1932

Abstract

Phase behavior and thermophysical properties of mixtures of carbon dioxide with various other substances are very important for the design and operation of carbon capture and storage (CCS) processes. The available empirical data are reviewed, together with some models for the calculation of these properties. The systems considered in detail are, first, mixtures of carbon dioxide, water, and salts; second, carbon dioxide–rich nonelectrolyte mixtures; and third, mixtures of carbon dioxide with water and amines. The empirical data and the plethora of available models permit the estimation of key fluid properties required in the design and operation of CCS processes. The engineering community would benefit from the further development, and delivery in convenient form, of a small number of these models sufficient to encompass the component slate and operating conditions of CCS processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101426
2017-06-07
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101426.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101426&mimeType=html&fmt=ahah

Literature Cited

  1. Solomon S, Plattner GK, Knutti R, Friedlingstein P. 1.  2009. Irreversible climate change due to carbon dioxide emissions. PNAS 106:1704–9 [Google Scholar]
  2. 2. Intergov. Panel Clim. Change. 2014. Climate change 2014: contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change Synth. Rep., Intergov. Panel Clim. Change Geneva:
  3. Benson SM, Bennaceur K, Cook P, Davison J, de Coninck HC. 3.  et al. 2012. Carbon dioxide capture and storage. Global Energy Assessment: Toward a Sustainable Future L Gomez-Echeverri, TB Johansson, N Nakicenovic, A Patwardhan 993–1068 Cambridge: Cambridge Univ. Press [Google Scholar]
  4. Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM. 4.  et al. 2014. Betting on negative emissions. Nat. Clim. Change 4:850–53 [Google Scholar]
  5. de Coninck H, Benson SM. 5.  2014. Carbon dioxide capture and storage: issues and prospects. Annu. Rev. Environ. Resour. 39:243–70 [Google Scholar]
  6. 6. Int. Energy Agency. 2013. Technology Roadmap: Carbon Capture and Storage Paris: Int. Energy Agency
  7. Benson SM, Cole DR. 7.  2008. CO2 sequestration in deep sedimentary formations. Elements 4:325–31 [Google Scholar]
  8. Yang H, Xu Z, Fan M, Gupta R, Slimane RB. 8.  et al. 2008. Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. 20:14–27 [Google Scholar]
  9. Oosterkamp A, Ramsen J. 9.  2008. State-of-the-art overview of CO2 pipeline transport with relevance to offshore pipelines Hougesund, Nor.: Polytec https://www.scribd.com/document/266189060/DENSE-PHASE-CO2-TRANSPORT-pdf
  10. Zhang ZX, Wang GX, Massarotto P, Rudolph V. 10.  2006. Optimization of pipeline transport for CO2 sequestration. Energy Convers. Manag. 47:702–15 [Google Scholar]
  11. Holloway S. 11.  2007. Carbon dioxide capture and geological storage. Philos. Trans. R. Soc. A 365:1095–107 [Google Scholar]
  12. Johnson JW, Nitao JJ, Knauss KG. 12.  2004. Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms and Sequestration Partitioning London: Geol. Soc. Lond
  13. Pentland CH, El-Maghraby R, Iglauer S, Blunt MJ. 13.  2011. Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone. Geophys. Res. Lett. 38:L06401 [Google Scholar]
  14. Scott RL, van Konynenburg PH. 14.  1980. Critical lines and phase equilibria in binary van der Waals mixtures. Philos. Trans. R. Soc. A 298:495–540 [Google Scholar]
  15. Toedheide K, Franck EU. 15.  1963. The two-phase region and the critical curve in the system carbon dioxide—water up to pressures of 3,500 bar. Z. Phys. Chem. N. F. 37:387–401 [Google Scholar]
  16. Mather AE, Franck EU. 16.  1992. Phase equilibria in the system carbon dioxide-water at elevated pressures. J. Phys. Chem. 96:6–8 [Google Scholar]
  17. Span R, Wagner W. 17.  1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25:1509–96 [Google Scholar]
  18. Wagner W, Pruss A. 18.  2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31:387–535 [Google Scholar]
  19. Diamond LW, Akinfiev NN. 19.  2003. Solubility of CO2 in water from −1.5 to 100°C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling. Fluid Phase Equilib 208:265–90 [Google Scholar]
  20. Duan ZH, Sun R. 20.  2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193:257–71 [Google Scholar]
  21. Spycher N, Pruess K, Ennis-King J. 21.  2003. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochim. Cosmochim. Acta 67:3015–31 [Google Scholar]
  22. Spycher N, Pruess K. 22.  2010. A phase-partitioning model for CO2–brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transp. Porous Media 82:173–96 [Google Scholar]
  23. Evelein KA, Moore RG, Heidemann RA. 23.  1976. Correlation of phase behavior in systems hydrogen-sulfide-water and carbon dioxide-water. Ind. Eng. Chem. Process Des. Dev. 15:423–28 [Google Scholar]
  24. dos Ramos MC, Blas FJ, Galindo A. 24.  2007. Modelling the phase equilibria and excess properties of the water+carbon dioxide binary mixture. Fluid Phase Equilib 261:359–65 [Google Scholar]
  25. Wendland M, Hasse H, Maurer G. 25.  1999. Experimental pressure-temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide−water. J. Chem. Eng. Data 44:901–6 [Google Scholar]
  26. Larson SD. 26.  1955. Phase studies of the two components carbon dioxide-water system involving the carbon dioxide hydrate PhD Thesis Univ. Illinois Urbana:
  27. Manakov AY, Dyadin YA, Ogienko AG, Kurnosov AV, Aladko EY. 27.  et al. 2009. Phase diagram and high-pressure boundary of hydrate formation in the carbon dioxide-water system. J. Phys. Chem. B 113:7257–62 [Google Scholar]
  28. Majer V, Sedlbauer J, Bergin G. 28.  2008. Henry's law constant and related coefficients for aqueous hydrocarbons, CO2 and H2S over a wide range of temperature and pressure. Fluid Phase Equilib 272:65–74 [Google Scholar]
  29. Carroll JJ, Slupsky JD, Mather AE. 29.  1991. The solubility of carbon dioxide in water at low pressure. J. Phys. Chem. Ref. Data 20:1201–9 [Google Scholar]
  30. Fernández-Prini R, Alvarez JL, Harvey AH. 30.  2003. Henry's constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures. J. Phys. Chem. Ref. Data 32:903 [Google Scholar]
  31. Carroll JJ, Mather AE. 31.  1992. The system carbon dioxide-water and the Krichevsky-Kasarnovsky equation. J. Solut. Chem. 21:607–21 [Google Scholar]
  32. Hou SX, Maitland G, Trusler JPM. 32.  2012. Measurement and modeling of the phase behavior of the (carbon dioxide + water) mixture at temperatures from 298.15 K to 448.15 K. J. Supercrit. Fluids 73:87–96 [Google Scholar]
  33. Segura H, Seiltgens D, Mejia A, Llovell F, Vega LF. 33.  2008. An accurate direct technique for parameterizing cubic equations of state: part II. Specializing models for predicting vapor pressures and phase densities. Fluid Phase Equilib 265:155–72 [Google Scholar]
  34. Privat R, Visconte M, Zazoua-Khames A, Jaubert J-N, Gani R. 34.  2015. Analysis and prediction of the alpha-function parameters used in cubic equations of state. Chem. Eng. Sci. 126:584–603 [Google Scholar]
  35. Chapoy A, Mohammadi AH, Chareton A, Tohidi B, Richon D. 35.  2004. Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide−water system. Ind. Eng. Chem. Res. 43:1794–802 [Google Scholar]
  36. Panagiotopoulos AZ, Reid RC. 36.  1985. High-pressure phase-equilibria in ternary fluid mixtures with a supercritical component. ACS Symp. Ser. 329:115–29 [Google Scholar]
  37. Panagiotopoulos AZ, Reid RC. 37.  1986. A new mixing rule for cubic equations of state for highly polar, asymmetric systems. ACS Symp. Ser. 300:571–82 [Google Scholar]
  38. Chapman WG, Gubbins KE, Jackson G, Radosz M. 38.  1989. SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib 52:31–38 [Google Scholar]
  39. dos Ramos MC, Blas FJ, Galindo A. 39.  2007. Phase equilibria, excess properties, and Henry's constants of the water + carbon dioxide binary mixture. J. Phys. Chem. C 111:15924–34 [Google Scholar]
  40. Kontogeorgis GM, Voutsas EC, Yakoumis IV, Tassios DP. 40.  1996. An equation of state for associating fluids. Ind. Eng. Chem. Res. 35:4310–18 [Google Scholar]
  41. Kontogeorgis GM, Michelsen ML, Folas GK, Derawi S, von Solms N, Stenby EH. 41.  2006. Ten years with the CPA (cubic-plus-association) equation of state. Part 2. Cross-associating and multicomponent systems. Ind. Eng. Chem. Res. 45:4869–78 [Google Scholar]
  42. Dufal S, Lafitte T, Haslam AJ, Galindo A, Clark GNI. 42.  et al. 2015. The A in SAFT: developing the contribution of association to the Helmholtz free energy within a Wertheim TPT1 treatment of generic Mie fluids. Mol. Phys. 113:948–84 [Google Scholar]
  43. Bando S, Takemura F, Nishio M, Hihara E, Akai M. 43.  2003. Solubility of CO2 in aqueous solutions of NaCl at (30 to 60)°C and (10 to 20) MPa. J. Chem. Eng. Data 48:576–79 [Google Scholar]
  44. Rumpf B, Nicolaisen H, Öcal C, Maurer G. 44.  1994. Solubility of carbon dioxide in aqueous solutions of sodium chloride: experimental results and correlation. J. Solut. Chem. 23:431–48 [Google Scholar]
  45. Kiepe J, Horstmann S, Fischer K, Gmehling J. 45.  2002. Experimental determination and prediction of gas solubility data for CO2 + H2O mixtures containing NaCl or KCl at temperatures between 313 and 393 K and pressures up to 10 MPa. Ind. Eng. Chem. Res. 41:4393–98 [Google Scholar]
  46. Hou S-X, Maitland GC, Trusler JPM. 46.  2013. Phase equilibria of (CO2 + H2O + NaCl) and (CO2 + H2O + KCl): measurements and modeling. J. Supercrit. Fluids 78:78–88 [Google Scholar]
  47. Tong D, Trusler JPM, Vega-Maza D. 47.  2013. Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa. J. Chem. Eng. Data 58:2116–24 [Google Scholar]
  48. Galindo A, Gil-Villegas A, Jackson G, Burgess AN. 48.  1999. SAFT-VRE: phase behavior of electrolyte solutions with the statistical associating fluid theory for potentials of variable range. J. Phys. Chem. 103:10272–81 [Google Scholar]
  49. Rozmus J, de Hemptinne J-C, Galindo A, Dufal S, Mougin P. 49.  2013. Modeling of strong electrolytes with ePPC-SAFT up to high temperatures. Ind. Eng. Chem. Res. 52:9979–94 [Google Scholar]
  50. Pitzer KS. 50.  1973. Thermodynamics of electrolytes. 1. Theoretical basis and general equations. J. Phys. Chem. 77:268–77 [Google Scholar]
  51. Pitzer KS, Mayorga G. 51.  1973. Thermodynamics of electrolytes. 2. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77:2300–8 [Google Scholar]
  52. Harvie CE, Moller N, Weare JH. 52.  1984. The prediction of mineral solubilities in natural waters—the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochim. Cosmochim. Acta 48:723–51 [Google Scholar]
  53. Duan Z, Sun R, Zhu C, Chou IM. 53.  2006. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO42−. Mar. Chem. 98:131–39 [Google Scholar]
  54. Akinfiev NN, Diamond LW. 54.  2010. Thermodynamic model of aqueous CO2-H2O-NaCl solutions from −22 to 100°C and from 0.1 to 100 MPa. Fluid Phase Equilib 295:104–24 [Google Scholar]
  55. Sedlbauer J, O'Connell JP, Wood RH. 55.  2000. A new equation of state for correlation and prediction of standard molal thermodynamic properties of aqueous species at high temperatures and pressures. Chem. Geol. 163:43–63 [Google Scholar]
  56. McBride-Wright M, Maitland GC, Trusler JPM. 56.  2015. Viscosity and density of aqueous solutions of carbon dioxide at temperatures from (274 to 449) K and at pressures up to 100 MPa. J. Chem. Eng. Data 60:171–80 [Google Scholar]
  57. Efika EC, Hoballah R, Li X, May EF, Nania M. 57.  et al. 2016. Saturated phase densities of (CO2 + H2O) at temperatures from (293 to 450) K and pressures up to 64 MPa. J. Chem. Thermodyn. 93:347–59 [Google Scholar]
  58. Deering CE, Cairns EC, McIsaac JD, Read AS, Marriott RA. 58.  2016. The partial molar volumes for water dissolved in high-pressure carbon dioxide from T = (318.28 to 369.40) K and pressures to p = 35 MPa. J. Chem. Thermodyn 93:337–46 [Google Scholar]
  59. Koschel D, Coxam J-Y, Rodier L, Majer V. 59.  2006. Enthalpy and solubility data of CO2 in water and NaCl(aq) at conditions of interest for geological sequestration. Fluid Phase Equilib 247:107–20 [Google Scholar]
  60. Hebach A, Oberhof A, Dahmen N, Kogel A, Ederer H, Dinjus E. 60.  2002. Interfacial tension at elevated pressures—measurements and correlations in the water plus carbon dioxide system. J. Chem. Eng. Data 47:1540–46 [Google Scholar]
  61. Chiquet P, Daridon JL, Broseta D, Thibeau S. 61.  2007. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Convers. Manag. 48:736–44 [Google Scholar]
  62. Chalbaud C, Robin M, Lombard JM, Martin F, Egermann P, Bertin H. 62.  2009. Interfacial tension measurements and wettability evaluation for geological CO2 storage. Adv. Water Resour. 32:98–109 [Google Scholar]
  63. Georgiadis A, Maitland G, Trusler JPM, Bismarck A. 63.  2010. Interfacial tension measurements of the (H2O + CO2) system at elevated pressures and temperatures. J. Chem. Eng. Data 55:4168–75 [Google Scholar]
  64. Tewes F, Boury F. 64.  2004. Thermodynamic and dynamic interfacial properties of binary carbon dioxide-water systems. J. Phys. Chem. B 108:2405–12 [Google Scholar]
  65. Chun BS, Wilkinson GT. 65.  1995. Interfacial tension in high-pressure carbon-dioxide mixtures. Ind. Eng. Chem. Res. 34:4371–77 [Google Scholar]
  66. Cheng P, Li D, Boruvka L, Rotenberg Y, Neumann AW. 66.  1990. Automation of axisymmetric drop shape-analysis for measurement of interfacial-tensions and contact angles. Colloids Surf 43:151–67 [Google Scholar]
  67. Chow YTF, Maitland GC, Trusler JPM. 67.  2016. Interfacial tensions of the (CO2 + N2 + H2O) system at temperatures of (298 to 448) K and pressures up to 40 MPa. J. Chem. Thermodyn. 93:392–403 [Google Scholar]
  68. Hou S-X, Maitland GC, Trusler JPM. 68.  2013. Measurement and modeling of the phase behavior of the (carbon dioxide+water) mixture at temperatures from 298.15 K to 448.15 K. J. Supercrit. Fluids 73:87–96 [Google Scholar]
  69. 69. IAPWS (Int. Assoc. Prop. Water Steam). 1994. Release on the surface tension of ordinary water substance. Presented at 12th Int. Conf. Prop. Water Steam, Sep. 11–16 Orlando, FL:
  70. Müller EA, Mejía A. 70.  2014. Resolving discrepancies in the measurements of the interfacial tension for the CO2 + H2O mixture by computer simulation. J. Phys. Chem. Lett. 5:1267–71 [Google Scholar]
  71. Li X, Boek E, Maitland GC, Trusler JPM. 71.  2012. Interfacial tension of (brines + CO2): (0.864 NaCl + 0.136 KCl) at temperatures between (298 and 448) K, pressures between (2 and 50) MPa, and total molalities of (1 to 5) mol·kg−1. J. Chem. Eng. Data 57:1078–88 [Google Scholar]
  72. Li X, Boek ES, Maitland GC, Trusler JPM. 72.  2012. Interfacial tension of (brines + CO2): CaCl2(aq), MgCl2(aq), and Na2SO4(aq) at temperatures between (343 and 423) K, pressures between (2 and 50) MPa, and molalities of (0.5 to 5) mol·kg−1. J. Chem. Eng. Data 57:1369–75 [Google Scholar]
  73. Davis HT. 73.  1996. Statistical Mechanics of Phases, Interfaces, and Thin Films New York: Wiley-VCH
  74. Evans R. 74.  1992. Density functionals in the theory of nonuniform fluids. Fundamentals of Inhomogeneous Fluids D Henderson 85–177 New York: Marcel Dekker [Google Scholar]
  75. Gloor GJ, Jackson G, Blas FJ, del Rio EM, de Miguel E. 75.  2004. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range. J. Chem. Phys. 121:12740–59 [Google Scholar]
  76. Gloor GJ, Jackson G, Blas FJ, del Rio EM, de Miguel E. 76.  2007. Prediction of the vapor-liquid interfacial tension of nonassociating and associating fluids with the SAFT-VR density functional theory. J. Phys. Chem. C 111:15513–22 [Google Scholar]
  77. Gross J. 77.  2009. A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state. J. Chem. Phys. 131:204705 [Google Scholar]
  78. Llovell FL, Galindo A, Blas FJ, Jackson G. 78.  2010. Classical density functional theory for the prediction of the surface tension and interfacial properties of fluids mixtures of chain molecules based on the statistical associating fluid theory for potentials of variable range. J. Chem. Phys. 133:024704 [Google Scholar]
  79. Lafitte T, Mendiboure B, Piñeiro MM, Bessières D, Miqueu C. 79.  2010. Interfacial properties of water/CO2: a comprehensive description through a gradient theory–SAFT-VR Mie approach. J. Phys. Chem. B 114:11110–16 [Google Scholar]
  80. Llovell F, Mac Dowell N, Blas FJ, Galindo A, Jackson G. 80.  2012. Application of the SAFT-VR density functional theory to the prediction of the interfacial properties of mixtures of relevance to reservoir engineering. Fluid Phase Equilib 336:137–50 [Google Scholar]
  81. Georgiadis A, Llovell F, Bismarck A, Blas FJ, Galindo A. 81.  et al. 2010. Interfacial tension measurements and modelling of (carbon dioxide plus n-alkane) and (carbon dioxide plus water) binary mixtures at elevated pressures and temperatures. J. Supercrit. Fluids 55:743–54 [Google Scholar]
  82. Cahn JW, Hilliard JE. 82.  1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28:258–67 [Google Scholar]
  83. Chow YTF, Eriksen DK, Galindo A, Haslam AJ, Jackson G. 83.  et al. 2016. Interfacial tensions of systems comprising water, carbon dioxide and diluent gases at high pressures: experimental measurements and modelling with SAFT-VR Mie and square-gradient theory. Fluid Phase Equilib 407:159–76 [Google Scholar]
  84. Liang X, Michelsen ML, Kontogeorgis GM. 84.  2016. A density gradient theory based method for surface tension calculations. Fluid Phase Equilib 428:153–63 [Google Scholar]
  85. Li X, Ross DA, Trusler JPM, Maitland GC, Boek ES. 85.  2013. Molecular dynamics simulations of CO2 and brine interfacial tension at high temperatures and pressures. J. Phys. Chem. B 117:5647–52 [Google Scholar]
  86. Cadogan SP, Maitland GC, Trusler JPM. 86.  2014. Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 K and 423.15 K at pressures up to 45 MPa. J. Chem. Eng. Data 59:519–25 [Google Scholar]
  87. Cadogan SP, Hallett JP, Maitland GC, Trusler JPM. 87.  2015. Diffusion coefficients of carbon dioxide in brines measured using 13C pulsed-field gradient nuclear magnetic resonance. J. Chem. Eng. Data 60:181–84 [Google Scholar]
  88. Moultos OA, Tsimpanogiannis IN, Panagiotopoulos AZ, Economou IG. 88.  2014. Atomistic molecular dynamics simulations of CO2 diffusivity in H2O for a wide range of temperatures and pressures. J. Phys. Chem. B 118:5532–41 [Google Scholar]
  89. Martynov S, Brown S, Mahgerefteh H, Sundara V, Chen S, Zhang Y. 89.  2014. Modelling three-phase releases of carbon dioxide from high-pressure pipelines. Process Saf. Environ. Prot. 92:36–46 [Google Scholar]
  90. Løvseth SW, Stang HGJ, Austegard A, Westman SF, Span R, Wegge R. 90.  2016. Measurements of CO2-rich mixture properties: status and CCS needs. Energy Proc 86:469–78 [Google Scholar]
  91. Li H, Jakobsen JP, Wilhelmsen Ø, Yan J. 91.  2011. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: review of available experimental data and theoretical models. Appl. Energy 88:3567–79 [Google Scholar]
  92. Coquelet C, El Abbadi J, Houriez C. 92.  2016. Prediction of thermodynamic properties of refrigerant fluids with a new three-parameter cubic equation of state. Int. J. Refrig. 69:418–36 [Google Scholar]
  93. Péneloux A, Rauzy E, Fréze R. 93.  1982. A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib 8:7–23 [Google Scholar]
  94. Tillner-Roth R. 94.  1993. The thermodynamic properties of R152a, R134a and mixtures—measurements and fundamental equations PhD Thesis Univ. Hannover Ger:
  95. Lemmon EW. 95.  1996. A generalized model for the prediction of the thermodynamic properties of mixtures including vapor-liquid equilibrium PhD Thesis Univ. Idaho Moscow:
  96. Kunz O, Klimeck R, Wagner W, Jaeschke M. 96.  2007. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures GERG Tech. Monogr. TM15 2007. Düsseldorf: VDI Verlag GmbH
  97. Kunz O, Wagner W. 97.  2012. The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004. J. Chem. Eng. Data 57:3032–91 [Google Scholar]
  98. Lemmon EW, Huber ML, McLinden MO. 98.  2013. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 9.1 Gaithersburg, MD: Natl. Inst. Stand. Technol
  99. Gernert J, Span R. 99.  2016. EOS-CG: a Helmholtz energy mixture model for humid gases and CCS mixtures. J. Chem. Thermodyn. 93:274–93 [Google Scholar]
  100. Fandino O, Trusler JPM, Vega-Maza D. 100.  2015. Phase behavior of (CO2 + H2) and (CO2 + N2) at temperatures between (218.15 and 303.15) K at pressures up to 15 MPa. Int. J. Greenh. Gas Control 36:78–92 [Google Scholar]
  101. Westman SF, Stang HGJ, Lovseth SW, Austegard A, Snustad I, Ertesvag IS. 101.  2016. Vapor-liquid equilibrium data for the carbon dioxide and oxygen (CO2 + O2) system at the temperatures 218, 233, 253, 273, 288 and 298 K and pressures up to 14 MPa. Fluid Phase Equilib 421:67–87 [Google Scholar]
  102. Westman SF, Stang HGJ, Lovseth SW, Austegard A, Snustad I. 102.  et al. 2016. Vapor liquid equilibrium data for the carbon dioxide and nitrogen (CO2 + N2) system at the temperatures 223, 270, 298 and 303 K and pressures up to 18 MPa. Fluid Phase Equilib 409:207–41 [Google Scholar]
  103. Li H, Wilhelmsen Ø, Lv Y, Wang W, Yan J. 103.  2011. Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: review of experimental data and theoretical models. Int. J. Greenh. Gas Control 5:1119–39 [Google Scholar]
  104. Huber ML, Hanley HJM. 104.  1996. The corresponding-states principle: dense fluids. Transport Properties of Fluids: Their Correlation, Prediction, and Estimation J Millat, JH Dymond, CA Nieto de Castro 283–95 New York: Cambridge Univ. Press [Google Scholar]
  105. Vesovic V, Wakeham WA. 105.  1989. Prediction of the viscosity of fluid mixtures over wide ranges of temperature and pressure. Chem. Eng. Sci. 44:2181–89 [Google Scholar]
  106. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S. 106.  et al. 2014. Carbon capture and storage update. Energy Environ. Sci. 7:130–89 [Google Scholar]
  107. Fonseca JMS, Dohrn R, Peper S. 107.  2011. High-pressure fluid-phase equilibria: experimental methods and systems investigated (2005–2008). Fluid Phase Equilib 300:1–69 [Google Scholar]
  108. Tong D, Trusler JPM, Maitland GC, Gibbins J, Fennell PS. 108.  2012. Solubility of carbon dioxide in aqueous solution of monoethanolamine or 2-amino-2-methyl-1-propanol: experimental measurements and modelling. Int. J. Greenh. Gas Control 6:37–47 [Google Scholar]
  109. Ma'mun S, Nilsen R, Svendsen HF, Juliussen O. 109.  2005. Solubility of carbon dioxide in 30 mass % monoethanolamine and 50 mass % methyldiethanolamine solutions. J. Chem. Eng. Data 50:630–34 [Google Scholar]
  110. Jou FY, Mather AE, Otto FD. 110.  1995. The solubility of CO2 in a 30-mass-percent monoethanolamine solution. Can. J. Chem. Eng. 73:140–47 [Google Scholar]
  111. Sidi-Boumedine R, Horstmann S, Fischer K, Provost E, Furst W, Gmehling J. 111.  2004. Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions. Fluid Phase Equilib 218:85–94 [Google Scholar]
  112. Ermatchkov V, Kamps APS, Maurer G. 112.  2006. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine in the low gas loading region. Ind. Eng. Chem. Res. 45:6081–91 [Google Scholar]
  113. Ermatchkov V, Kamps APS, Speyer D, Maurer G. 113.  2006. Solubility of carbon dioxide in aqueous solutions of piperazine in the low gas loading region. J. Chem. Eng. Data 51:1788–96 [Google Scholar]
  114. Bishnoi S, Rochelle GT. 114.  2000. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem. Eng. Sci. 55:5531–43 [Google Scholar]
  115. Austgen DM, Rochelle GT, Peng X, Chen CC. 115.  1989. Model of vapor liquid equilibria for aqueous acid gas alkanolamine systems using the electrolyte-NRTL equation. Ind. Eng. Chem. Res. 28:1060–73 [Google Scholar]
  116. Schmidt KAG, Maham Y, Mather AE. 116.  2007. Use of the NRTL equation for simultaneous correlation of vapour-liquid equilibria and excess enthalpy. J. Therm. Anal. Calorim. 89:61–72 [Google Scholar]
  117. Kent RL, Eisenberg B. 117.  1976. Better data for amine treating. Hydrocarb. Process 55:87–90 [Google Scholar]
  118. Chremos A, Forte E, Papaioannou V, Galindo A, Jackson G, Adjiman CS. 118.  2016. Modelling the phase and chemical equilibria of aqueous solutions of alkanolamines and carbon dioxide using the SAFT-γ SW group contribution approach. Fluid Phase Equilib 407:280–97 [Google Scholar]
  119. Mac Dowell N, Llovell F, Adjiman CS, Jackson G, Galindo A. 119.  2010. Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach. Ind. Eng. Chem. Res. 49:1883–99 [Google Scholar]
  120. Weiland RH, Dingman JC, Cronin DB, Browning GJ. 120.  1998. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. J. Chem. Eng. Data 43:378–82 [Google Scholar]
  121. Amundsen TG, Oi LE, Eimer DA. 121.  2009. Density and viscosity of monoethanolamine plus water plus carbon dioxide from (25 to 80) °C. J. Chem. Eng. Data 54:3096–100 [Google Scholar]
  122. Freeman SA, Rochelle GT. 122.  2011. Density and viscosity of aqueous (piperazine plus carbon dioxide) solutions. J. Chem. Eng. Data 56:574–81 [Google Scholar]
  123. Zhang J, Fennell PS, Trusler JPM. 123.  2015. Density and viscosity of partially carbonated aqueous tertiary alkanolamine solutions at temperatures between (298.15 and 353.15) K. J. Chem. Eng. Data 60:2392–99 [Google Scholar]
  124. Fu D, Wei L, Liu S. 124.  2013. Experiment and model for the surface tension of carbonated MEA-MDEA aqueous solutions. Fluid Phase Equilib 337:83–88 [Google Scholar]
  125. Alvarez-Fuster C, Midoux N, Laurent A, Charpentier JC. 125.  1980. Chemical kinetics of the reaction of carbon dioxide with amines in pseudo m-nth order conditions in aqueous and organic solutions. Chem. Eng. Sci. 35:1717–23 [Google Scholar]
  126. Versteeg GF, Vanswaaij WPM. 126.  1988. Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions. J. Chem. Eng. Data 33:29–34 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060816-101426
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101426
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error