1932

Abstract

Responsive polymers undergo reversible or irreversible physical or chemical modifications in response to a change in environment or stimulus, e.g., temperature, pH, light, and magnetic or electric fields. Polymeric nanoparticles (NPs), which constitute a diverse set of morphologies, including micelles, vesicles, and core-shell geometries, have been successfully prepared from responsive polymers and have shown great promise in applications ranging from drug delivery to catalysis. In this review, we summarize pH, thermo-, photo-, and enzymatic responsiveness for a selection of polymers. We then discuss the formation of NPs made from responsive polymers. Finally, we highlight how NPs and other nanomaterials are enabling a wide range of smart applications with improved efficiency, as well as improved sustainability and recyclability of polymeric systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030155
2019-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030155.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030155&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C et al. 2010. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9:101–13
    [Google Scholar]
  2. 2.
    Schmaljohann D. 2006. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58:1655–70
    [Google Scholar]
  3. 3.
    Cabane E, Zhang XY, Langowska K, Palivan CG, Meier W 2012. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 7:27
    [Google Scholar]
  4. 4.
    Liu X, Yang Y, Urban MW 2017. Stimuli-responsive polymeric nanoparticles. Macromol. Rapid Comm. 38:1700030
    [Google Scholar]
  5. 5.
    Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV 2013. Enzyme responsive materials: design strategies and future developments. Biomater. Sci. 1:11–39
    [Google Scholar]
  6. 6.
    Kocak G, Tuncer C, Bütün V 2017. pH-responsive polymers. Polym. Chem. 8:144–76
    [Google Scholar]
  7. 7.
    Huo M, Yuan J, Tao L, Wei Y 2014. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 5:1519–28
    [Google Scholar]
  8. 8.
    Filipcsei G, Csetneki I, Szilágyi A, Zrínyi M 2007. Magnetic field-responsive smart polymer composites. Oligomers—Polymer Composites—Molecular Imprinting137–89 Berlin, Heidelberg: Springer Heidelberg
    [Google Scholar]
  9. 9.
    Chung JW, Lee K, Neikirk C, Nelson CM, Priestley RD 2012. Photoresponsive coumarin-stabilized polymeric nanoparticles as a detectable drug carrier. Small 8:1693–700
    [Google Scholar]
  10. 10.
    Dai S, Ravi P, Tam KC 2009. Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–33
    [Google Scholar]
  11. 11.
    Yan Q, Han D, Zhao Y 2013. Main-chain photoresponsive polymers with controlled location of light-cleavable units: from synthetic strategies to structural engineering. Polym. Chem. 4:5026–37
    [Google Scholar]
  12. 12.
    Wei JG, Yu HL, Liu HZ, Du CG, Zhou ZX et al. 2018. Facile synthesis of thermo-responsive nanogels less than 50 nm in diameter via soap- and heat-free precipitation polymerization. J. Mater. Sci. 53:12056–64
    [Google Scholar]
  13. 13.
    Grimm O, Wendler F, Schacher FH 2017. Micellization of photo-responsive block copolymers. Polymers 9:22
    [Google Scholar]
  14. 14.
    Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS et al. 2010. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 11:2904–11
    [Google Scholar]
  15. 15.
    Paek K, Chung S, Cho C-H, Kim BJ 2011. Fluorescent and pH-responsive diblock copolymer-coated core–shell CdSe/ZnS particles for a color-displaying, ratiometric pH sensor. Chem. Commun. 47:10272–74
    [Google Scholar]
  16. 16.
    Zheng PW, Zhang WQ. 2007. Synthesis of efficient and reusable palladium catalyst supported on pH-responsive colloid and its application to Suzuki and Heck reactions in water. J. Catal. 250:324–30
    [Google Scholar]
  17. 17.
    Ulijn RV. 2006. Enzyme-responsive materials: a new class of smart biomaterials. J. Mater. Chem. 16:2217–25
    [Google Scholar]
  18. 18.
    Hu JM, Liu SY. 2010. Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43:8315–30
    [Google Scholar]
  19. 19.
    Zoppe JO, Venditti RA, Rojas OJ 2012. Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J. Colloid Interface Sci. 369:202–9
    [Google Scholar]
  20. 20.
    Hu JL, Meng HP, Li GQ, Ibekwe SI 2012. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 21:23
    [Google Scholar]
  21. 21.
    Ezell RG, McCormick CL. 2007. Electrolyte- and pH-responsive polyampholytes with potential as viscosity-control agents in enhanced petroleum recovery. J. Appl. Polym. Sci. 104:2812–21
    [Google Scholar]
  22. 22.
    Wandera D, Wickramasinghe SR, Husson SM 2010. Stimuli-responsive membranes. J. Membr. Sci. 357:6–35
    [Google Scholar]
  23. 23.
    Zhang Y, Li GH, Wu YC, Zhang B, Song WH, Zhang L 2002. Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes. Adv. Mater. 14:1227–30
    [Google Scholar]
  24. 24.
    Connal LA, Li Q, Quinn JF, Tjipto E, Caruso F, Qiao GG 2008. pH-responsive poly(acrylic acid) core cross-linked star polymers: morphology transitions in solution and multilayer thin films. Macromolecules 41:2620–26
    [Google Scholar]
  25. 25.
    Robinson DN, Peppas NA. 2002. Preparation and characterization of pH-responsive poly(methacrylic acid-g-ethylene glycol) nanospheres. Macromolecules 35:3668–74
    [Google Scholar]
  26. 26.
    Gao M, Jia XR, Kuang GC, Li Y, Liang DH, Wei Y 2009. Thermo- and pH-responsive dendronized copolymers of styrene and maleic anhydride pendant with poly(amidoamine) dendrons as side groups. Macromolecules 42:4273–81
    [Google Scholar]
  27. 27.
    Xu YY, Bolisetty S, Drechsler M, Fang B, Yuan JY et al. 2008. pH and salt responsive poly(N,N-dimethylaminoethyl methacrylate) cylindrical brushes and their quaternized derivatives. Polymer 49:3957–64
    [Google Scholar]
  28. 28.
    Nakamae K, Nishino T, Kato K, Miyata T, Hoffman AS 2004. Synthesis and characterization of stimuli-sensitive hydrogels having a different length of ethylene glycol chains carrying phosphate groups: loading and release of lysozyme. J. Biomater. Sci. Polym. Ed. 15:1435–46
    [Google Scholar]
  29. 29.
    Bingol B, Strandberg C, Szabo A, Wegner G 2008. Copolymers and hydrogels based on vinylphosphonic acid. Macromolecules 41:2785–90
    [Google Scholar]
  30. 30.
    Vasudevan T, Das S, Sodaye S, Pandey AK, Reddy AVR 2009. Pore-functionalized polymer membranes for preconcentration of heavy metal ions. Talanta 78:171–77
    [Google Scholar]
  31. 31.
    Kim SJ, Lee CK, Kim SI 2004. Electrical/pH responsive properties of poly(2-acrylamido-2-methylpropane sulfonic acid)/hyaluronic acid hydrogels. J. Appl. Polym. Sci. 92:1731–36
    [Google Scholar]
  32. 32.
    Gong X. 2013. Controlling surface properties of polyelectrolyte multilayers by assembly pH. Phys. Chem. Chem. Phys. 15:10459–65
    [Google Scholar]
  33. 33.
    Guan Y, Zhang Y. 2013. Boronic acid-containing hydrogels: synthesis and their applications. Chem. Soc. Rev. 42:8106–21
    [Google Scholar]
  34. 34.
    Zhang J, Ni YL, Zheng XL 2015. Preparation of poly(vinylphenylboronic acid) chain grafted poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads for the selective enrichment of glycoprotein. J. Sep. Sci. 38:81–86
    [Google Scholar]
  35. 35.
    Chung JW, Neikirk C, Priestley RD 2013. Investigation of coumarin functionality on the formation of polymeric nanoparticles. J. Colloid Interface Sci. 396:16–22
    [Google Scholar]
  36. 36.
    Luo CH, Liu Y, Li ZB 2010. Thermo- and pH-responsive polymer derived from methacrylamide and aspartic acid. Macromolecules 43:8101–8
    [Google Scholar]
  37. 37.
    Amalvy JI, Wanless EJ, Li Y, Michailidou V, Armes SP, Duccini Y 2004. Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates. Langmuir 20:8992–99
    [Google Scholar]
  38. 38.
    Fares MM, Al-Shboul AM. 2012. Stimuli pH-responsive (N-vinyl imidazole-co-acryloylmorpholine) hydrogels; mesoporous and nanoporous scaffolds. J. Biomed. Mater. Res. A 100A:863–71
    [Google Scholar]
  39. 39.
    Velasco D, Rethore G, Newland B, Parra J, Elvira C et al. 2012. Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications. Eur. J. Pharm. Biopharm. 82:465–74
    [Google Scholar]
  40. 40.
    Roshan Deen G, Lee TT 2012. New pH-responsive linear and crosslinked functional copolymers of N-acryloyl-N′;-phenyl piperazine with acrylic acid and hydroxyethyl methacrylate: synthesis, reactivity, and effect of steric hindrance on swelling. Polym. Bull. 69:827–46
    [Google Scholar]
  41. 41.
    Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O 2009. Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9:2788–93
    [Google Scholar]
  42. 42.
    Yu HJ, Zou YL, Wang YG, Huang XN, Huang G et al. 2011. Overcoming endosomal barrier by amphotericin B-loaded dual pH-responsive PDMA-b-PDPA micelleplexes for siRNA delivery. ACS Nano 5:9246–55
    [Google Scholar]
  43. 43.
    Morse AJ, Armes SP, Thompson KL, Dupin D, Fielding LA et al. 2013. Novel pickering emulsifiers based on pH-responsive poly(2-(diethylamino)ethyl methacrylate) latexes. Langmuir 29:5466–75
    [Google Scholar]
  44. 44.
    Giacomelli FC, Stepánek P, Giacomelli C, Schmidt V, Jäger E et al. 2011. pH-triggered block copolymer micelles based on a pH-responsive PDPA (poly[2-(diisopropylamino)ethyl methacrylate]) inner core and a PEO (poly(ethylene oxide)) outer shell as a potential tool for the cancer therapy. Soft Matter 7:9316–25
    [Google Scholar]
  45. 45.
    Alem H, Duwez AS, Lussis P, Lipnik P, Jonas AM, Demoustier-Champagne S 2008. Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. J. Membr. Sci. 308:75–86
    [Google Scholar]
  46. 46.
    Idziak I, Avoce D, Lessard D, Gravel D, Zhu XX 1999. Thermosensitivity of aqueous solutions of poly(N,N-diethylacrylamide). Macromolecules 32:1260–63
    [Google Scholar]
  47. 47.
    Van Durme K, Verbrugghe S, Du Prez FE, Van Mele B 2004. Influence of poly(ethylene oxide) grafts on kinetics of LCST behavior in aqueous poly(N-vinylcaprolactam) solutions and networks studied by modulated temperature DSC. Macromolecules 37:1054–61
    [Google Scholar]
  48. 48.
    Aoki T, Kawashima M, Katono H, Sanui K, Ogata N et al. 1994. Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N,N-dimethylacrylamide). Macromolecules 27:947–52
    [Google Scholar]
  49. 49.
    Gohy J-F, Zhao Y. 2013. Photo-responsive block copolymer micelles: design and behavior. Chem. Soc. Rev. 42:7117–29
    [Google Scholar]
  50. 50.
    Yang L, Tang HL, Sun H 2018. Progress in photo-responsive polypeptide derived nano-assemblies. Micromachines 9:18
    [Google Scholar]
  51. 51.
    Ji WD, Li NJ, Chen DY, Qi XX, Sha WW et al. 2013. Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J. Mater. Chem. B 1:5942–49
    [Google Scholar]
  52. 52.
    Xia DY, Yu GC, Li JY, Huang FH 2014. Photo-responsive self-assembly based on a water-soluble pillar 6 arene and an azobenzene-containing amphiphile in water. Chem. Commun. 50:3606–8
    [Google Scholar]
  53. 53.
    Liu X, He J, Niu Y, Li Y, Hu D et al. 2015. Photo-responsive amphiphilic poly(α-hydroxy acids) with pendent o-nitrobenzyl ester constructed via copper-catalyzed azide-alkyne cycloaddition reaction. Polym. Adv. Technol. 26:449–56
    [Google Scholar]
  54. 54.
    Dong RJ, Zhu BS, Zhou YF, Yan DY, Zhu XY 2012. “Breathing” vesicles with jellyfish-like on–off switchable fluorescence behavior. Angew. Chem. Int. Ed. 51:1163–67
    [Google Scholar]
  55. 55.
    Ercole F, Thissen H, Tsang K, Evans RA, Forsythe JS 2012. Photodegradable hydrogels made via RAFT. Macromolecules 45:8387–400
    [Google Scholar]
  56. 56.
    Kurisawa M, Terano M, Yui N 1997. Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network. J. Biomater. Sci. Polym. Ed. 8:691–708
    [Google Scholar]
  57. 57.
    Thornton PD, McConnell G, Ulijn RV 2005. Enzyme responsive polymer hydrogel beads. Chem. Commun. 47:5913–15
    [Google Scholar]
  58. 58.
    Thornton PD, Heise A. 2011. Bio-functionalisation to enzymatically control the solution properties of a self-supporting polymeric material. Chem. Commun. 47:3108–10
    [Google Scholar]
  59. 59.
    Choi SH, Lodge TP, Bates FS 2010. Mechanism of molecular exchange in diblock copolymer micelles: hypersensitivity to core chain length. Phys. Rev. Lett. 104:4
    [Google Scholar]
  60. 60.
    Bai ZF, Lodge TP. 2010. Pluronic micelle shuttle between water and an ionic liquid. Langmuir 26:8887–92
    [Google Scholar]
  61. 61.
    Liu S, Billingham NC, Armes SP 2001. A schizophrenic water-soluble diblock copolymer. Angew. Chem. 113:2390–93
    [Google Scholar]
  62. 62.
    Rao JY, Zhang YF, Zhang JY, Liu SY 2008. Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry. Biomacromolecules 9:2586–93
    [Google Scholar]
  63. 63.
    Kotharangannagari VK, Sanchez-Ferrer A, Ruokolainen J, Mezzenga R 2011. Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers. Macromolecules 44:4569–73
    [Google Scholar]
  64. 64.
    Katayama Y, Sonoda T, Maeda M 2001. A polymer micelle responding to the protein kinase A signal. Macromolecules 34:8569–73
    [Google Scholar]
  65. 65.
    Gonzalez DC, Savariar EN, Thayumanavan S 2009. Fluorescence patterns from supramolecular polymer assembly and disassembly for sensing metallo- and nonmetalloproteins. J. Am. Chem. Soc. 131:7708–16
    [Google Scholar]
  66. 66.
    Savariar EN, Ghosh S, Gonzalez DC, Thayumanavan S 2008. Disassembly of noncovalent amphiphilic polymers with proteins and utility in pattern sensing. J. Am. Chem. Soc. 130:5416–17
    [Google Scholar]
  67. 67.
    Shi ZQ, Zhou YF, Yan DY 2008. Facile fabrication of pH-responsive and size-controllable polymer vesicles from a commercially available hyperbranched polyester. Macromol. Rapid Commun. 29:412–18
    [Google Scholar]
  68. 68.
    Luo LB, Eisenberg A. 2001. Thermodynamic size control of block copolymer vesicles in solution. Langmuir 17:6804–11
    [Google Scholar]
  69. 69.
    Checot F, Lecommandoux S, Klok HA, Gnanou Y 2003. From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers. Eur. Phys. J. E 10:25–35
    [Google Scholar]
  70. 70.
    Li Y, Lokitz BS, McCormick CL 2006. Thermally responsive vesicles and their structural “locking” through polyelectrolyte complex formation. Angew. Chem. 45:5792–95
    [Google Scholar]
  71. 71.
    Pietsch C, Mansfeld U, Guerrero-Sanchez C, Hoeppener S, Vollrath A et al. 2012. Thermo-induced self-assembly of responsive poly(DMAEMA-b-DEGMA) block copolymers into multi- and unilamellar vesicles. Macromolecules 45:9292–302
    [Google Scholar]
  72. 72.
    Tong X, Wang G, Soldera A, Zhao Y 2005. How can azobenzene block copolymer vesicles be dissociated and reformed by light?. J. Phys. Chem. B 109:20281–87
    [Google Scholar]
  73. 73.
    Haas S, Hain N, Raoufi M, Handschuh-Wang S, Wang T et al. 2015. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromolecules 16:832–41
    [Google Scholar]
  74. 74.
    Liu R, Liao PH, Liu JK, Feng PY 2011. Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release. Langmuir 27:3095–99
    [Google Scholar]
  75. 75.
    Zhu M-Q, Wang L-Q, Exarhos GJ, Li ADQ 2004. Thermosensitive gold nanoparticles. J. Am. Chem. Soc. 126:2656–57
    [Google Scholar]
  76. 76.
    Wei QS, Ji J, Shen JC 2008. Synthesis of near-infrared responsive gold nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for smart drug delivery. Macromol. Rapid Commun. 29:645–50
    [Google Scholar]
  77. 77.
    Dreaden EC, Morton SW, Shopsowitz KE, Choi J-H, Deng ZJ et al. 2014. Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano 8:8374–82
    [Google Scholar]
  78. 78.
    Feng N, Han GX, Dong J, Wu H, Zheng YD, Wang GJ 2014. Nanoparticle assembly of a photo- and pH-responsive random azobenzene copolymer. J. Colloid Interface Sci. 421:15–21
    [Google Scholar]
  79. 79.
    Wang Y, Bansal V, Zelikin AN, Caruso F 2008. Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano Lett 8:1741–45
    [Google Scholar]
  80. 80.
    Yan Y, Ochs CJ, Such GK, Heath JK, Nice EC, Caruso F 2010. Bypassing multidrug resistance in cancer cells with biodegradable polymer capsules. Adv. Mater. 22:5398–403
    [Google Scholar]
  81. 81.
    Zelikin AN, Quinn JF, Caruso F 2006. Disulfide cross-linked polymer capsules:en route to biodeconstructible systems. Biomacromolecules 7:27–30
    [Google Scholar]
  82. 82.
    Cui L, Wang R, Ji XQ, Hu M, Wang B, Liu JQ 2014. Template-assisted synthesis of biodegradable and pH-responsive polymer capsules via RAFT polymerization for controlled drug release. Mater. Chem. Phys. 148:87–95
    [Google Scholar]
  83. 83.
    Marturano V, Cerruti P, Carfagna C, Giamberini M, Tylkowski B, Ambrogi V 2015. Photo-responsive polymer nanocapsules. Polymer 70:222–30
    [Google Scholar]
  84. 84.
    Argentiere S, Blasi L, Morello G, Gigli G 2011. A novel pH-responsive nanogel for the controlled uptake and release of hydrophobic and cationic solutes. J. Phys. Chem. C 115:16347–53
    [Google Scholar]
  85. 85.
    Wang YJ, Xu HJ, Wang J, Ge L, Zhu JB 2014. Development of a thermally responsive nanogel based on chitosan-poly(N-isopropylacrylamide-co-acrylamide) for paclitaxel delivery. J. Pharm. Sci. 103:2012–21
    [Google Scholar]
  86. 86.
    Matsumoto S, Yamaguchi S, Wada A, Matsui T, Ikeda M, Hamachi I 2008. Photo-responsive gel droplet as a nano- or pico-litre container comprising a supramolecular hydrogel. Chem. Commun. 13:1545–47
    [Google Scholar]
  87. 87.
    Kang H, Trondoli AC, Zhu G, Chen Y, Chang Y-J et al. 2011. Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS Nano 5:5094–99
    [Google Scholar]
  88. 88.
    Wang Y, Luo Y, Zhao Q, Wang Z, Xu Z, Jia X 2016. An enzyme-responsive nanogel carrier based on PAMAM dendrimers for drug delivery. ACS Appl. Mater. Interfaces 8:19899–906
    [Google Scholar]
  89. 89.
    Culver HR, Clegg JR, Peppas NA 2017. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50:170–78
    [Google Scholar]
  90. 90.
    Knipe JM, Peppas NA. 2014. Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen. Biomater. 1:57–65
    [Google Scholar]
  91. 91.
    Pridgen EM, Langer R, Farokhzad OC 2007. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2:669–80
    [Google Scholar]
  92. 92.
    Mura S, Nicolas J, Couvreur P 2013. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12:991
    [Google Scholar]
  93. 93.
    Ganta S, Devalapally H, Shahiwala A, Amiji M 2008. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 126:187–204
    [Google Scholar]
  94. 94.
    Kost J, Langer R. 2012. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64:327–41
    [Google Scholar]
  95. 95.
    Min KH, Kim JH, Bae SM, Shin H, Kim MS et al. 2010. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J. Control. Release 144:259–66
    [Google Scholar]
  96. 96.
    Duan CX, Zhang DR, Wang FH, Zheng DD, Jia LJ et al. 2011. Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int. J. Pharm. 409:252–59
    [Google Scholar]
  97. 97.
    Xu H, Meng F, Zhong Z 2009. Reversibly crosslinked temperature-responsive nano-sized polymersomes: synthesis and triggered drug release. J. Mater. Chem. 19:4183–90
    [Google Scholar]
  98. 98.
    Zhang LY, Guo R, Yang M, Jiang XQ, Liu BR 2007. Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv. Mater. 19:2988–92
    [Google Scholar]
  99. 99.
    Cho HJ, Chung M, Shim MS 2015. Engineered photo-responsive materials for near-infrared-triggered drug delivery. J. Ind. Eng. Chem. 31:15–25
    [Google Scholar]
  100. 100.
    Hu Q, Katti PS, Gu Z 2014. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6:12273–86
    [Google Scholar]
  101. 101.
    Wang YP, Han P, Xu HP, Wang ZQ, Zhang X, Kabanov AV 2010. Photocontrolled self-assembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26:709–15
    [Google Scholar]
  102. 102.
    Mao J, Gan ZH. 2009. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly glycidol-block-(epsilon-caprolactone) copolymers. Macromol. Biosci. 9:1080–89
    [Google Scholar]
  103. 103.
    Paek K, Yang H, Lee J, Park J, Kim BJ 2014. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide. ACS Nano 8:2848–56
    [Google Scholar]
  104. 104.
    Uchiyama S, Kawai N, de Silva AP, Iwai K 2004. Fluorescent polymeric and logic gate with temperature and pH as inputs. J. Am. Chem. Soc. 126:3032–33
    [Google Scholar]
  105. 105.
    Hong SH, Hong SW, Jo WH 2010. A new polymeric pH sensor based on photophysical property of gold nanoparticle and pH sensitivity of poly(sulfadimethoxine methacrylate). Macromol. Chem. Phys. 211:1054–60
    [Google Scholar]
  106. 106.
    Pietsch C, Hoogenboom R, Schubert US 2009. Soluble polymeric dual sensor for temperature and pH value. Angew. Chem. 48:5653–56
    [Google Scholar]
  107. 107.
    Liu Z, Wang W, Xie R, Ju X-J, Chu L-Y 2016. Stimuli-responsive smart gating membranes. Chem. Soc. Rev. 45:460–75
    [Google Scholar]
  108. 108.
    Chu LY, Xie R, Ju XJ 2011. Stimuli-responsive membranes: smart tools for controllable mass-transfer and separation processes. Chin. J. Chem. Eng. 19:891–903
    [Google Scholar]
  109. 109.
    Mah E, Ghosh R. 2013. Thermo-responsive hydrogels for stimuli-responsive membranes. Processes 1:238–62
    [Google Scholar]
  110. 110.
    Brunsen A, Diaz C, Pietrasanta LI, Yameen B, Ceolin M et al. 2012. Proton and calcium-gated ionic mesochannels: phosphate-bearing polymer brushes hosted in mesoporous thin films as biomimetic interfacial architectures. Langmuir 28:3583–92
    [Google Scholar]
  111. 111.
    Ying L, Kang ET, Neoh KG, Kato K, Iwata H 2004. Drug permeation through temperature-sensitive membranes prepared from poly(vinylidene fluoride) with grafted poly(N-isopropylacrylamide) chains. J. Membr. Sci. 243:253–62
    [Google Scholar]
  112. 112.
    Yamakawa T, Ishida S, Higa M 2005. Transport properties of ions through temperature-responsive charged membranes prepared using poly(vinyl alcohol)/poly(N-isopropylacrylamide)/poly(vinylalcohol-co-2-acrylamido-2-methylpropane sulfonic acid). J. Membr. Sci. 250:61–68
    [Google Scholar]
  113. 113.
    Lue SJ, Hsu JJ, Chen CH, Chen BC 2007. Thermally on-off switching membranes of poly(N-isopropylacrylamide) immobilized in track-etched polycarbonate films. J. Membr. Sci. 301:142–50
    [Google Scholar]
  114. 114.
    Kato S, Aizawa M, Suzuki S 1976. Photo-responsive membranes: I. Light-induced potential changes across membranes incorporating a photochromic compound. J. Membr. Sci. 1:289–300
    [Google Scholar]
  115. 115.
    Kato S, Aizawa M, Suzuki S 1977. Photo-responsive membranes: II. Light-induced potential changes across spiropyran-entrapped asymmetric membranes. J. Membr. Sci. 2:39–47
    [Google Scholar]
  116. 116.
    Minoura N, Idei K, Rachkov A, Choi YW, Ogiso M, Matsuda K 2004. Preparation of azobenzene-containing polymer membranes that function in photoregulated molecular recognition. Macromolecules 37:9571–76
    [Google Scholar]
  117. 117.
    Nayak A, Liu HW, Belfort G 2006. An optically reversible switching membrane surface. Angew. Chem. 45:4094–98
    [Google Scholar]
  118. 118.
    Mondal S. 2008. Phase change materials for smart textiles—an overview. Appl. Therm. Eng. 28:1536–50
    [Google Scholar]
  119. 119.
    Aly AS, Abdel-Mohsen AM, Hebeish A 2010. Innovative multifinishing using chitosan-O-PEG graft copolymer/citric acid aqueous system for preparation of medical textiles. J. Text. Inst. 101:76–90
    [Google Scholar]
  120. 120.
    Liu BH, Hu JL. 2005. The application of temperature-sensitive hydrogels to textiles: a review of Chinese and Japanese investigations. Fibres Text. East. Eur. 13:45–49
    [Google Scholar]
  121. 121.
    Chen JP, Kuo CY, Lee WL 2012. Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics. Appl. Surf. Sci. 262:95–101
    [Google Scholar]
  122. 122.
    Zhang JL, Zhang MX, Tang KJ, Verpoort F, Sun TL 2014. Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small 10:32–46
    [Google Scholar]
  123. 123.
    Yan N, Zhang JG, Yuan Y, Chen GT, Dyson PJ et al. 2010. Thermoresponsive polymers based on poly-vinylpyrrolidone: applications in nanoparticle catalysis. Chem. Commun. 46:1631–33
    [Google Scholar]
  124. 124.
    Hamamoto H, Suzuki Y, Yamada YMA, Tabata H, Takahashi H, Ikegami S 2005. A recyclable catalytic system based on a temperature-responsive catalyst. Angew. Chem. 117:4612–14
    [Google Scholar]
  125. 125.
    Díaz DD, Kühbeck D, Koopmans RJ 2011. Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem. Soc. Rev. 40:427–48
    [Google Scholar]
  126. 126.
    Zhang MC, Zhang WQ. 2008. Pd nanoparticles immobilized on pH-responsive and chelating nanospheres as an efficient and recyclable catalyst for Suzuki reaction in water. J. Phys. Chem. C 112:6245–52
    [Google Scholar]
  127. 127.
    Zhang JZ, Zhang WQ, Wang Y, Zhang MC 2008. Palladium-iminodiacetic acid immobilized on pH-responsive polymeric microspheres: efficient quasi-homogeneous catalyst for Suzuki and Heck reactions in aqueous solution. Adv. Synth. Catal. 350:2065–76
    [Google Scholar]
  128. 128.
    Wang Y, Wei GW, Zhang WQ, Jiang XW, Zheng PW et al. 2007. Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles. J. Mol. Catal. A Chem. 266:233–38
    [Google Scholar]
  129. 129.
    Wang Y, Wei GW, Wen F, Zhang X, Zhang WQ, Shi LQ 2008. Synthesis of gold nanoparticles stabilized with poly(N-isopropylacrylamide)-co-poly(4-vinyl pyridine) colloid and their application in responsive catalysis. J. Mol. Catal. A Chem. 280:1–6
    [Google Scholar]
  130. 130.
    Warren NJ, Armes SP. 2014. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136:10174–85
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030155
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error