chiltz F, Jeanson P, Martel A, Brossard L et al. 2000. Electrocatalytic hydrogenation of lignin models at Raney nickel and palladium-based electrodes. Can. J. Chem. 78:307–15
    [Google Scholar]
  56. 56.
    Parpot P, Bettencourt A, Chamoulaud G, Kokoh K, Belgsir E 2004. Electrochemical investigations of the oxidation–reduction of furfural in aqueous medium: application to electrosynthesis. Electrochim. Acta 49:397–403
    [Google Scholar]
  57. 57.
    Singh N, Song Y, Gutiérrez OY, Camaioni DM, Campbell CT, Lercher JA 2016. Electrocatalytic hydrogenation of phenol over platinum and rhodium: Unexpected temperature effects resolved. ACS Catal 6:7466–70
    [Google Scholar]
  58. 58.
    Cha HG, Choi K-S. 2015. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7:328
    [Google Scholar]
  59. 59.
    Dekel DR. 2018. Review of cell performance in anion exchange membrane fuel cells. J. Power Sources 375:158–69
    [Google Scholar]
  60. 60.
    Chadderdon DJ, Xin L, Qi J, Qiu Y, Krishna P et al. 2014. Electrocatalytic oxidation of 5-hydroxy-methylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem 16:3778–86
    [Google Scholar]
  61. 61.
    Dai C, Sun L, Liao H, Khezri B, Webster RD et al. 2017. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 356:14–21
    [Google Scholar]
  62. 62.
    Holade Y, Morais C, Servat K, Napporn TW, Kokoh KB 2013. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies. ACS Catal 3:2403–11
    [Google Scholar]
  63. 63.
    Chamoulaud G, Floner D, Moinet C, Lamy C, Belgsir E 2001. Biomass conversion II: simultaneous electrosyntheses of furoic acid and furfuryl alcohol on modified graphite felt electrodes. Electrochim. Acta 46:2757–60
    [Google Scholar]
  64. 64.
    Ciriminna R, Palmisano G, Della Pina C, Rossi M, Pagliaro M 2006. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Lett 47:6993–95
    [Google Scholar]
  65. 65.
    Bauer R, Hekmat D. 2006. Development of a transient segregated mathematical model of the semicontinuous microbial production process of dihydroxyacetone. Biotechnol. Prog. 22:278–84
    [Google Scholar]
  66. 66.
    Yang G-Y, Ke Y-H, Ren H-F, Liu C-L, Yang R-Z, Dong W-S 2016. The conversion of glycerol to lactic acid catalyzed by ZrO2-supported CuO catalysts. Chem. Eng. J. 283:759–67
    [Google Scholar]
  67. 67.
    Ramírez-López CA, Ochoa-Gómez JR, Fernández-Santos Ma, Gómez-Jiménez-Aberasturi O, Alonso-Vicario A, Torrecilla-Soria J 2010. Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. Ind. Eng. Chem. Res. 49:6270–78
    [Google Scholar]
  68. 68.
    Lam CH, Bloomfield AJ, Anastas PT 2017. A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst. Green Chem 19:1958–68
    [Google Scholar]
  69. 69.
    Qi J, Xin L, Chadderdon DJ, Qiu Y, Jiang Y et al. 2014. Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Appl. Catal. B 154:360–68
    [Google Scholar]
  70. 70.
    Lux S, Stehring P, Siebenhofer M 2010. Lactic acid production as a new approach for exploitation of glycerol. Sep. Sci. Technol. 45:1921–27
    [Google Scholar]
  71. 71.
    Hunsom M, Saila P. 2015. Electrochemical conversion of enriched crude glycerol: effect of operating parameters. Renew. Energy 74:227–36
    [Google Scholar]
  72. 72.
    Wang H, Thia L, Li N, Ge X, Liu Z, Wang X 2015. Selective electro-oxidation of glycerol over Au supported on extended poly(4-vinylpyridine) functionalized graphene. Appl. Catal. B 166:25–31
    [Google Scholar]
  73. 73.
    Kwon Y, Schouten KJP, Koper MT 2011. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3:1176–85
    [Google Scholar]
  74. 74.
    Zhang Z, Xin L, Li W 2012. Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals. Appl. Catal. B 119:40–48
    [Google Scholar]
  75. 75.
    Roquet L, Belgsir E, Léger J-M, Lamy C 1994. Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: potential and pH effects. Electrochim. Acta 39:2387–94
    [Google Scholar]
  76. 76.
    Zhang Z, Xin L, Li W 2012. Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC). Int. J. Hydrogen Energy 37:9393–401
    [Google Scholar]
  77. 77.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ 2010. Reactivity of the gold/water interface during selective oxidation catalysis. Science 330:74–78
    [Google Scholar]
  78. 78.
    James OO, Sauter W, Schröder U 2018. Towards selective electrochemical conversion of glycerol to 1,3-propanediol. RSC Adv 8:10818–27
    [Google Scholar]
  79. 79.
    Goncalves R, Triaca W, Rabockai T 1985. The potentiodynamic electrooxidation of glycerol on platinized platinum electrodes. Anal. Lett. 18:957–73
    [Google Scholar]
  80. 80.
    Siedlecka R, Skarzewski J, Młochowski J 1990. Selective oxidation of primary hydroxy groups in primary-secondary diols. Tetrahedron Lett 31:2177–80
    [Google Scholar]
  81. 81.
    Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper MT 2012. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal 2:759–64
    [Google Scholar]
  82. 82.
    Lee S, Kim HJ, Lim EJ, Kim Y, Noh Y et al. 2016. Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process. Green Chem 18:2877–87
    [Google Scholar]
  83. 83.
    Xie S-W, Chen S, Liu Z-Q, Xu C-W 2011. Comparison of alcohol electrooxidation on Pt and Pd electrodes in alkaline medium. Int. J. Electrochem. Sci. 6:882–88
    [Google Scholar]
  84. 84.
    Greeley J, Stephens I, Bondarenko A, Johansson TP, Hansen HA et al. 2009. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1:55274
    [Google Scholar]
  85. 85.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR et al. 2004. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108:17886–92
    [Google Scholar]
  86. 86.
    Wang L, Holewinski A, Wang C 2018. Prospects of platinum-based nanostructures for the electrocatalytic reduction of oxygen. ACS Catal 8:9388–98
    [Google Scholar]
  87. 87.
    Kongjao S, Damronglerd S, Hunsom M 2011. Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. J. Appl. Electrochem. 41:215–22
    [Google Scholar]
  88. 88.
    Simões M, Baranton S, Coutanceau C 2010. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B 93:354–62
    [Google Scholar]
  89. 89.
    Beden B, Cetin I, Kahyaoglu A, Takky D, Lamy C 1987. Electrocatalytic oxidation of saturated oxygenated compounds on gold electrodes. J. Catal. 104:37–46
    [Google Scholar]
  90. 90.
    Zhang J-H, Liang Y-J, Li N, Li Z-Y, Xu C-W, Jiang SP 2012. A remarkable activity of glycerol electrooxidation on gold in alkaline medium. Electrochim. Acta 59:156–59
    [Google Scholar]
  91. 91.
    Nishimura K, Kunimatsu K, Enyo M 1989. Electrocatalysis on Pd + Au alloy electrodes: part III. IR spectroscopic studies on the surface species derived from CO and CH3OH in NaOH solution. J. Electroanal. Chem. 260:167–79
    [Google Scholar]
  92. 92.
    Tremiliosi-Filho G, Gonzalez E, Motheo A, Belgsir E, Leger J-M, Lamy C 1998. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism. J. Electroanal. Chem. 444:31–39
    [Google Scholar]
  93. 93.
    Rossmeisl J, Ferrin P, Tritsaris GA, Nilekar AU, Koh S et al. 2012. Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ. Sci. 5:8335–42
    [Google Scholar]
  94. 94.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter T et al. 2007. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99:016105
    [Google Scholar]
  95. 95.
    Liu P, Logadottir A, Nørskov JK 2003. Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochim. Acta 48:3731–42
    [Google Scholar]
  96. 96.
    Avramov-Ivić M, Leger J, Lamy C, Jović V, Petrović S 1991. The electro-oxidation of glycerol on the gold (100)-oriented single-crystal surface and poly crystalline surface in 0.1 M NaOH. J. Electroanal. Chem. 308:309–17
    [Google Scholar]
  97. 97.
    Brankovic S, Wang J, Adžić R 2001. Pt submonolayers on Ru nanoparticles: a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem. Solid State Lett. 4:A217–20
    [Google Scholar]
  98. 98.
    Waszczuk P, Solla-Gullon J, Kim H-S, Tong Y, Montiel V et al. 2001. Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts. J. Catal. 203:1–6
    [Google Scholar]
  99. 99.
    Da Silva RG, Neto SA, Kokoh KB, De Andrade AR 2017. Electroconversion of glycerol in alkaline medium: from generation of energy to formation of value-added products. J. Power Sources 351:174–82
    [Google Scholar]
  100. 100.
    Simões M, Baranton S, Coutanceau C 2011. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal. B Environ. 110:40–49
    [Google Scholar]
  101. 101.
    Weidner J, Barwe S, Sliozberg K, Piontek S, Masa J et al. 2018. Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein J. Org. Chem. 14:1436–45
    [Google Scholar]
  102. 102.
    Latsuzbaia R, Bisselink R, Anastasopol A, van der Meer H, van Heck R et al. 2018. Continuous electrochemical oxidation of biomass derived 5-(hydroxymethyl) furfural into 2,5-furandicarboxylic acid. J. Appl. Electrochem. 48:611–26
    [Google Scholar]
  103. 103.
    Barwe S, Weidner J, Cychy S, Morales DM, Dieckhöfer S et al. 2018. Electrocatalytic oxidation of 5-(hydroxymethyl) furfural using high-surface-area nickel boride. Angew. Chem. Int. Ed. 57:11460–64
    [Google Scholar]
  104. 104.
    Choi K-S, Roylance JJ, Kubota SR 2018. Electrochemical and photoelectrochemical reduction of furfurals US Patent No 20160237576
  105. 105.
    Grabowski G, Lewkowski J, Skowroński R 1991. The electrochemical oxidation of 5-hydroxymethyl-furfural with the nickel oxide/hydroxide electrode. Electrochim. Acta 36:1995
    [Google Scholar]
  106. 106.
    Liu W, Dang L, Xu Z, Yu H-Q, Jin S, Huber GW 2018. Electrochemical oxidation of 5-hydroxy-methylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal 8:5533–41
    [Google Scholar]
  107. 107.
    Simões M, Baranton S, Coutanceau C 2012. Electrochemical valorisation of glycerol. ChemSusChem 5:2106–24
    [Google Scholar]
  108. 108.
    Stamenković V, Schmidt T, Ross P, Marković N 2003. Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J. Electroanal. Chem. 554:191–99
    [Google Scholar]
  109. 109.
    Cui C, Gan L, Heggen M, Rudi S, Strasser P 2013. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12:765
    [Google Scholar]
  110. 110.
    Liao H, Fisher A, Xu ZJ 2015. Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small 11:3221–46
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030148
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error