1932

Abstract

Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030347
2019-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030347.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030347&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nandy A, Basak SC. 2016. A brief review of computer-assisted approaches to rational design of peptide vaccines. Int. J. Mol. Sci. 17:5666
    [Google Scholar]
  2. 2.
    Cann A, Stanway G, Hughes PJ, Minor PD, Evans DM et al. 1984. Reversion to neurovirulence of the live-attenuated Sabin type 3 oral poliovirus vaccine. Nucleic Acids Res 12:207787–92
    [Google Scholar]
  3. 3.
    Skwarczynski M, Toth I. 2016. Peptide-based synthetic vaccines. Chem. Sci. 7:2842–54
    [Google Scholar]
  4. 4.
    Petrovsky N, Aguilar JC. 2004. Vaccine adjuvants: current state and future trends. Immunol. Cell Biol. 82:5488–96
    [Google Scholar]
  5. 5.
    Rohrer JW, Barsoum AL, Coggin JH 2006. Identification of oncofetal antigen/immature laminin receptor protein epitopes that activate BALB/c mouse OFA/iLRP-specific effector and regulatory T cell clones. J. Immunol. 176:52844–56
    [Google Scholar]
  6. 6.
    van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM 2016. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16:4219–33
    [Google Scholar]
  7. 7.
    Zhang L, Pritsch SO, Axelsson I, Halperin SA 2011. Acellular vaccines for preventing whooping cough in children. Cochrane Database Syst. Rev. 2011:CD001478
    [Google Scholar]
  8. 8.
    Tostanoski LH, Chiu Y-C, Andorko JI, Guo M, Zeng X et al. 2016. Design of polyelectrolyte multilayers to promote immunological tolerance. ACS Nano 10:109334–45
    [Google Scholar]
  9. 9.
    Zepp F. 2010. Principles of vaccine design—lessons from nature. Vaccine 28:C14–C24
    [Google Scholar]
  10. 10.
    Murphy K, Weaver C. 2016. Janeway's Immunobiology New York: Garland Sci. , 9th ed..
  11. 11.
    Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK 2014. Peptide vaccine: progress and challenges. Vaccines 2:515–36
    [Google Scholar]
  12. 12.
    Kuroda Y, Nacionales DC, Akaogi J, Reeves WH, Satoh M 2004. Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed. Pharmacother. 58:5325–37
    [Google Scholar]
  13. 13.
    Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW 2008. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int. J. Pharm. 364:2272–80
    [Google Scholar]
  14. 14.
    Blander JM, Medzhitov R. 2006. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440:7085808–12
    [Google Scholar]
  15. 15.
    Liu Y, Janeway CA. 1992. Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. PNAS 89:93845–49
    [Google Scholar]
  16. 16.
    Skwarczynski M, Toth I. 2011. Peptide-based subunit nanovaccines. Curr. Drug Deliv. 8:282–89
    [Google Scholar]
  17. 17.
    Yu C, Xi J, Li M, An M, Liu H 2017. Bioconjugate strategies for the induction of antigen-specific tolerance in autoimmune diseases. Bioconjug. Chem. 29:3719–32
    [Google Scholar]
  18. 18.
    Liu H, Irvine DJ. 2015. Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjug. Chem. 26:5791–801
    [Google Scholar]
  19. 19.
    Chesson CB, Ekpo-Out S, Endsley JJ, Rudra JS 2016. Biomaterials-based vaccination strategies for the induction of CD8+ T cell responses. ACS Biomater. Sci. Eng. 3:2126–43
    [Google Scholar]
  20. 20.
    Lin C-WL, Chattopadhyay S, Lin J-C, Hu C-MJ 2018. Advances and opportunities in nanoparticle‐ and nanomaterial‐based vaccines against bacterial infections. Adv. Healthcare Mater. 7:131701395
    [Google Scholar]
  21. 21.
    Bookstaver ML, Tsai SJ, Bromberg JS, Jewell CM 2017. Improving vaccine and immunotherapy design using biomaterials. Trends Immunol 39:2135–50
    [Google Scholar]
  22. 22.
    Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y 2017. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol. Adv. 35:5575–96
    [Google Scholar]
  23. 23.
    Zhao G, Chandrudu S, Skwarczynski M, Toth I 2017. The application of self-assembled nanostructures in peptide-based subunit vaccine development. Eur. Polymer J. 93:670–81
    [Google Scholar]
  24. 24.
    Jeong H, Seong BL. 2017. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J. Microbiol. 55:3220–30
    [Google Scholar]
  25. 25.
    Baylor NW. 2006. Human papillomavirus quadrivalent (types 6, 11, 16, 18) vaccine, recombinant Approv. Lett., US Food Drug Adm., June 8. http://wayback.archive-it.org/7993/20170722145339/https://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm111283.htm
  26. 27.
    Ramirez A, Morris S, Maucourant S, D'Ascanio I, Crescente V et al. 2018. A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles. Vaccine 36:6873–80
    [Google Scholar]
  27. 28.
    Shukla GS, Sun Y-J, Pero SC, Sholler GS, Krag DN 2018. Immunization with tumor neoantigens displayed on T7 phage nanoparticles elicits plasma antibody and vaccine-draining lymph node B cell responses. J. Immunol. Methods 460:51–62
    [Google Scholar]
  28. 29.
    Kim M-C, Song J-M, Eunju O, Kwon Y-M, Lee Y-J et al. 2013. Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol. Ther. 21:2485–92
    [Google Scholar]
  29. 30.
    Schwarz B, Morabito KM, Ruckwardt TJ, Patterson DP, Avera J et al. 2016. Viruslike particles encapsidating respiratory syncytial virus M and M2 proteins induce robust T cell responses. ACS Biomater. Sci. Eng. 2:122324–32
    [Google Scholar]
  30. 31.
    Polonskaya Z, Deng S, Sarkar A, Kain L, Comellas-Aragones M et al. 2017. T cells control the generation of nanomolar-affinity anti-glycan antibodies. J. Clin. Investig. 127:41491–504
    [Google Scholar]
  31. 32.
    Moura APV, Santos LCB, Brito CRN, Valencia E, Junqueira C et al. 2017. Virus-like particle display of the α-Gal carbohydrate for vaccination against Leishmania infection. ACS Central Sci 3:91026–31
    [Google Scholar]
  32. 33.
    Brito CRN, McKay CS, Azevedo MA, Santos LCB, Venuto AP et al. 2016. Virus-like particle display of the α-Gal epitope for the diagnostic assessment of Chagas disease. ACS Infect. Dis. 2:12917–22
    [Google Scholar]
  33. 34.
    Yin Z, Wu X, Kaczanowska K, Sungsuwan S, Aragones MC et al. 2018. Antitumor humoral and T cell responses by mucin-1 conjugates of bacteriophage Qβ in wild-type mice. ACS Chem. Biol. 13:61668–76
    [Google Scholar]
  34. 35.
    Sartorius R, D'Apice L, Barba P, Cipria D, Grauso L et al. 2018. Vectorized delivery of alpha-GalactosylCeramide and tumor antigen on filamentous bacteriophage fd induces protective immunity by enhancing tumor-specific T cell response. Front. Immunol. 9:1496
    [Google Scholar]
  35. 36.
    Shukla S, Myers JT, Woods SE, Gong X, Czapar AE et al. 2017. Plant viral nanoparticles-based HER2 vaccine: immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials 121:15–27
    [Google Scholar]
  36. 37.
    Molino NM, Neek M, Tucker JA, Nelson EL, Wang S-W 2016. Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses. Biomaterials 86:83–91
    [Google Scholar]
  37. 38.
    Neek M, Tucker JA, Kim TI, Molino NM, Nelson EL, Wang S-W 2018. Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses. Biomaterials 156:194–203
    [Google Scholar]
  38. 39.
    Molino NM, Neek M, Tucker JA, Nelson EL, Wang S-W 2017. Display of DNA on nanoparticles for targeting antigen presenting cells. ACS Biomater. Sci. Eng. 3:4496–501
    [Google Scholar]
  39. 40.
    Qi M, Zhang X-E, Sun X, Zhang X, Yao Y et al. 2018. Intranasal nanovaccine confers homo‐ and hetero‐subtypic influenza protection. Small 14:131703207
    [Google Scholar]
  40. 41.
    Giessen TW. 2016. Encapsulins: microbial nanocompartments with applications in biomedicine, nanobiotechnology and materials science. Curr. Opin. Chem. Biol. 34:1–10
    [Google Scholar]
  41. 42.
    Choi B, Moon H, Hong SJ, Shin C, Do Y et al. 2016. Effective delivery of antigen–encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection. ACS Nano 10:87339–50
    [Google Scholar]
  42. 43.
    Lagoutte P, Mignon C, Stadthagen G, Potisopon S, Donnat S et al. 2018. Simultaneous surface display and cargo loading of encapsulin nanocompartments and their use for rational vaccine design. Vaccine 36:253622–28
    [Google Scholar]
  43. 44.
    Casañas A, Guerra P, Fita I, Verdaguer N 2012. Vault particles: a new generation of delivery nanodevices. Curr. Opin. Biotechnol. 23:6972–77
    [Google Scholar]
  44. 45.
    Kar UK, Jiang J, Champion CI, Salehi S, Srivastava S et al. 2012. Vault nanocapsules as adjuvants favor cell-mediated over antibody-mediated immune responses following immunization of mice. PLOS ONE 7:7e38553
    [Google Scholar]
  45. 46.
    Champion CI, Kickhoefer VA, Liu G, Moniz RJ, Freed AS et al. 2009. A vault nanoparticle vaccine induces protective mucosal immunity. PLOS ONE 4:4e5409
    [Google Scholar]
  46. 47.
    Jiang J, Liu G, Kickhoefer VA, Rome LH, Li L-X et al. 2017. A protective vaccine against Chlamydia genital infection using vault nanoparticles without an added adjuvant. Vaccines 5:13
    [Google Scholar]
  47. 48.
    Rudra JS, Sun T, Bird KC, Daniels MD, Gasiorowski JZ et al. 2012. Modulating adaptive immune responses to peptide self-assemblies. ACS Nano 6:21557–64
    [Google Scholar]
  48. 49.
    Rudra JS, Tripathi PK, Hildeman DA, Jung JP, Collier JH 2010. Immune responses to coiled coil supramolecular biomaterials. Biomaterials 31:328475–83
    [Google Scholar]
  49. 50.
    Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R et al. 2013. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials 34:348776–85
    [Google Scholar]
  50. 51.
    Si Y, Wen Y, Kelly SH, Chong AS, Collier JH 2018. Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8+ T cell responses. J. Control. Release 282:120–30
    [Google Scholar]
  51. 52.
    Pompano RR, Chen J, Verbus EA, Han H, Fridman A et al. 2014. Titrating T‐cell epitopes within self‐assembled vaccines optimizes CD4+ helper T cell and antibody outputs. Adv. Healthcare Mater. 3:111898–908
    [Google Scholar]
  52. 53.
    Rudra JS, Mishra S, Chong AS, Mitchell RA, Nardin EH et al. 2012. Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 33:276476–84
    [Google Scholar]
  53. 54.
    Sun T, Han H, Hudalla GA, Wen Y, Pompano RR, Collier JH 2016. Thermal stability of self-assembled peptide vaccine materials. Acta Biomater 30:62–71
    [Google Scholar]
  54. 55.
    Chesson CB, Huante M, Nusbaum RJ, Walker AG, Clover TM et al. 2018. Nanoscale peptide self-assemblies boost BCG-primed cellular immunity against Mycobacterium tuberculosis. Sci. Rep. 8:112519
    [Google Scholar]
  55. 56.
    Wen Y, Waltman A, Han H, Collier JH 2016. Switching the immunogenicity of peptide assemblies using surface properties. ACS Nano 10:109274–86
    [Google Scholar]
  56. 57.
    Snook JD, Chesson CB, Peniche AG, Dann SM, Paulucci A et al. 2016. Peptide nanofiber–CaCO3 composite microparticles as adjuvant-free oral vaccine delivery vehicles. J. Mater. Chem. B 4:91640–49
    [Google Scholar]
  57. 58.
    Egelman EH, Xu C, DiMaio F, Magnotti E, Modlin C et al. 2015. Structural plasticity of helical nanotubes based on coiled-coil assemblies. Structure 23:2280–89
    [Google Scholar]
  58. 59.
    Wu Y, Norberg PK, Reap EA, Congdon KL, Fries CN et al. 2017. A supramolecular vaccine platform based on α-helical peptide nanofibers. ACS Biomater. Sci. Eng. 3:123128–32
    [Google Scholar]
  59. 60.
    Doll TA, Dey R, Burkhard P 2015. Design and optimization of peptide nanoparticles. J. Nanobiotechnol. 13:173
    [Google Scholar]
  60. 61.
    Pimentel TAPF, Yan Z, Jeffers SA, Holmes KV, Hodges RS, Burkhard P 2009. Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem. Biol. Drug Design 73:153–61
    [Google Scholar]
  61. 62.
    El Bissati K, Zhou Y, Dasgupta D, Cobb D, Dubey JP et al. 2014. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice. Vaccine 32:263243–48
    [Google Scholar]
  62. 63.
    El Bissati K, Zhou Y, Paulillo SM, Raman SK, Karch CP et al. 2017. Protein nanovaccine confers robust immunity against Toxoplasma. . NPJ Vaccines 2:124
    [Google Scholar]
  63. 64.
    Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A et al. 2011. A novel vaccine using nanoparticle platform to present immunogenic M2e against avian influenza infection. Influenza Res. Treat. 2011:126794
    [Google Scholar]
  64. 65.
    Wahome N, Pfeiffer T, Ambiel I, Yang Y, Keppler OT et al. 2012. Conformation‐specific display of 4E10 and 2F5 epitopes on self‐assembling protein nanoparticles as a potential HIV vaccine. Chem. Biol. Drug Des. 80:3349–57
    [Google Scholar]
  65. 66.
    Kaba SA, McCoy ME, Doll TAPF, Brando C, Guo Q et al. 2012. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine. PLOS ONE 7:10e48304
    [Google Scholar]
  66. 67.
    Karch CP, Li J, Kulangara C, Paulillo SM, Raman SK et al. 2017. Vaccination with self-adjuvanted protein nanoparticles provides protection against lethal influenza challenge. Nanomed. Nanotechnol. Biol. Med. 13:1241–51
    [Google Scholar]
  67. 68.
    Doll TA, Neef T, Duong N, Lanar DE, Ringler P et al. 2015. Optimizing the design of protein nanoparticles as carriers for vaccine applications. Nanomed. Nanotechnol. Biol. Med. 11:71705–13
    [Google Scholar]
  68. 69.
    Karami N, Moghimipour E, Salimi A 2018. Liposomes as a novel drug delivery system: fundamental and pharmaceutical application. Asian J. Pharm. 12:1S31
    [Google Scholar]
  69. 70.
    Black M, Trent A, Kostenko Y, Lee JS, Olive C, Tirrell M 2012. Self‐assembled peptide amphiphile micelles containing a cytotoxic T‐cell epitope promote a protective immune response in vivo. Adv. Mater. 24:283845–49
    [Google Scholar]
  70. 71.
    Trent A, Ulery BD, Black MJ, Barrett JC, Liang S et al. 2015. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J 17:2380–88
    [Google Scholar]
  71. 72.
    Hussein WM, Liu T-Y, Maruthayanar P, Mukaida S, Moyle PM et al. 2016. Double conjugation strategy to incorporate lipid adjuvants into multiantigenic vaccines. Chem. Sci. 7:32308–21
    [Google Scholar]
  72. 73.
    Hussein WM, Mukaida S, Azmi F, Bartlett S, Olivier C et al. 2017. Comparison of fluorinated and nonfluorinated lipids in self-adjuvanting delivery systems for peptide-based vaccines. ACS Med. Chem. Lett. 8:2227–32
    [Google Scholar]
  73. 74.
    Zhang R, Smith JD, Allen BN, Kramer JS, Schauflinger M, Ulery BD 2018. Peptide amphiphile micelle vaccine size and charge influence the host antibody response. ACS Biomater. Sci. Eng. 4:72463–72
    [Google Scholar]
  74. 75.
    Barrett JC, Ulery BD, Trent A, Liang S, David NA, Tirrell MV 2016. Modular peptide amphiphile micelles improving an antibody-mediated immune response to group A streptococcus. ACS Biomater. Sci. Eng. 3:2144–52
    [Google Scholar]
  75. 76.
    Zhang R, Kramer JS, Smith JD, Allen BN, Leeper CN et al. 2018. Vaccine adjuvant incorporation strategy dictates peptide amphiphile micelle immunostimulatory capacity. AAPS J 20:473
    [Google Scholar]
  76. 77.
    Missirlis D, Teesalu T, Black M, Tirrell M 2013. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles. PLOS ONE 8:1e54611
    [Google Scholar]
  77. 78.
    Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ 2017. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16:4489
    [Google Scholar]
  78. 79.
    Kuai R, Sun X, Yuan W, Xu Y, Schwendeman A, Moon JJ 2018. Subcutaneous nanodisc vaccination with neoantigens for combination cancer immunotherapy. Bioconjug. Chem. 29:3771–75
    [Google Scholar]
  79. 80.
    Hussein WM, Liu T-Y, Jia Z, McMillan NAJ, Monteiro MJ et al. 2016. Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorg. Med. Chem. 24:184372–80
    [Google Scholar]
  80. 81.
    Liu T-Y, Hussein WM, Jia Z, Ziora ZM, McMillan NAJ et al. 2013. Self-adjuvanting polymer–peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 14:82798–806
    [Google Scholar]
  81. 82.
    Liu T-Y, Giddam AK, Hussein WM, Jia Z, McMillan NAJ et al. 2015. Self-adjuvanting therapeutic peptide-based vaccine induce CD8+ cytotoxic T lymphocyte responses in a murine human papillomavirus tumor model. Curr. Drug Deliv. 12:13–8
    [Google Scholar]
  82. 83.
    Chandrudu S, Bartlett S, Khalil ZG, Jia Z, Hussein WM et al. 2016. Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Ther. Deliv. 7:9601–9
    [Google Scholar]
  83. 84.
    Ahmad Fuaad AA, Jia Z, Zaman M, Hartas J, Ziora ZM et al. 2014. Polymer–peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine 9:135–43
    [Google Scholar]
  84. 85.
    Wang L, Hess A, Chang TZ, Wang YC, Champion JA et al. 2014. Nanoclusters self-assembled from conformation-stabilized influenza M2e as broadly cross-protective influenza vaccines. Nanomed. Nanotechnol. Biol. Med. 10:473–82
    [Google Scholar]
  85. 86.
    Wang L, Chang TZ, He Y, Kim JR, Wang S et al. 2017. Coated protein nanoclusters from influenza H7N9 HA are highly immunogenic and induce robust protective immunity. Nanomed. Nanotechnol. Biol. Med. 13:1253–62
    [Google Scholar]
  86. 87.
    Deng L, Chang TZ, Wang Y, Li S, Wang S et al. 2018. Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. PNAS 115:33E7758–67
    [Google Scholar]
  87. 88.
    Tsoras AN, Champion JA. 2018. Cross-linked peptide nanoclusters for delivery of oncofetal antigen as a cancer vaccine. Bioconjug. Chem. 29:3776–85
    [Google Scholar]
  88. 89.
    Chang TZ, Stadmiller SS, Staskevicius E, Champion JA 2017. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomater. Sci. 5:2223–33
    [Google Scholar]
  89. 90.
    Chang TZ, Diambou I, Kim JR, Wang B, Champion JA 2017. Host‐and pathogen‐derived adjuvant coatings on protein nanoparticle vaccines. Bioeng. Transl. Med. 2:1120–30
    [Google Scholar]
  90. 91.
    Schipper P, van der Maaden K, Groeneveld V, Ruigrok M, Romeijn S et al. 2017. Diphtheria toxoid and N-trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice. J. Control. Release 262:28–36
    [Google Scholar]
  91. 92.
    Zeng Q, Gammon JM, Tostanoski LH, Chiu Y-C, Jewell CM 2016. In vivo expansion of melanoma-specific T cells using microneedle arrays coated with immune-polyelectrolyte multilayers. ACS Biomater. Sci. Eng. 3:2195–205
    [Google Scholar]
  92. 93.
    Chiu Y-C, Gammon JM, Andorko JI, Tostanoski LH, Jewell CM 2016. Assembly and immunological processing of polyelectrolyte multilayers composed of antigens and adjuvants. ACS Appl. Mater. Interfaces 8:2918722–31
    [Google Scholar]
  93. 94.
    Hess KL, Andorko JI, Tostanoski LH, Jewell CM 2017. Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials 118:51–62
    [Google Scholar]
  94. 95.
    Da Silva DM, Pastrana DV, Schiller JT, Kast WM 2001. Effect of preexisting neutralizing antibodies on the anti-tumor immune response induced by chimeric human papillomavirus virus-like particle vaccines. Virology 290:2350–60
    [Google Scholar]
  95. 96.
    Ruedl C, Schwarz K, Jegerlehner A, Storni T, Manolova V, Bachmann MF 2005. Virus-like particles as carriers for T-cell epitopes: limited inhibition of T-cell priming by carrier-specific antibodies. J. Virol. 79:2717–24
    [Google Scholar]
  96. 97.
    Zhang P, Sun F, Liu S, Jiang S 2016. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Release 244:184–93
    [Google Scholar]
  97. 98.
    Wong-Baeza C, Reséndiz-Mora A, Donis-Maturano L, Wong-Baeza I et al. 2016. Anti-lipid IgG antibodies are produced via germinal centers in a murine model resembling human lupus. Front. Immunol. 7:396
    [Google Scholar]
  98. 99.
    Maheshri N, Koerber JT, Kaspar BK, Schaffer DV 2006. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24:2198–204
    [Google Scholar]
  99. 100.
    Lokugamage MP, Sago CD, Dahlman JE 2018. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 7:1–8
    [Google Scholar]
  100. 101.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A 2017. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:4707–23
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030347
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030347
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error